Как найти высоту прямоугольного треугольника формула пифагора

Высота в прямоугольном треугольнике

Вспомним определение. Высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.

Один из типов экзаменационных задач в банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:

angle BAC =angle BCH;

angle ABC =angle ACH;

sin Adisplaystyle = frac{a}{c}=frac{h}{b}=frac{BH}{a};

cos Adisplaystyle = frac{b}{c}=frac{h}{a}=frac{AH}{b};

displaystyle S_{ABC}= frac{ab}{2}=frac{ch}{2}.

Высота проведена к гипотенузе AB. Она делит треугольник ABC на два прямоугольных треугольника — AC mkern -3mu H и C mkern -3mu H mkern -3mu B. Смотрим внимательно на рисунок и находим на нем равные углы. Это и есть ключ к задачам по геометрии, в которых высота опущена на гипотенузу.

Мы помним, что сумма двух острых углов прямоугольного треугольника равна 90^{circ}. Значит, angle AC mkern -3mu H=90^{circ}-angle C mkern -3mu AH, то есть угол AC mkern -3mu H равен углу ABC. Аналогично, угол C mkern -3mu AB равен углу H mkern -3mu C mkern -3mu B.

Иными словами, каждый из трех углов треугольника ABC равен одному из углов треугольника AC mkern -3mu H (и треугольника BC mkern -3mu H). Треугольники ABC, AC mkern -3mu H и BC mkern -3mu H называются подобными. Давайте нарисуем их рядом друг с другом.

Подобные треугольники

Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?

Возьмем треугольники AC mkern -3mu H и ABC. Стороны треугольника ABC длиннее, чем стороны треугольника AC mkern -3mu H в k раз:

genfrac{}{}{}{0}{displaystyle AC}{displaystyle A mkern -3mu H} =genfrac{}{}{}{0}{displaystyle BC}{displaystyle C mkern -3mu H} = genfrac{}{}{}{0}{displaystyle AB}{displaystyle AC}.

Мы доказали свойство высоты прямоугольного треугольника. Его можно сформулировать как теорему.

Теорема 1. Высота прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, делит треугольника на три подобных друг другу треугольника:

triangle AHC approx triangle CHB approx triangle ACB.

При решении задач нам пригодится равенство углов треугольников ABC, AC mkern -3mu H и BC mkern -3mu H, а также пропорциональность их сторон. Обратите также внимание, что площадь треугольника ABC можно записать двумя разными способами: как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту. В геометрии это называется «метод площадей» и часто применяется в решении задач.

Задача 1.

В треугольнике ABC угол C равен 90^{circ}, CH — высота, BC = 3, cos A = genfrac{}{}{}{0}{displaystyle sqrt{35}}{displaystyle 6}. Найдите AH.

Решение:

Рассмотрим треугольник ABC. В нем известны косинус угла A и противолежащий катет BC. Зная синус угла A, мы могли бы найти гипотенузу AB. Так давайте найдем sin A:

sin{}^2A + cos{}^2A = 1.

Эта формула – основное тригонометрическое тождество. Конечно, вы его знаете:

sin{}^2 A + genfrac{}{}{}{0}{displaystyle 35}{displaystyle 36} = 1;

sin{}^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 36};

sin A= genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6} (поскольку значение синуса острого угла положительно).

Тогда:

AB=BC: sin A = 3: genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=3 cdot 6=18.

Рассмотрим прямоугольный треугольник BC mkern -3mu H, angle H = 90^{circ}. Поскольку angle H mkern -3mu C mkern -3mu B = angle A,

sin H mkern -3mu C mkern -3mu B = H mkern -3mu B : BC.

Отсюда H mkern -3mu B=BC cdot sin HC mkern -3mu B = 3 cdot genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=0,5.

A mkern -3mu H = A mkern -3mu B - H mkern -3mu B=18-0,5=17,5.

Ответ: 16.

Задача 2.

В треугольнике ABC угол C равен 90{}^{circ}, AB = 13, tg A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. К гипотенузе проведена высота CH. Найдите AH.

Решение:

Это чуть более сложная задача. Ведь вам неизвестны катеты a и b.

