Как найти высоту проведеных оснований

Как посчитать высоту равнобедренного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как посчитать высоту равнобедренного треугольника

Чтобы посчитать чему равна высота равнобедренного треугольника просто воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

равнобедренный треугольник

Чтобы вычислить высоту равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

  • длину двух равных сторон (a) и длину основания (b)
  • длину двух равных сторон (a) и угол α
  • длину двух равных сторон (a) и угол β
  • длину основания (b) и угол α
  • длину основания (b) и угол β

Введите их в соответствующие поля и получите результат.

Если известны длина стороны а и основания b

Чему равна высота h равнобедренного треугольника если длина сторон

a =

, а длина основания

b =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и длина основания b?

Формула

h = a2 – (b/2)2

Пример

Если сторона a = 10 см, а сторона b = 5 см, то:

h = 102 – (5/2)2 = 100 – 6.25 ≈ 9.68 см

Если известны длина стороны а и угол α

Чему равна высота h равнобедренного треугольника если длина сторон

a =

, а угол

α =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол α?

Формула

h = a⋅sin α

Пример

Если сторона a = 5 см, а ∠α = 45°, то:

h = 5⋅sin 45 ≈ 3,53 см

Если известны длина стороны а и угол β

Чему равна высота h равнобедренного треугольника если длина сторон

a =

, а угол

β =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол β?

Формула

h = a⋅cos β/2

Пример

Если сторона a = 5 см, а ∠β = 30°, то:

h = 5⋅cos 30/2 ≈ 4.83 см

Если известны длина стороны b и угол α

Чему равна высота h равнобедренного треугольника если длина основания

b =

, а угол

α =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол α?

Формула

h = b/2tg α

Пример

Если сторона b = 20 см, а ∠α = 35°, то:

h = 20/2tg 35 = 10⋅0.7 = 7 см

Если известны длина стороны b и угол β

Чему равна высота h равнобедренного треугольника если длина основания

b =

, а угол

β =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол β?

Формула

h = b/2ctg β/2

Пример

Если сторона b = 15 см, а ∠β = 40°, то:

h = 15/2ctg 40/2 = 7.5⋅2.7474 ≈ 20.6 см

См. также

В данной публикации мы рассмотрим основные свойства высоты равнобедренного треугольника, а также разберем примеры решения задач по данной теме.

Примечание: треугольник называется равнобедренным, если две его стороны равны (боковые). Третья сторона называется основанием.

  • Свойства высоты в равнобедренном треугольнике

    • Свойство 1

    • Свойство 2

    • Свойство 3

  • Пример задачи

Свойства высоты в равнобедренном треугольнике

Свойство 1

В равнобедренном треугольнике две высоты, проведенные к боковым сторонам, равны.

Равенство высот к боковым сторонам в равнобедренном треугольнике

AE = CD

Обратная формулировка: Если в треугольнике две высоты равны, значит он является равнобедренным.

Свойство 2

В равнобедренном треугольнике высота, опущенная на основание, одновременно является и биссектрисой, и медианой, и серединным перпендикуляром.

Высота к основанию в равнобедренном треугольнике

  • BD – высота, проведенная к основанию AC;
  • BD – медиана, следовательно, AD = DC;
  • BD – биссектриса, следовательно, угол α равен углу β.
  • BD – серединный перпендикуляр к стороне AC.

Свойство 3

Если известны стороны/углы равнобедренного треугольника, то:

1. Длина высоты ha, опущенной на основание a, вычисляется по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

  • a – основание;
  • b – боковая сторона.

2. Длина высоты hb, проведенной к боковой стороне b, равняется:

Формула для нахождения высоты к боковой стороне в равнобедренном треугольнике

Высота к боковой стороне в равнобедренном треугольнике

p – это полупериметр треугольника, рассчитывается таким образом:

Формула для расчета полупериметра равнобедренного треугольника

3. Высоту к боковой стороне можно найти через синус угла и длину стороны треугольника:

Формула для нахождения высоты к боковой стороне в равнобедренном треугольнике

Примечание: к равнобедренному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Пример задачи

Задача 1
Дан равнобедренный треугольник, основание которого равно 15 см, а боковая сторона – 12 см. Найдите длину высоты, опущенной к основанию.

