Призма, вписанная в сферу
Призма, вписанная в сферу. Свойства призмы, вписанной в сферу
Определение 1. Призмой, вписанной в сферу, называют такую призму, все вершины которой лежат на сфере (рис. 1).
Определение 2. Если призма вписана в сферу, то сферу называют описанной около призмы.
Теорема. Около призмы можно описать сферу тогда и только тогда, когда выполнены следующие два условия:
- Призма является прямой призмой;
- Около оснований призмы можно описать окружности.
Доказательство. Докажем сначала, что если n – угольная призма A1A2 . AnA’1A’2 . A’n вписана в сферу, то оба условия теоремы выполнены.
Для этого заметим, что плоскость каждого из оснований призмы пересекает сферу по окружности, на которой лежат вершины этого основания. Таким образом, многоугольники, являющиеся основаниями призмы, оказываются вписанными в окружности (рис. 1), то есть второе условие теоремы выполнено.
Каждая из боковых граней призмы также вписана в окружность (рис. 2).
Рассмотрим какое-нибудь боковое ребро призмы, например, A2A’2. Поскольку это ребро перпендикулярно к ребрам основания A1A2 и A2A3 , то в силу признака перпендикулярности прямой и плоскости заключаем, что боковое ребро A2A’2 перпендикулярно к плоскости основания призмы, то есть призма является прямой призмой.
Таким образом, мы доказали, что, если призма вписана в сферу, то оба условия теоремы выполнены.
Для этого обозначим символом O1 центр окружности радиуса r , описанной около нижнего основания призмы, а символом O’1 обозначим центр окружности, описанной около верхнего основания призмы (рис. 3).
Поскольку многоугольники, лежащие в основаниях призмы равны, то и радиусы описанных около них окружностей будут равны.
Согласно утверждению 1 из раздела «Призмы, вписанные в цилиндры» отрезок O1O’1, соединяющий центры окружностей, описанных около нижнего и верхнего оснований призмы, параллелен и равен боковому ребру призмы. Так как рассматриваемая призма прямая, то ее боковые ребра перпендикулярны плоскости основания и равны высоте призмы h. Значит, и отрезок O1O’1 перпендикулярен плоскости основания призмы и равен h.
Обозначим буквой O середину отрезка O1O’1 и докажем, что все вершины призмы будут находиться на одном и том же расстояниии от точки O (рис. 4).
(1) |
от всех вершин призмы. Отсюда следует, что точка O является центром сферы радиуса R , описанной около призмы.
Следствие 1. Около любой прямой треугольной призмы можно вписать сферу.
Следствие 2. Около любого прямоугольного параллелепипеда (в частности, около куба прямоугольного параллелепипеда (в частности, около куба ) можно описать сферу.
Следствие 3. Около любой правильной призмы можно описать сферу.
Для доказательства следствия 3 достаточно заметить, что правильная n – угольная призма – это прямая призма, основания которой являются правильными n – угольниками, а около любого правильного n – угольника можно описать окружность.
Радиус сферы, описанной около правильной n – угольной призмы
то из формулы (1) получаем выражение для радиуса описанной сферы
(2) |
Ответ.
Следствие 6. Радиус сферы, описанной около около правильной шестиугольной призмы с высотой h и ребром основания a равен
Отношение объема правильной n – угольной призмы к объему шара, ограниченного описанной около призмы сферой
Задача 2. Около правильной n – угольной призмы с высотой h и ребром основания a описана сфера. Найти отношение объемов призмы и шара, ограниченного сферой, описанной около данной призмы.
Воспользовавшись формулой (2), выразим объем шара, ограниченного описанной около призмы сферой, через высоту и ребро основания призмы:
Ответ.
Следствие 7. Отношение объема правильной треугольной призмы с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно
Следствие 8. Отношение объема правильной четырехугольной призмы правильной четырехугольной призмы с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно
Следствие 9. Отношение объема правильной шестиугольной призмы с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно
Треугольная призма все формулы и примеры задач
Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.
Определение
Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.
Элементы треугольной призмы
Треугольники ABC и A1B1C1 являются основаниями призмы .
Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы .
Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.
Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).
Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.
Площадь основания — это площадь треугольной грани призмы.
Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.
Виды треугольных призм
Треугольная призма бывает двух видов: прямая и наклонная.
У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)
Прямая треугольная призма
Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.
Наклонная треугольная призма
Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.
Основные формулы для расчета треугольной призмы
Объем треугольной призмы
Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.
Объем призмы = площадь основания х высота
Площадь боковой поверхности призмы
Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.
Площадь боковой поверхности треугольной призмы = периметр основания х высота
Площадь полной поверхности призмы
Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.
так как Sбок=Pосн . h, то получим:
Правильная призма — прямая призма, основанием которой является правильный многоугольник.
Свойства призмы :
Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.
Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см 2 , то высота должна быть выражена в сантиметрах, а объем — в см 3 . Если площадь основания в мм 2 , то высота должна быть выражена в мм, а объем в мм 3 и т. д.
Пример призмы
В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.
Задачи на расчет треугольной призмы
Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:
V = 1/2 · 6 · 8 · 5 = 120.
Задача 2.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.
Решение:
Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.
Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k 2 = S12 2 = 4S1.
Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.
Призма
Призма
Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.
Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.
Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.
Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.
Формулы вычисления объема и площади поверхности призмы:
Чтобы были понятны формулы, введем обозначения:
$P_<осн>$ – периметр основания;
$S_<осн>$ – площадь основания;
$S_<бок>$ – площадь боковой поверхности;
$S_<п.п>$ – площадь полной поверхности;
$h$ – высота призмы.
В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.
В основании лежит треугольник.
- $S=/<2>$, где $h_a$ – высота, проведенная к стороне $а$
- $S=/<2>$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
- Формула Герона $S=√$, где $р$ – это полупериметр $p=/<2>$
- $S=p·r$, где $r$ – радиус вписанной окружности
- $S=/<4R>$, где $R$ – радиус описанной окружности
- Для прямоугольного треугольника $S=/<2>$, где $а$ и $b$ – катеты прямоугольного треугольника.
В основании лежит четырехугольник
1. Прямоугольник
$S=a·b$, где $а$ и $b$ – смежные стороны.
2. Ромб
$S=/<2>$, где $d_1$ и $d_2$ – диагонали ромба
$S=a^2·sinα$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.
3. Трапеция
$S=<(a+b)·h>/<2>$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.
Прямая призма называется правильной, если ее основания – правильные многоугольники.
Рассмотрим площади правильных многоугольников:
1. Для равностороннего треугольника $S=/<4>$, где $а$ – длина стороны.
$S=a^2$, где $а$ – сторона квадрата.
3. Правильный шестиугольник
Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:
Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.
Построим прямую призму, в основании которой лежит ромб.
Распишем формулу площади полной поверхности:
В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$
Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.
Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.
Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.
Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:
Цилиндр – это та же призма, в основании которой лежит круг.
Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k^3$ раз.
Средняя линия треугольника параллельна основанию и равна его половине.
$MN$ – средняя линия, так как соединяет середины соседних сторон.
Подобие треугольников
Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.
Число $k$ – коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)
- Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
- Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
Прямоугольный треугольник и его свойства:
В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника:
- Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
- Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$
Для острого угла $В: АС$ – противолежащий катет; $ВС$ – прилежащий катет.
Для острого угла $А: ВС$ – противолежащий катет; $АС$ – прилежащий катет.
- Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
- Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
- В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
- Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
- Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | $<1>/<2>$ | $<√2>/<2>$ | $<√3>/<2>$ |
$cosα$ | $<√3>/<2>$ | $<√2>/<2>$ | $<1>/<2>$ |
$tgα$ | $<√3>/<3>$ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | $<√3>/<3>$ |
Теорема синусов
Во всяком треугольнике стороны относятся как синусы противолежащих углов:
Теорема косинусов
Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
[spoiler title=”источники:”]
http://examer.ru/ege_po_matematike/teoriya/pizma
[/spoiler]
Download Article
Download Article
A prism is a three-dimensional solid with two parallel bases, or faces, that are congruent.[1]
The shape of the base determines what type of prism you have, such as a rectangular or triangular prism. Because it is a 3D shape, finding the volume (space inside) of a prism is a common task; however, sometimes you will need to find the height of a prism. Finding the height is possible if you have enough information already given: either the volume, or the surface area and perimeter of the base. The formulas described in these methods can work for prisms with bases of any shape, provided you know the formula for finding the area of that shape.