Запишем теорему Пифагора: a^2 + b^2 = 13^2. (1)

Нам известно также, что:

tg A = genfrac{}{}{}{0}{displaystyle a}{displaystyle b} = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. (2)

Решая уравнения (1) и (2), найдем:

a = sqrt{6,5}:b=5sqrt{6,5}.

Запишем площадь треугольника AВС двумя способами:

S = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ab = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ch

и найдем длину CH = 2,5.

Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений, как в алгебре.

Теорема 2. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, равна произведению катетов, деленному на гипотенузу.

Доказательство:

Из прямоугольного треугольника ABC с прямым углом C и гипотенузой AB:

sindisplaystyle (angle BAC)=frac{a}{c}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

sindisplaystyle (angle BAC)=frac{h}{b}.

Мы разными способами вычислили синус одного и того же угла. Приравняем полученные выражения:

displaystyle frac{h}{b}=frac{a}{c}.

Найдем высоту:

displaystyle h= frac{ab}{c}.

Что и требовалось доказать.

Задача 3. Катеты прямоугольного треугольника равны 15 и 20.
Найдите высоту, проведенную к гипотенузе.

Решение:

Воспользуемся теоремой 2 о высоте прямоугольного треугольника:

Катеты BС и AС нам известны: BC = 15, AC = 20. Найдем гипотенузу AB с помощью теоремы Пифагора:

{AB}^2={BC}^2+{AC}^2={15}^2+{20}^2={25}^2,    AB=25.

Найдем высоту, проведенную из вершины прямого угла:

displaystyle CH=frac{15cdot 20}{25}=12.

Ответ: 12.

Теорема 3. В прямоугольном треугольнике квадрат высоты, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу.

CH^2=BHcdot AH.

Сейчас мы докажем эту полезную формулу.

Вспомним, что такое проекция точки на прямую. Например, из точки С опускаем СН – перпендикуляр к прямой AВ. Точка Н и будет проекцией точки С. Тогда AН – проекция катета AВ, а BН – проекция катета BС.

Обозначим: BH=c_a, AH=c_b.

Доказательство проведем двумя способами.

Первый способ доказательства:

Из прямоугольного треугольника BНС с прямым углом Н и гипотенузой BС:

tgdisplaystyle (angle CBH)=frac{h}{c_a}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

ctgdisplaystyle (angle CAH) = frac{c_b}{h}.

Заметим, что угол CBН – это угол CBA, а угол CAН – это угол BAC. Тогда:

tg(angle ABC)=ctg(angle BAC);

tg(angle CBH)=ctg(angle CAH);

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы воспользовались тем, что тангенс и котангенс двух разных острых углов прямоугольного треугольника равны друг другу. Это следует из определения тангенса и котангенса.

Преобразуем получившееся выражение:

displaystyle h=frac{c_a cdot c_b}{h} Rightarrow h^2 = c_a c_b .

Что и требовалось доказать.

Второй способ доказательства:

Воспользуемся подобием треугольников, о которых говорится в теореме 1.

Рассмотрим пару прямоугольных треугольников AНC и BНC. Как было показано выше, эти треугольники подобны по двум углам, поэтому

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы получили такое же соотношение, как и в первом способе доказательства.

Далее аналогично получим, что

h^2 = c_a c_b .

Что и требовалось доказать.

Задача 4. На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH = 4, BH = 16. Найдите длину CH.

Решение:

Воспользуемся теоремой 3 о высоте прямоугольного треугольника:

CH^2=BHcdot AH.

Подставим данные задачи.

{CH}^2=4cdot 16=64, CH = 8.

Ответ: 8.

Разберем решения других задач ОГЭ и ЕГЭ по теме «Свойства высоты в прямоугольном треугольнике».

Задача 5. Катеты прямоугольного треугольника относятся как 3:4, а гипотенуза равна 50. Найти высоту, проведенную из вершины прямого угла и отрезки, на которые гипотенуза делится высотой.

Решение:

Рассмотрим прямоугольный треугольник ABС с гипотенузой AB. Проведем высоту CD=h.

Учитывая отношение катетов, обозначим их длины как: BC = 3x, AC = 4x.

Тогда по теореме Пифагора получим:

AB=sqrt{9x^2 +16 x^2} = sqrt{25 x^2}=5x.