Решение
Воспользуемся первой формулой, представленной в Свойстве 3:

Нахождение высоты к основанию в равнобедренном треугольнике (пример)

Задача 2
Найдите высоту, проведенную к боковой стороне равнобедренного треугольника длиной 13 см. Основание фигуры равняется 10 см.

Решение
Для начала вычислим полупериметр треугольника:

Нахождение полупериметра равнобедренного треугольника (пример)

Теперь применим соответствующую формулу для нахождения высоты (представлена в Свойстве 3):

Нахождение высоты к боковой стороне в равнобедренном треугольнике (пример)

Равнобедренным треугольником называется такой треугольник, у которого две из трех сторон равны между собой. Равные стороны считаются боковыми сторонами а, а третья сторона в называется основанием равнобедренного треугольника.

Соответственно, в таком треугольнике можно провести три высоты, две из которых будут равны между собой, аналогично сторонам – это высоты, опущенные на боковую сторону треугольника а, а третья высота опускается на основание. Высота треугольника проводится из угла треугольника к противолежащей стороне под прямым углом. Большинство задач с высотой треугольника решаются через прямоугольные треугольники, которые она образует.

Рассмотрим каждый случай по отдельности.

Высота равнобедренного треугольника, опущенная на основание, обладает рядом индивидуальных свойств, присущих только ей и не распространяющихся на другие высоты в таком треугольнике. В частности, высота, проведенная к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой, проведенным к основанию, следовательно, она не только образует прямой угол с основанием, но и делит его на две равные части, как медиана, и аналогично делит угол пополам, как биссектриса. В итоге, высота является своеобразной осью симметрии треугольника и разделяет его на два конгруэнтных прямоугольных треугольника. В таком треугольнике высота является катетом, и чтобы найти ее длину необходимо соотнести стороны равнобедренного треугольника со сторонами прямоугольного. Боковая сторона равнобедренного треугольника становится гипотенузой, а чтобы определить второй катет, основание равнобедренного треугольника нужно разделить пополам, по свойству медианы.

Длина высоты равнобедренного треугольника равна по теореме Пифагора квадратному корню из суммы квадрата боковой стороны равнобедренного треугольника и четверти квадрата основания равнобедренного треугольника:

Второй случай, когда условиями задачи нужно найти высоту, опущенную на боковую сторону равнобедренного треугольника, раскрывается проще всего через площадь треугольника.

Площадь любого треугольника можно найти несколькими способами – например, через три стороны треугольника по формуле Герона, или через высоту, умножив ее на половину стороны, на которую она опущена. И тем, и другим способом получаются одинаковые значения площади, следовательно обе эти формулы можно друг к другу приравнять и отсюда вывести окончательную формулу высоты, опущенную на боковую сторону равнобедренного треугольника.

Формула Герона для равнобедренного треугольника будет иметь несколько упрощенный вид за счет того, что значения боковых сторон повторяются:

Площадь равнобедренного треугольника через высоту, опущенную к боковой стороне

Эту же формулу можно применять для нахождения любой высоты в равнобедренном треугольнике, если поменять в формуле соответствующие стороны местами.

Формула высоты равнобедренного треугольника через боковую сторону и угол при основании α: h=a sin⁡α

Формула через боковую сторону и угол напротив основания β:

Формула через основание и угол при нем α:

через основание и угол противолежащий ему β:

Здесь рассмотрены все возможные способы нахождения высоты треугольников разных типов. Высота
треугольника – отрезок, проведенный из вершины треугольника перпендикулярно к противоположной
стороне. В задачах нахождение высоты часто является промежуточным звеном для поиска других значений.
Она и является катетом в треугольнике, который сама же образует, и участвует во многих формулах,
например, для нахождения площади.

  • Высота разностороннего треугольника через площадь и длину
    стороны
  • Высота разностороннего треугольника через длины всех
    сторон
  • Высота разностороннего треугольника через длину прилежащей
    стороны и синус угла
  • Высота разностороннего треугольника через стороны и радиус
    описанной окружности
  • Высота равнобедренного треугольника через основание и
    боковые стороны
  • Высота прямоугольного треугольника через длины отрезков,
    образованных на гипотенузе
  • Высота прямоугольного треугольника через все стороны
    треугольника
  • Высота равностороннего треугольника через сторону
    треугольника

Через площадь и длину стороны разностороннего треугольника

Через площадь и длину высота находится по формуле:

h = 2S / a

где S – площадь треугольника, а – сторона треугольника.