-
1
-
2
Plug the volume into the formula. If you do not know the volume, you cannot use this method.
Advertisement
-
3
Find the area of the base. To find the area, you need to know the length and width of the base (or of one side, if the base is a square). Use the formula . To find the area of a rectangle.[3]
-
4
Plug the area of the base into the volume of a prism formula. Make sure you are substituting for the variable .
- For example, if you found the area of the base to be 16 square meters, then your formula will look like this:
- For example, if you found the area of the base to be 16 square meters, then your formula will look like this:
-
5
Solve the equation for . This will give you the height of your prism.
Advertisement
-
1
-
2
Plug the volume into the formula. If you do not know the volume, you cannot use this method.
-
3
Find the area of the base. To find the area, you need to know the length of the triangle’s base and the height of the triangle. Use the formula to find the area of a triangle.[5]
-
4
Plug the area of the base into the volume of a prism formula. Make sure you are substituting for the variable .
- For example, if you found the area of the base to be 42 square meters, then your formula will look like this:
- For example, if you found the area of the base to be 42 square meters, then your formula will look like this:
-
5
Solve the equation for . This will give you the height of your prism.
Advertisement
-
1
-
2
Plug the surface area of the prism into the formula. If you do not know the surface area, this method will not work.
- For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
- For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
-
3
Find the area of the base. To find the area, you need to know the length and width of the base (or of one side, if the base is a square). Use the formula . To find the area of a rectangle.[7]
-
4
Plug the area of the base into the formula for the surface area of a prism and simplify. Make sure you are substituting for the letter .
-
5
Find the perimeter of the base. To find the perimeter of a rectangle, add up the length of all four sides, or, for a square, multiply the length of one side by 4.
-
6
Plug the perimeter of the base into the formula for the surface area of a prism. Make sure you are substituting for the letter .
- For example, if you found the perimeter of the base to be 20, your formula will look like this:
- For example, if you found the perimeter of the base to be 20, your formula will look like this:
-
7
Solve the equation for . This will give you the height of your prism.
Advertisement
-
1
-
2
Plug the surface area of the prism into the formula. If you do not know the surface area, this method will not work.
- For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
- For example, if you know the surface area is 1460 square centimeters, your formula will look like this:
-
3
Find the area of the base. To find the area, you need to know the length of the triangle’s base and the height of the triangle. Use the formula . To find the area of a triangle.[9]
-
4
Plug the area of the base into the formula for the surface area of a prism and simplify. Make sure you are substituting for the letter .
-
5
Find the perimeter of the base. To find the perimeter of a triangle, add up the length of all three sides.
-
6
Plug the perimeter of the base into the formula for the surface area of a prism. Make sure you are substituting for the letter .
- For example, if you found the perimeter of the base to be 21, your formula will look like this:
- For example, if you found the perimeter of the base to be 21, your formula will look like this:
-
7
Solve the equation for . This will give you the height of your prism.
Advertisement
Add New Question
-
Question
How do I find the height of a cylinder given the volume?
You can use Method 1 and the formula V = Ah. The base of a cylinder is a circle, so A will equal the area of the circle, which is pi x r^2. As long as you know the radius of the circle, you should be able to solve for h.
-
Question
How can I find the height of a rectangular prism with the width, length and area of base?
You also need to know the volume, in which case, you would divide the volume by the area.
-
Question
How do I find the width of a rectangular prism?
Assuming you know the volume, divide the volume by the height, then divide by the length.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
Thanks for submitting a tip for review!