По условию гипотенуза AB = 50. Следовательно, х = 10, BC = 30, AC = 40.

Далее можно действовать разными способами. Например, так.

displaystyle CD=frac{BCcdot AC}{AB}=frac{30cdot 40}{50}=24.

AD=ACcdot {cos A},; BD=BCcdot {cos B}, где по определению косинуса:

cos A displaystyle =frac{AC}{AB}=frac{4}{5},; cos Bdisplaystyle =frac{BC}{AB}=frac{3}{5}.

displaystyle AD=ACcdot frac{4}{5}=32,; BD=BCcdot frac{3}{5}=18.

Ответ: CD=24, ; AD=32,; BD=18.

Задача 6. В прямоугольном треугольнике ABC высота CD делит гипотенузу на отрезки AD = 3 см и BD = 2 см. Найти катеты треугольника.

Решение:

Найдем квадрат длины высоты с помощью теоремы 3:

{CD}^2=ADcdot BD=3cdot 2=6.

Из прямоугольного треугольника ADC по теореме Пифагора найдем

{AC}^2={AD}^2+{CD}^2=9+6=15,; AC= sqrt{15} см.

Из прямоугольного треугольника BDC по теореме Пифагора найдем

{BC}^2={BD}^2+{CD}^2=4+6=10,; BC= sqrt{10} см.

Ответ: sqrt{15} см и sqrt{10} см.

Задача 7. Точка D является основанием высоты, проведенной из вершины прямого угла C треугольника ABC к гипотенузе AB. Найдите AC, если AD=8, AB=32.

Указание:

Найдите отрезок BD = AB – AD, после чего задача сводится к предыдущей.

Длину высоты прямоугольного треугольника можно также найти, если известны гипотенуза и один из острых углов треугольника.

h = c sinalpha cosalpha = c sinbeta cosbeta.

Докажем эту формулу.

Рассмотрим прямоугольный треугольник ACD: CD=AC cos alpha.

В то же время из треугольника AВC: AC=AB sin alpha.

Таким образом, h = CD = AC cos⁡alpha = AB sinalpha cosalpha = c sinalpha cos⁡alpha.

Аналогично, из треугольника BCD получим: h = CD = BC cosbeta = AB sin⁡beta cosbeta = c sin beta cos⁡beta.

Задача 8. В прямоугольном треугольнике гипотенуза равна 10, а один из острых углов 15 градусов. Найти высоту, проведенную из вершины прямого угла.

Решение:

Воспользуемся доказанной выше формулой:

h = c sinalpha cosalpha = 10 sin {15}^circcos {15}^circ = 5sin {30}^circ = 2,5.

Ответ: 2,5.

Задача 9. Высота прямоугольного треугольника делит его гипотенузу на отрезки 6 см и 4 см. Найдите площадь этого треугольника.

Решение:

Гипотенуза прямоугольного треугольника равна сумме данных отрезков:

c=6+4=10 см.

Найдем высоту, проведенную из вершины прямого угла к гипотенузе: h=sqrt{6cdot 4}=2sqrt{6} см.

Площадь треугольника:

displaystyle S=frac{1}{2}ch=frac{1}{2}cdot 10cdot 2sqrt{6}=10sqrt{6} см{}^2.

Ответ: 10sqrt{6} см{}^2.

Если вам понравился наш материал – записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Высота в прямоугольном треугольнике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

  • Нахождение высоты треугольника

    • Высота в разностороннем треугольнике

    • Высота в равнобедренном треугольнике

    • Высота в прямоугольном треугольнике

    • Высота в равностороннем треугольнике

  • Примеры задач

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота в разностороннем треугольнике ABC

1. Через площадь и длину стороны

Формула для нахождения высоты треугольника через его площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

Формула для нахождения высоты треугольника через длины его сторон

где p – это полупериметр треугольника, который рассчитывается так:

Формула для расчета полупериметра треугольника

3. Через длину прилежащей стороны и синус угла

Формула для нахождения высоты треугольника через длину стороны и синуса угла

4. Через стороны и радиус описанной окружности

Формула для нахождения высоты треугольника через длины сторон и радиус описанной окружности