Цифр после
запятой:

Результат в:

Согласно этой формуле высота равна удвоенной площади, деленной на длину стороны, к которой она
проведена.

Пример.  Найдите высоту разностороннего треугольника, проведенную к стороне а,
площадь которого равна 27 см, а длина стороны а составляет одну треть от площади. Решение: Найдем
сторону а. Так как известно, что она составляет треть от площади, а = 27 / 3 = 9 см.
Теперь воспользуемся формулой для нахождения высоты: h = 2S / a. Подставим
известные значения. h = 2 * 27 / 9 = 6 см. Ответ: 6 см

Через длины всех сторон разностороннего треугольника

Через длины всех сторон высота разностороннего треугольника ищется по формуле:

h = (2 √(p (p-a)(p-b)(p-c))) / 2
p = (a + b + c) / 2

где h – высота, а, b, c – стороны треугольника, p – полупериметр треугольника.

Цифр после
запятой:

Результат в:

Полупериметр треугольника можно найти либо в два этапа через периметр, либо сразу по формуле. Этим
способом удобно пользоваться, когда треугольник разносторонний.

Пример. Периметр разностороннего треугольника равен 18 см. Длины сторон 6 см и 8 см. Найдите
высоту, проведенную к стороне а. Решение: P = a + b + c, значит с = P – a – b , то есть c = 18 – 8 – 6 = 4 см. Для
нахождения h будем использовать формулу h = (2 √(p (p-a)(p-b)(p-c))) / 2.
Сначала найдем полупериметр (p): p = p / 2 = 18 / 2 = 9 см. Подставим,
найденные значения в формулу высоты: h = (2 √(9 (9 — 6)(9 — 8)(9 — 4))) / 2 = √135 / 3 = 2,12 см

Через длину прилежащей стороны и синус угла разностороннего треугольника

Через длину прилежащей стороны и синус угла высота ищется по следующей формуле:

h = a * sin α

где а – длина стороны, sin α – синус прилежащей стороны.

Цифр после
запятой:

Результат в:

Пример. В разностороннем треугольнике высота проведена к стороне AB. Угол ACH равен
30˚, а длина стороны AB 12 см. Найдите длину высоты CH в треугольнике ABC. По теореме о сумме углов
в треугольнике найдем угол САН. ∠САН = 180 – (∠АСН + ∠АНС). ∠САН = 180 – 90 – 30 = 60˚  sin 60º = 1/2. СН = AB * sin ∠САН, СН = 12 * 1/2 = 6 см. Ответ:
6 см

Через стороны и радиус описанной окружности разностороннего треугольника

Через стороны и радиус описанной окружности высоту можно найти по следующей формуле:

h = bc / 2R

где r – радиус описанной около треугольника окружности, b,c – стороны треугольника

Цифр после
запятой:

Результат в:

Пример. Вокруг разностороннего треугольника описана окружность с радиусом 3 см. Из
вершины между сторонами b и с проведена высота. Стороны b и с соответственно равны 5 см и 6 см.
Найдите высоту. Решение: Найдем высоту, используя формулу h = 5 * 6 / 2 * 3 = 30 / 6 = 5 см. Ответ:
5 см.

Через длины отрезков прямоугольного треугольника, образованных на гипотенузе

Через длины отрезков образованных на гипотенузе высоту можно найти по следующей формуле:

h = √(C1 * C2)

где: C1, C2 — отрезки, образованные проведением высоты к гипотенузе.