Things You’ll Need
- Pen/pencil and paper or calculator (optional)
References
About This Article
Article SummaryX
To find the height of a rectangular prism with a known volume, use the formula V=Ah, where V equals volume, A equals the area of one side, and h equals height. If you don’t have the area, multiply the width and length of one side to get that value. For triangular prisms with a known value, you use the same formula V=AH, but finding the area of one side is different. Use the formula A = 1/2bh, where b equals base and h equals height to get the area so you can solve for the height of the prism. To learn how to find the height of a triangular prism using the surface area, scroll down!
Did this summary help you?
Thanks to all authors for creating a page that has been read 378,727 times.
Did this article help you?
ВИДЕОУРОК
Призма, вписанная в цилиндр.
Призму называют вписанною в цилиндр, если её основания
вписаны в основания цилиндра, а боковые рёбра касательные цилиндра.
При этом цилиндр называют описанным вокруг призмы. Понятно,
что если касательные цилиндра перпендикулярны к плоскости основания, то призма,
вписанная в цилиндр, будет прямою.
Из определения призмы, вписанной в цилиндр, вытекают её
свойства:
– цилиндр можно описать вокруг прямой призмы, если её
основанием является многогранник, вокруг которого можно описать окружность; при этом радиус цилиндра R равен радиусу этой
окружности;
– высота Н призмы, которая
соединяет центры окружностей, описанных вокруг основ, принадлежит оси цилиндра.
Формулы вычисления радиуса R описанной окружности.
Где a, b, с – стороны, h – высота, d – диагональ.
ПРИМЕР:
Можно или нет описать цилиндр вокруг
прямой призмы, в основании которой лежит треугольник ?
РЕШЕНИЕ:
Да, так как вокруг любого треугольника
можно описать окружность.
ПРИМЕР:
Можно или нет описать цилиндр вокруг
прямой призмы, в основании которой лежит ромб, если он не является квадратом ?
РЕШЕНИЕ:
Нет, так как вокруг ромба, который
не является квадратом, нельзя описать окружность.
Призма, описанная вокруг цилиндра.
Касательной плоскостью цилиндра называют плоскость, которая
проходит через касательную цилиндра и перпендикулярная к плоскости осевого сечения,
в котором находится касательная цилиндра.
Призму называют описанной вокруг цилиндра, если её
основания описаны вокруг оснований цилиндра, а боковые грани принадлежат плоскостям,
которые касаются цилиндра.
При этом цилиндр называют вписанным в призму, так как касательные
цилиндра перпендикулярные к плоскости оснований, и боковые грани призмы, в
которых находятся касательные, также перпендикулярные к плоскости оснований, то
есть призма, описанная вокруг цилиндра, будет прямой.
По определению призмы, описанной вокруг цилиндра, определим
её свойства:
– цилиндр можно вписать в прямую призму, если её основания
будут многогранники, в которые можно вписать окружности; при этом радиус цилиндра r равен радиусу этой
окружности;
– высота Н призмы, которая
соединяет центры окружностей, вписанных в основания, принадлежит оси цилиндра.
Формулы вычисления радиуса r описанной окружности.
Где h – высота, S – площадь, р – полупериметр, a – сторонa.
ЗАДАЧА:
Вокруг цилиндра, высота которого равна 5 см, описали четырёхугольную
призму, три стороны которой в порядке следования равны
3 см, 4 см и 7 см.
Найти площадь
боковой поверхности призмы.
РЕШЕНИЕ:
Обозначим неизвестную сторону четырёхугольника
основания х. Так как этот четырёхугольник описан вокруг окружности, то
3 + 7 = 4 + х,
откуда х = 6 см.
Площадь боковой поверхности призмы
Sбок = P × l
где, Р – периметр
основания,
l – боковое ребро, которое равно высоте цилиндра.
Имеем:
Р = 3 + 7 + 4 +
6 = 20 (см).
Sбок = 20 × 5 = 100 (см2).
ОТВЕТ: 100 см2.
ЗАДАЧА:
В цилиндр вписана правильная
шестиугольная призма. Найдите угол между диагональю её боковой грани и осью
цилиндра, если радиус основания равен высоте цилиндра.
РЕШЕНИЕ:
Из условия задачи имеем:
В цилиндр вписана правильная
шестиугольная призма. Радиус основания цилиндра равен высоте призмы АО = АА1.