Описанная вокруг разностороннего треугольника окружность

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

Опущенная на основание равнобедренного треугольника высота

Высота в прямоугольном треугольнике

Проведенная к гипотенузе высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

2. Через стороны треугольника

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через длины его сторон

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Формула для нахождения высоты в равностороннем треугольнике

Высота в равностороннем треугольнике

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Нахождение высоты треугольника через длину стороны и синус прилежащего угла (пример)

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Нахождение основания равнобедренного треугольника через высоту и боковую сторону (пример)

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

1. Через площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

где p – это полупериметр треугольника, который рассчитывается так:

3. Через длину прилежащей стороны и синус угла

4. Через стороны и радиус описанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

2. Через стороны треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Способы нахождения высоты треугольника: теорема и формула

Определение высоты треугольника

Геометрия, являющаяся разделом математики, изучает структуры в пространстве и на плоскости. Одним из типов таких фигур являются геометрические фигуры. К ним можно отнести квадрат, прямоугольник, круг, пятиугольник, треугольник и другие. Из них можно делать более сложные фигуры или оставлять в первоначальном виде.

Треугольником является фигура, относящаяся к классу простых фигур, которая образована тремя точками, находящимися не на одной прямой, и соединенными между собой тремя отрезками.

Треугольники могут быть:

  • разными по величине углов: прямоугольными, тупоугольными и остроугольными;
  • разными по числу равных сторон: равносторонними, равнобедренными и разносторонними.

Помимо трех сторон, важными элементами треугольников являются медианы, высоты и биссектрисы.

Высотой треугольника является перпендикуляр, опущенный из угла треугольника вниз, на противоположную сторону.

В геометрии высота треугольника обозначается буквой h.

В зависимости от типа треугольника высота может:

  • падать на противоположную сторону — у остроугольного треугольника;
  • находиться вне треугольника — у тупоугольного треугольника;
  • совпадать с одной из сторон — у прямоугольного треугольника.

Чтобы сделать высоту графически явной и понятной на рисунке, ее нередко выделяют красной линией.

Для того чтобы определить графическое начертание высоты треугольника, необходимо:

  1. Найти вершину фигуры.
  2. Опустить вниз перпендикулярную линию к противоположной стороне.
  3. Продлить противоположную сторону до пересечения с высотой, если требуется.

Любой треугольник имеет 3 высоты — по числу углов. Их пересечение находится в точке ортоцентра, которая, в зависимости от типа треугольника, может находиться внутри треугольника, снаружи на пересечении продолжений высот или совпадать с вершиной прямого угла.

Все три высоты треугольника обратно пропорциональны сторонам, к которым опущены. Доказательством будет соотношение:

A × H A ÷ B × H B ÷ C × H C = 1 B C ÷ 1 A C ÷ 1 A B

Выглядеть графически это будет так:

Существует множество способов нахождения высоты треугольника в зависимости от имеющихся данных.

Через площадь и длину стороны, к которой опущена высота:

где S — уже известная площадь треугольника,

Через длины всех сторон:

h = 2 p p × a p × b p × c a

где a, b и c — стороны треугольника,

p — его полупериметр.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через длину прилежащей стороны и синус угла:

s i n a — синус угла прилежащей стороны.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через стороны и радиус описанной окружности.

Решать задачи с треугольником и описанной окружностью для нахождения высоты можно следующим образом:

где b, c — стороны разностороннего треугольника, к которым не опущена высота,

R — радиус описанной окружности.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через длины отрезков, образованных на гипотенузе при проведении к ней высоты треугольника:

где C 1 и С 2 — длины отрезков, образованных на гипотенузе, проведенной к ней высотой.

Данная формула подходит только для нахождения высоты прямоугольного треугольника.

Нахождение высоты равнобедренного треугольника через основание и боковые стороны

Равнобедренным треугольником называют треугольник, имеющий одинаковые по длине катеты, которые образуют равные углы с основанием. В таком треугольнике высота будет опускаться ровно в середину основания, образуя с ним прямой угол.

Помимо высоты, проведенная линия будет являться также осью симметрии, биссектрисой вершинного угла и медианой.

Формула для нахождения высоты в этом случае:

где a — основание,

b — равные боковые стороны.