Цифр после
запятой:

Результат в:

Пример. В прямоугольном треугольнике катеты равны 4 см и 3 см. Угол BAH равен 30˚.
Найдите высоту. По теореме Пифагора найдём сторону BC, которая является гипотенузой в треугольнике
ABC. BC² = AB² = AC²,  BC² = 4² + 3² = 16+9 = 25 см², BC = √25 = 5 см. Угол
АНВ равен 90˚, так как АН является высотой, то есть, проведена перпендикулярно к стороне ВС.
Следовательно, треугольник АНВ – прямоугольный. Сторона ВН лежит напротив угла 30˚ в прямоугольном
треугольнике, значит, ее длина равна половине длины гипотенузы. Найдем ВН. BH = 1/2 AB. BH = 1/2 × 4 = 2 см. BC = BH + HC,
значит, HC = BC – BH, HC = 5 – 2 = 3 см. По формуле найдем высоту
(АН). АН = √(2 * 3) = √6 = 2,4 см. Ответ: 2,4 см.

Через основание и боковые стороны равнобедренного треугольника

Через основание и боковые стороны высота равнобедренного треугольника находится по формуле:

h = √(b² — a²/4)

где а – основание треугольника, b – боковая сторона. Для равнобедренного треугольника.

Цифр после
запятой:

Результат в:

Пример. В равнобедренном треугольнике АВС боковая сторона равна 8 см. Из вершины В к
основанию АС проведена высота ВН. Отрезок АН равен 5 см. Найдите высоту. Решение: Так как по условию
треугольник АВС равнобедренный по условию, то АВ = ВС = 8 см высота ВН,
является и медианой, и биссектрисой. Значит, АН = НС, а АС = НС + АН, АС = 5 + 5 = 10 см. По
формуле найдем высоту ВН = √(АВ² — АС² / 4). ВН = √(8² — 10² / 4) = √(64 — 100 / 4) = √39 = 6 см.
Ответ: 6 см.

Высота прямоугольного треугольника через все стороны треугольника

Если известны все стороны прямоугольного треугольника, то можно найти его высоту по следующей
формуле:

h = ab / c

где a,b,c – стороны треугольника.

Цифр после
запятой:

Результат в:

Пример. В прямоугольном треугольнике угол между катетом и гипотенузой равен 45˚.
Длина стороны АС равна 6 см. Найти высоту АН. Решение: По теореме о сумме углов в треугольнике
найдем угол АСВ. ∠АСВ = 180˚ – (45˚ + 90˚) = 45˚. Так как АСВ = АСВ, то
треугольник АВС равнобедренный с основанием ВС. Таким образом, АС = АВ = 6 см. По теореме Пифагора найдем гипотенузу ВС. BC² = AB² + AC². BC² = 6² + 6² = 36 +36 = 72 см². ВС = √72 = 6√2 см. Найдем
высоту по формуле AH = AB * AC / BC. АН = 6 * 6 / 6√2= см. Домножим
полученное значение на √2: (6 * √2) / √2 * √2 = 6√2 / 2 = 3√2 см. Ответ:
3√2 см

Через сторону равностороннего треугольника

Высота равностороннего треугольника через сторону треугольника ищется по следующей формуле:

h = a√3 / 2

где a – сторона треугольника.

Цифр после
запятой:

Результат в:

Пример: Найдите высоту в равностороннем треугольнике, если известно, что его сторона
равна 4√3 см. Решение: Для нахождения высоты воспользуемся формулой h = a√3 / 2 = √3 * 4 √3 / 2 = 4 * 3 / 2 = 6 см. Ответ:
6 см

В зависимости от типа треугольника высота может располагаться по-разному:

  1. Например, в треугольнике KGM высота GH, проведённая из вершины G к стороне находится внутри
    треугольника, так как треугольник является остроугольным. Кроме того, треугольник в данном
    примере равнобедренный, значит, она же является биссектрисой и медианой. Знание этого пригодится
    при решении задач, например таким образом можно будет найти основание.Рисунок 1
  2. В тупоугольном треугольнике высота будет выходить за его пределы и для того чтобы её провести
    понадобится сначала продлить сторону. Например, на рисунке сторона ВС продлена до НС.Рисунок 2
  3. В случае, когда треугольник имеет прямой угол – высота совпадёт с одним из катетов, либо будет
    внутри треугольника (как в первом рассмотренном варианте) и проведена к гипотенузе.Рисунок 3

Геометрия – это не только предмет в школе, по которому нужно получить отличную оценку. Это еще и знания, которые часто требуются в жизни. Например, при строительстве дома с высокой крышей необходимо рассчитать толщину бревен и их количество. Это несложно, если знать, как находить высоту в равнобедренном треугольнике. Архитектурные сооружения базируются на знании свойств геометрических фигур. Формы зданий зачастую визуально напоминают их. Египетские пирамиды, пакеты с молоком, художественная вышивка, северные росписи и даже пирожки – это все треугольники, окружающие человека. Как говорил Платон, весь мир базируется на треугольниках.