Боковые грани – квадраты, так как сторона правильного шестиугольника,
вписанного в окружность, равна радиусу. Рёбра призмы параллельны оси цилиндра,
поэтому угол между диагональю грани и осью цилиндра равен углу между диагональю
и боковым ребром. А этот угол равен 45°, так как грани – квадраты.
ЗАДАЧА:
Правильная
четырёхугольная призма описана около цилиндра, радиус основания которого
равен 0,5. Площадь боковой
поверхности призмы равна 8. Найдите высоту цилиндра.
РЕШЕНИЕ:
Так как четырёхугольная призма правильная, то в
основании лежит квадрат.
Радиус окружности, вписанной в квадрат, равен 0,5.
Следовательно, сторона квадрата равна диаметру окружности, то есть
2 ∙ 0,5 = 1.
Так как все боковые грани призмы равны, то площадь одной
грани равна
8 : 4 = 2.
Каждая грань представляет собой прямоугольник,
следовательно, её площадь равна произведению бокового ребра призмы на сторону
основания (квадрата). Следовательно, боковое ребро призмы равно:
2 : 1 = 2.
Высота цилиндра равна боковому ребру призмы,
следовательно, она равна 2.
ЗАДАЧА:
В цилиндр вписан правильный параллелепипед. Найдите
площадь полной поверхности этого параллелепипеда, если радиус цилиндра 10
см, а высота 20
см.
РЕШЕНИЕ:
Пусть О и О1 – центры основ данного цилиндра,
ОО1 – отрезок оси цилиндра, являющийся высотой. Поскольку параллелепипед
вписан в цилиндр, то его основания – параллелограммы. АВСD и А1В1С1D1, вписанные в основания цилиндра, следовательно, они прямоугольники или
квадраты, причем точки О и О1 – центры этих четырехугольников – точки пересечения диагоналей. Тогда
АА1 ∥ ВВ1 ∥ СС1 ∥ DD1 ∥ ОО1.
ОО1 ⊥ (АВС),
ОО1 ⊥ (А1В1С1),
следовательно, параллелепипед является
прямоугольным. Диагонали четырехугольников являются диаметрами цилиндра,
боковые ребра – образующие цилиндра,
Поскольку параллелепипед
правильный, то АВСD – квадрат,
АО = ВО = СO = DО = R = 10 см,
тоді АВ = 10√͞͞͞͞͞2 см.
Sп
= Sб
+ 2Sосн = P∙
H + 2SABCD
=
= 4
∙ 10√͞͞͞͞͞2 ∙
20 +
2(10√͞͞͞͞͞2)2 =
= 800√͞͞͞͞͞2 +
400 = 400(2√͞͞͞͞͞2 +
1)
(см2).
ОТВЕТ: 400(2√͞͞͞͞͞2 +
1) см2
ЗАДАЧА:
Вокруг цилиндра описана правильная четырёхугольная
призма, площадь боковой поверхности которой равна Q. Найдите площадь боковой поверхности
цилиндра.
РЕШЕНИЕ:
Если правильная четырехугольная призма описана вокруг
цилиндра, то круги основания цилиндра, вписанные в основания призмы, –
квадраты, центры оснований цилиндра – точки пересечения диагоналей квадратов,
боковое ребро призмы равно образующей цилиндра и является высотой призмы и
цилиндра. Отметим сторону квадрата а, радиус цилиндра r, высоту призмы и цилиндра Н.
По условию
Sб.пр. = Q,
Sб.пр. = P∙ H = 4a ∙ H = Q,
Sб.ц. = 2πrH, а = 2r.
Маємо:
4a ∙ H = Q, 4∙ 2rH = Q,
2rН = Q/4,
тоді
Sб.ц. = π ∙ 2RH = π∙ Q/4
ОТВЕТ: π∙ Q/4
Решение задач с применением
тригонометрии.
ЗАДАЧА:
В цилиндр вписана треугольная призма, основанием которой
является прямоугольный треугольник с катетом
а и прилежащим к нему острым углом α.