Свойства высоты в равностороннем треугольнике

Равносторонний треугольник — это треугольник, стороны которого, углы, высоты, медианы, оси симметрии и биссектрисы будут равны.

Такой треугольник является частным примером равнобедренного треугольника, но не наоборот.

Высоту в таком треугольнике можно найти с помощью следующей формулы:

где а — сторона равностороннего треугольника.

Главным свойством, которым обладает высота равностороннего треугольника, является тот факт, что она равна медиане и биссектрисе:

а — сторона правильного равностороннего треугольника.

Нахождение высоты прямоугольного треугольника через его катеты

Прямоугольным считается треугольник, у которого один из углов является прямым, то есть равным 90°. Высота, опущенная из такого угла, падает на гипотенузу треугольника и делит его на два прямоугольных треугольника, которые пропорциональны по отношению к большому треугольнику и друг к другу.

Важно отметить, что две другие высоты будут совпадать с катетами треугольника.

Найти высоту в прямоугольном треугольнике, можно через два его катета (a и b) и гипотенузу (c).

Причем гипотенуза также легко находится через катеты по теореме Пифагора:

Расчет высоты идет следующим образом:

где a, b и c — вышеупомянутые стороны треугольника.

Теорема Пифагора

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Теорема Пифагора, определение: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Гипотенуза — сторона, лежащая напротив прямого угла.

Катет — одна из двух сторон, образующих прямой угол.

Формула Теоремы Пифагора выглядит так:

где a, b — катеты, с — гипотенуза.

Из этой формулы можно вывести следующее:

  • a = √c 2 − b 2
  • b = √c 2 − a 2
  • c = √a 2 + b 2

Для треугольника со сторонами a, b и c, где c — большая сторона, действуют следующие правила:

  • если c 2 2 + b 2 , значит угол, противолежащий стороне c, является острым.
  • если c 2 = a 2 + b 2 , значит угол, противолежащий стороне c, является прямым.
  • если c 2 > a 2 +b 2 , значит угол, противолежащий стороне c, является тупым.

Записывайтесь на курсы обучения математике для школьников с 1 по 11 классы!

Теорема Пифагора: доказательство

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Дано: ∆ABC, в котором ∠C = 90º.

Доказать: a 2 + b 2 = c 2 .

Пошаговое доказательство:

  • Проведём высоту из вершины C на гипотенузу AB, основание обозначим буквой H.
  • Прямоугольная фигура ∆ACH подобна ∆ABC по двум углам:
  • Также прямоугольная фигура ∆CBH подобна ∆ABC:
  • Введем новые обозначения: BC = a, AC = b, AB = c.
  • Из подобия треугольников получим: a : c = HB : a, b : c = AH : b.
  • Значит a 2 = c * HB, b 2 = c * AH.
  • Сложим полученные равенства:

a 2 + b 2 = c * HB + c * AH

a 2 + b 2 = c * (HB + AH)

a 2 + b 2 = c * AB

Обратная теорема Пифагора: доказательство

Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такой треугольник является прямоугольным.

Дано: ∆ABC

Доказать: ∠C = 90º

Пошаговое доказательство:

  • Построим прямой угол с вершиной в точке C₁.
  • Отложим на его сторонах отрезки C₁A₁ = CA и C₁B₁ = CB.
  • Проведём отрезок A₁B₁.
  • Получилась фигура ∆A₁B₁C₁, в которой ∠C₁=90º.
  • В этой фигуре ∆A₁B₁C₁ применим теорему Пифагора: A₁B₁ 2 = A₁C₁ 2 + B₁C₁ 2 .
  • Таким образом получится:
  • Значит, в фигурах треугольниках ∆ABC и ∆A₁B₁C₁:
  1. C₁A₁ = CA и C₁B₁ = CB по результату построения,
  2. A₁B₁ = AB по доказанному результату.
  • Поэтому, ∆A₁B₁C₁ = ∆ABC по трем сторонам.
  • Из равенства фигур следует равенство их углов: ∠C =∠C₁ = 90º.

Обратная теорема доказана.

Решение задач

Задание 1. Дан прямоугольный треугольник ABC. Его катеты равны 6 см и 8 см. Какое значение у гипотенузы?

Как решаем:

Пусть катеты a = 6 и b = 8.