как находить высоту в равнобедренном треугольнике

Равнобедренный треугольник

Чтобы было понятнее, о чем далее пойдет речь, стоит немного вспомнить азы геометрии.

Треугольник является равнобедренным, если он имеет две равных стороны. Их всегда называют боковыми. Сторона, размеры которой отличаются, получила название основания.

Основные понятия

Как и любая наука, геометрия имеет свои основные правила и понятия. Их достаточно много. Рассмотрим лишь те, без которых наша тема будет несколько непонятна.

Высота – это прямая линия, проведенная перпендикулярно к противоположной стороне.

Медиана – это отрезок, направленный из любой вершины треугольника исключительно к середине противоположной стороны.

Биссектриса угла – это луч, разделяющий угол пополам.

Биссектриса треугольника – это прямая, вернее, отрезок биссектрисы угла, соединяющий вершину с противоположной стороной.

Очень важно запомнить, что биссектриса угла – это обязательно луч, а биссектриса треугольника – это часть такого луча.

Углы при основании

Теорема гласит, что углы, расположенные при основании любого равнобедренного треугольника, всегда равны. Доказать эту теорему очень просто. Рассмотрим изображенный равнобедренный треугольник АВС, у которого АВ=ВС. Из угла АВС необходимо провести биссектрису ВД. Теперь следует рассмотреть два полученных треугольника. По условию АВ=ВС, сторона ВД у треугольников общая, а углы АВД и СВД равны, ведь ВД – биссектриса. Вспомнив первый признак равенства, можно смело заключить, что рассматриваемые треугольники равны. А следовательно, равны все соответствующие углы. И, конечно, стороны, но к этому моменту вернемся позже.

высота в равнобедренном треугольнике формула

Высота равнобедренного треугольника

Основная теорема, на которой базируется решение практически всех задач, звучит так: высота в равнобедренном треугольнике является биссектрисой и медианой. Чтобы понять её практический смысл (или суть), следует сделать вспомогательное пособие. Для этого необходимо вырезать из бумаги равнобедренный треугольник. Легче всего это сделать из обычного тетрадного листка в клеточку.

высота в равнобедренном треугольнике является биссектрисой и медианой

Согните полученный треугольник пополам, совместив боковые стороны. Что получилось? Два равных треугольника. Теперь следует проверить догадки. Разверните полученное оригами. Прочертите линию сгиба. При помощи транспортира проверьте угол между прочерченной линией и основанием треугольника. О чем говорит угол в 90 градусов? О том, что прочерченная линия – перпендикуляр. По определению – высота. Как находить высоту в равнобедренном треугольнике, мы разобрались. Теперь займемся углами при вершине. При помощи того же транспортира проверьте углы, образованные теперь уже высотой. Они равны. Значит, высота одновременно является и биссектрисой. Вооружившись линейкой, измерьте отрезки, на которые разбивает высота основание. Они равны. Следовательно, высота в равнобедренном треугольнике делит основание пополам и является медианой.

Доказательство теоремы

Наглядное пособие ярко демонстрирует истинность теоремы. Но геометрия – наука достаточно точная, поэтому требует доказательств.

Во время рассмотрения равенства углов при основании было доказано равенство треугольников. Напомним, ВД – биссектриса, а треугольники АВД и СВД равны. Вывод был таков: соответствующие стороны треугольника и, естественно, углы равны. Значит, АД = СД. Следовательно, ВД – медиана. Осталось доказать, что ВД является высотой. Исходя из равенства рассматриваемых треугольников, получается, что угол АДВ равен углу СДВ. Но эти два угла являются смежными, и, как известно, дают в сумме 180 градусов. Следовательно, чему они равны? Конечно, 90 градусам. Таким образом, ВД – это высота в равнобедренном треугольнике, проведенная к основанию. Что и требовалось доказать.