Диагональ грани призмы, в которой находится эта сторона треугольника, наклонена
к плоскости основания под углом β.
Найдите площадь боковой поверхности цилиндра.
РЕШЕНИЕ:
Пусть на рисунке изображен данный цилиндр,
О и О1 – центры оснований, ОО1 –
отрезок оси цилиндра, являющийся высотой. В данный цилиндр вписана треугольная
призма (прямая).
АВСА1В1С1, ∠ С = ∠ С1 = 90°.
Тогда ∆ АВС и ∆
А1В1С1 вписаны в круги оснований цилиндра, О и О1 –
середины гипотенуз АВ и А1В1, боковые ребра призмы являются образующими цилиндра,
∠ ВАС = α, АС = а,
АА1 ∥
ВВ1 ∥ СС1 ∥ DD1,
АА1 ⊥ (АВС),
А1С –
наклонная, АС – проекция,
поэтому ∠ АСА1 = β – угол между
А1С и (АВС).
ОТВЕТ:
Задания к уроку 12
Призма — это многогранник, который состоит из двух одинаковых многоугольников. Они расположены в
разных плоскостях. Призмы различаются по количеству углов в основании. К примеру, если в основании
находится треугольник ,то призма называется треугольной. Если в основании лежит четырехугольник, то
рассматриваемая фигура четырехугольная. Таким образом, фигура, состоящая из 2 равносторонних
треугольников, которые соединены между собой и лежат параллельно друг другу и называется правильная
треугольная призма.
Чтобы было проще понять, рекомендуется начертить на листе бумаге объект 2 равных
параллельных треугольника. Далее соединить их тремя вертикальными чертами. Все стороны у фигуры
обозначаются латинскими буквами, например, «А» «B» «C». Для второго треугольника в призме буквы
дублируются с индексом 1. В результате получается фигура, у которой стороны А₁В₁=В₁С₁=А₁С₁. Призма
АBCА₁В₁С₁ имеет грани в виде параллелограммов. Сторона АА₁ называется боковым ребром. Стороны в
основании геометрической фигуры называются ребрами основания. Высотой в призме называется расстояние
между разными плоскостями.
- Высота правильной треугольной призмы через обьём и ребро
основания - Высота правильной треугольной призмы через площадь боковой
поверхности и ребро основания - Высота правильной треугольной призмы через площадь боковой
поверхности и периметр основания - Высота правильной треугольной призмы через площадь боковой
поверхности и площадь основания - Высота правильной треугольной призмы через площадь грани и
ребро основания - Высота правильной треугольной призмы через диагональ грани
и ребро основания
Через объем и ребро основания
У этой фигуры есть два основания в виде треугольников. Шесть отрезков, которые образуют треугольник в
призме и называют ребрами основания. Длина ребра в правильной призме будет одинаковой, поскольку все
стороны и углы в равностороннем треугольнике равны между собой. Зная это и объем искомого
многоугольника, можно применить эту формулу для осуществления расчетов:
H = 4V / a²√3
где V — объем фигуры измеряется в кубических единицах, а — ребро основания.
Цифр после
запятой:
Результат в:
Длина любой стороны в основании правильной призмы и будет ребром.
Пример.
Если V = 6 мм³, а = 6 мм то расчет неизвестной величины по формуле будет производиться следующим
образом: H = 46 / 6²√3= 24 / 6² * 1.732 = 0,38 мм. Таким образом, применив
формулу, можно узнать высоту через ребро основания и объем.
Через площадь боковой поверхности и ребро основания
Для вычисления потребуется знать площадь боковой поверхности, а также ребро основания. Чтобы
рассчитать площадь боковой поверхности, необходимо умножить периметр фигуры на длину бокового ребра.
Она рассчитывается по данной формуле: Sбок = P * I, где P — периметр, I — длина бокового ребра. Зная
площадь основания боковой поверхности и размеры отрезка, можно использовать формулу:
H = Sбок / 3a
где Sбок — площадь боковой поверхности, а — ребро основания.