По теореме Пифагора c 2 = a 2 + b 2 .

Подставим значения a и b в формулу:
c 2 = 6 2 + 8 2 = 36 + 64 = 100
c = √100 = 10.

Задание 2. Является ли треугольник со сторонами 8 см, 9 см и 11 см прямоугольным?

  • Выберем наибольшую сторону и проверим, выполняется ли теорема Пифагора:

Ответ: треугольник не является прямоугольным.

[spoiler title=”источники:”]

http://wika.tutoronline.ru/geometriya/class/7/sposoby-nahozhdeniya-vysoty-treugolnika-teorema-i-formula

http://skysmart.ru/articles/mathematic/teorema-pifagora-formula

[/spoiler]

Найти высоту прямоугольного треугольника, используя теорему Пифагора

Высоту треугольника можно найти по-разному, в зависимости от типа треугольника и информации, которую вы имеете или измеряете. Прямоугольные треугольники, которые включают угол 90 градусов, легче всего измерить, используя теорему Пифагора (если известны длины двух сторон) или формулу области (если область и основание известны). Равносторонние треугольники, в которых все стороны имеют одинаковую длину, и равнобедренные треугольники, в которых три их стороны имеют одинаковую длину, можно разрезать пополам, создав два прямоугольных треугольника. Косые треугольники, те, которые не имеют внутренний угол, равный 90 градусам, являются более сложными и требуют тригонометрии, чтобы найти их высоту. Далее мы вычислим высоту прямоугольного треугольника, используя теорему Пифагора.

Вам понадобится:

  • Научный калькулятор
  • транспортир
  • правило

Шаги, чтобы следовать:

1

Первое, что вы должны сделать, чтобы вычислить высоту треугольника, это написать теорему Пифагора, c ^ 2 = a ^ 2 + b ^ 2, где c – гипотенуза (диагональ).

2

Реорганизовать теорему, чтобы решить a ^ 2, поэтому a ^ 2 = c ^ 2 – b ^ 2. Мы хотим найти значение «a», потому что, как мы видим на изображении, это высота треугольника.

3

Соедините две стороны известных значений cyb, которые в нашем случае мы дадим значение:

  • с = 19
  • б = 18

Поэтому остается, что [a ^ 2 = 19 ^ 2 – 18 ^ 2]

4

Далее мы решаем уравнение, и мы должны:

^ 2 = 361 – 324 = 37

5

Чтобы закончить и найти реальное значение высоты треугольника, вам нужно взять квадратный корень с обеих сторон, чтобы найти высоту a ^ 2. [a = 6.1]

чаевые

  • Основание может быть любой стороной треугольника.
  • Метод тригонометрии (с использованием синуса) можно применять и к прямоугольным треугольникам.
  • Три угла треугольника должны составлять до 180 градусов.

Высота прямоугольного треугольника, проведенная к гипотенузе

Как и в любом треугольнике прямоугольный треугольник имеет три высоты. Две из них совпадают с катетами, а вот третья высота, проведенная к гипотенузе, постоянно будоражит наши умы.

Поэтому представляю вашему вниманию основные формулы для ее нахождения.

Начну с самой важной.

1. Высота, проведенная к гипотенузе равна корню квадратному из произведения проекций катетов на эту гипотенузу.

2. Высоту, проведенную к гипотенузе, можно найти, разделив удвоенную площадь прямоугольного треугольника на гипотенузу.

Такая формула получается из классический формулы нахождения площади треугольника: половина произведения основания на высоту, проведенную к этому основанию.

3. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу.

Эта формула получится из второй если заменить площадь на половину произведения катетов.

Т.к. АВ – гипотенуза, то ее можно выразить через катеты АС и ВС, используя теорему Пифагора. Тогда формула примет другой вид:

4. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на диаметр описанной вокруг треугольника окружности (или на удвоенный радиус).

Так получается потому, что центр описанной окружности лежит в середине гипотенузы, значит, гипотенуза равна 2R или d.

5. Высоту, проведенную к гипотенузе, можно найти, используя геометрические определения синуса, тангенса и котангенса.

Надеюсь, что данная статья оказалась полезной!)

Готовься к экзамену вместе с нами! Заходи на нашу страницу в ВК.

Добавить комментарий