высота в равнобедренном треугольнике равна

Основные признаки

  • Чтобы успешно решать задачи, следует запомнить основные признаки равнобедренных треугольников. Они как бы обратны теоремам.
  • Если в ходе решения задачи обнаруживается равенство двух углов, значит, вы имеете дело с равнобедренным треугольником.
  • Если удалось доказать, что медиана является одновременно и высотой треугольника, смело заключайте – треугольник равнобедренный.
  • Если биссектриса является и высотой, то, опираясь на основные признаки, треугольник относят к равнобедренным.
  • И, конечно, если медиана выступает и в роли высоты, то такой треугольник – равнобедренный.

Формула высоты 1

Однако для большинства задач требуется найти арифметическую величину высоты. Именно поэтому рассмотрим, как находить высоту в равнобедренном треугольнике.

Вернемся к представленной выше фигуре АВС, у которой а – боковые стороны, в – основание. ВД – высота этого треугольника, она имеет обозначение h.

высота в равнобедренном треугольнике проведенная к основанию

Что представляет собой треугольник АВД? Так как ВД – высота, то треугольник АВД – прямоугольный, катет которого необходимо найти. Воспользовавшись формулой Пифагора, получаем:

АВ² = АД² + ВД²

Определив из выражения ВД и подставив принятые ранее обозначения, получим:

Н² = а² – (в/2)².

Необходимо извлечь корень:

Н = √а² – в²/4.

Если вынести из под знака корня ¼ , то формула будет иметь вид:

Н = ½ √4а² – в².

Так находится высота в равнобедренном треугольнике. Формула вытекает из теоремы Пифагора. Даже если забыть эту символическую запись, то, зная метод нахождения, всегда можно её вывести.

Формула высоты 2

Формула, описанная выше, является основной и чаще всего используется при решении большинства геометрических задач. Но она не единственная. Иногда в условии, вместо основания, дано значение угла. При таких данных как находить высоту в равнобедренном треугольнике? Для решения подобных задач целесообразно использовать другую формулу:

Н = а/sin α,

где Н – высота, направленная к основанию,

а – боковая сторона,

α – угол при основании.

Если в задаче дано значение угла при вершине, то высота в равнобедренном треугольнике находится следующим образом:

Н = а/cos (β/2),

где Н – высота, опущенная на основание,,

β – угол при вершине,

а – боковая сторона.

Прямоугольный равнобедренный треугольник

Очень интересным свойством обладает треугольник, вершина которого равна 90 градусам. Рассмотрим прямоугольный треугольник АВС. Как и в предыдущих случаях, ВД – высота, направленная к основанию.

высота в равнобедренном треугольнике делит основание пополам

Углы при основании равны. Вычислить их большого труда не составит:

α = (180 – 90)/2.

Таким образом, углы, находящиеся при основании, всегда по 45 градусов. Теперь рассмотрим треугольник АДВ. Он также является прямоугольным. Найдем угол АВД. Путем несложных вычислений получаем 45 градусов. А, следовательно, этот треугольник не только прямоугольный, но и равнобедренный. Стороны АД и ВД являются боковыми сторонами и равны между собой.

Но сторона АД в то же время является половиной стороны АС. Получается, что высота в равнобедренном треугольнике равна половине основания, а если записать в виде формулы, то получим следующее выражение:

Н = в/2.

Следует не забывать, что данная формула является исключительно частным случаем, и может быть использована только для прямоугольных равнобедренных треугольников.

высота в равнобедренном треугольнике равна половине основания

Золотые треугольники

Очень интересным является золотой треугольник. В этой фигуре отношение боковой стороны к основанию равняется величине, названной числом Фидия. Угол, расположенный при вершине – 36 градусов, при основании – 72 градуса. Этим треугольником восхищались пифагорейцы. Принципы золотого треугольника положены в основу множества бессмертных шедевров. Известная всем пятиконечная звезда построена на пересечении равнобедренных треугольников. Для многих творений Леонардо да Винчи использовал принцип «золотого треугольника». Композиция «Джоконды» основана как раз на фигурах, которые создают собой правильный звездчатый пятиугольник.

Картина «Кубизм», одно из творений Пабло Пикассо, завораживает взгляд положенными в основу равнобедренными треугольниками.

Добавить комментарий