Цифр после
запятой:
Результат в:
Пример. Для лучшего понимания можно продемонстрировать на конкретной задаче. Если =
7 мм², а = 8 мм то расчет неизвестной величины будет происходить следующим образом: H = 7 / 3 * 8 = 0,29 мм. Используя такой способ, можно узнать H
правильной треугольной призмы.
Через площадь боковой поверхности и периметр основания
Под периметром равностороннего треугольника, который является основанием рассматриваемой фигуры,
понимается сумма всех его длин, а также сторон. Зная, размер одной стороны легко рассчитать
периметр. Найти площадь боковой поверхности можно по формуле рассмотренной выше. После того как
периметр и боковая площадь известны, то необходимо подставить найденное значение в следующую
формулу:
H = Sбок / P
где S — площадь боковой поверхности, P — периметр основания.
Цифр после
запятой:
Результат в:
Пример. Если P = 2 мм, а Sбок = 16 мм² то расчет размеров будет производиться
следующим образом: H = 16 / 2 = 8 м². С помощью такого простого расчета
можно вычислить H искомой фигуры.
Через площадь боковой поверхности и площадь основания
Площадь основания рассчитывается также, как при нахождении S равностороннего треугольника S = 1/2 * ah, но высота в этом случае неизвестна, поэтому придется
воспользоваться другой формулой S = 1/2 * sin α. Как было сказано ранее,
площадь боковой поверхности считается произведением периметра и длины бокового ребра. Найдя искомые
площади, можно работать со следующей формулой для нахождения высоты призмы:
H = Sбок / (3 √(4 * (Sосн /√3)))
где Sбок — площадь боковой поверхности, Sосн — площадь основания геометрической фигуры.
Цифр после
запятой:
Результат в:
Пример. Если Sбок = 10 мм², а Sосн = 15 мм² то расчет размеров проводится следующим
образом: H = 10 / 3√4 * 15 / √3 = 0.5 мм. Таким образом, используя этот
метод расчета, можно найти H.
Через диагональ грани и ребро основания
Под диагональю грани понимается луч, которые проходит между двумя вершинами, которые находятся на
разных основаниях треугольной призмы. Когда известна диагональ грани, а также размер ребра в
основании, можно решить задачу по этой формуле:
H = √(d² — a²)
где d — диагональ грани, а — ребро основания.
Цифр после
запятой:
Результат в:
Пример. Если d=9 мм², а = 5 мм то расчет искомого параметра по формуле будет
выглядеть следующим образом: H = √(9² — 5²) = 7.4 мм. Таким образом,
используя эту формулу, можно вычислить H.
Через площадь грани и ребро основания
Ребро основания равняется длине любого отрезка в равностороннем треугольнике внутри призмы. Граней у
призмы 3. Две боковые и одна задняя. Они изображены в виде параллелограммов. Зная длину и площадь
грани у призмы, можно воспользоваться следующую формулу для расчета высоты правильной треугольной
призмы:
H = S / a
где S — площадь грани, a — ребро основания.
Цифр после
запятой:
Результат в:
Пример. Если S = 5 мм², а = 8 мм² то вычисления H будут производиться следующим
способом: H = 5 / 8 = 0,62 мм. С помощью этой формулы можно найти искомую
величину.
Умение рассчитать высоту треугольного многогранника пригодится при решении геометрических задач.
Знания могут потребоваться в школе, в университете, но иногда такая необходимость может возникнуть в
реальной жизни. Например, как строитель сможет посчитать площадь дома в виде призмы, если не знает
расчетной формулы. Важно понимать, как найти неизвестные переменные, когда известно лишь несколько
параметров.
sonesu615
Вопрос по геометрии:
Даю 50 балов
В правильной треугольной призме радиус описанного вокруг основания окружности равен 4√3 см. Вычислите высоту призмы, если диагональ боковой грани равна 13 см.
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок – бесплатно!
Ответы и объяснения 1
goctegate20
Решение на прилагаемом чертеже. Формула, по которой находится сторона правильного треугольника через радиус описанной окружности, считается известной. При необходимости легко вывести или найти вывод в интернете.
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат – это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи –
смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.