Как найти высоту прямоугольной трапеции без площади

В данной публикации мы рассмотрим различные формулы, с помощью которых можно вычислить высоту прямоугольной трапеции.

Напомним, в прямоугольной трапеции одна из боковых сторон перпендикулярна ее основаниями, и потому одновременно является высотой фигуры.

  • Нахождение высоты прямоугольной трапеции

    • Через длины сторон

    • Через основания и прилежащий угол

    • Через боковую сторону и прилежащий угол

    • Через диагонали и угол между ними

    • Через площадь и основания

Нахождение высоты прямоугольной трапеции

Через длины сторон

Высота прямоугольной трапеции abcd

Зная длины обоих оснований и большей боковой стороны прямоугольной трапеции, можно найти ее высоту (или меньшую боковую сторону):

Формула для нахождения высоты прямоугольной трапеции через ее стороны

Данная формула следует из теоремы Пифагора. В данном случае высота h – это неизвестный катет прямоугольного треугольника, гипотенуза которого равняется d, а известный катет – разности оснований, т.е. (a-b).

Через основания и прилежащий угол

Высота прямоугольной трапеции

Если даны длины оснований и любой из прилежащих к ним острых углов, то вычислить высоту прямоугольной трапеции можно по формуле:

Формула для нахождения высоты прямоугольной трапеции через ее основания и прилежащий угол

Через боковую сторону и прилежащий угол

Высота прямоугольной трапеции с углом при основании α

Если известна длина боковой стороны прямоугольной трапеции и прилежащий к ней угол (любой), найти высоту фигуры удастся таким образом:

Формула для нахождения высоты прямоугольной трапеции через боковую сторону и прилежащий угол

Примечание: с помощью этой формулы можно, в т.ч., доказать, что меньшая боковая сторона – это и есть высота трапеции:

Расчет высоты прямоугольной трапеции через боковую сторону и прямой угол

Через диагонали и угол между ними

Диагонали прямоугольной трапеции

При условии, что известны длины оснований прямоугольной трапеции, диагонали и угол между ними, рассчитать высоту фигуры можно так:

Формула для нахождения высоты прямоугольной трапеции через диагонали и угол между ними

Если вместо суммы оснований известна длина средней линии, то формула примет вид:

Формула для нахождения высоты прямоугольной трапеции через диагонали и угол между ними

Элементы прямоугольной трапеции

m – средняя линия, которая равна половине суммы оснований, т.е.m = (a+b)/2.

Через площадь и основания

Высота и средняя линия прямоугольной трапеции

Если известна площадь прямоугольной трапеции и длина ее оснований (или средней линии), найти высоту можно таким образом:

Формула для нахождения высоты прямоугольной трапеции через ее площадь и основания (среднюю линию)

Высота трапеции – это перпендикуляр, который опущен с вершины трапеции на её основание.

Для нахождения высоты трапеции можно использовать целый ряд различных способов.

Приведу некоторые из них.


Высота трапеции через площадь и основания

Если известна площадь трапеции S и её основания a и b, то высота трапеции определяется по формуле:

h = 2S / (a + b).

Эта формула выводится исходя из того, что площадь трапеции равна полусумме оснований умноженной на высоту.

Например:

Площадь трапеции S = 20 см., основания a и b равны 4 см. и 6 см.

Высота h = 2 * 20 / (4 + 6) = 4 см.


Высота трапеции через площадь и среднюю линию

По определению, средняя линия трапеции представляет собой полусумму её оснований.

l = (a + b) / 2.

Если S = h * l, то высоту трапеции можно будет найти по формуле:

h = S / l.

Например:

Площадь трапеции S = 30 см. и средняя линия l = 10 см.

Высота h = 30 / 10 = 3 см.


Высота трапеции через боковую сторону и угол

Если дан угол при основании α или β, то высота находится так:

h = c * sinα или h = d * sinβ.

Данные формулы применяются исходя из того, что в прямоугольном треугольнике катет (в нашем случае высота) равен произведению гипотенузы (боковой стороны трапеции) на синус противолежащего угла.

Например:

Боковая сторона трапеции c = 25 см. и прилежащий к ней угол α = 30°.

Высота h = 25 * sin30° = 25 * 0,5 = 12,5 см.

Определения

Трапеция — это такой четырехугольник, у которого две стороны параллельны (они являются основаниями трапеции, указанные на рисунках a и b), а две другие — нет.

Высота трапеции — это такой отрезок h, который проведен перпендикулярно основаниям.

Нахождение высоты по площади и основаниям

Вычисление высоты трапеции 1

Чтобы вычислить площадь S трапеции мы используем формулу:

[S=frac{((a+b) times h)}{2}]

Здесь h — высота трапеции, а сегменты a и b являются ее основаниями.

Можем найти h:

[h=frac{2 times S}{(a+b)}]

Пример 1

Площадь трапеции S составляет 50 см2, длина ее основания a = 4 см, длина второго основания b равна 6 см, то для нахождения высоты h мы используем формулу:

[h=frac{2 times 50}{(4+6)}=10 mathrm{~cm}]

Ответ: 10 см.

Нахождение высоты, зная площадь и среднюю линию

Вычисление высоты трапеции 2

Мы используем формулу, с помощью которой можно рассчитать площадь трапеции:

S = m × h,   

Здесь h — это высота трапеции, m — ее средняя линия.

Можем найти h:

[h=frac{S}{m}], будет ответом.

Пример 2

Средняя линия трапеции, обозначенная буквой m, равна 20 см, а площадь S, которая составляет 200 см2. Давайте найдем значение высоты трапеции h.

[h=frac{200}{20}=10 mathrm{~cm}]

Ответ: 10 см

Высота прямоугольной трапеции

Выстота прямоугольной трапеции

Определение

Диагональ — это сегмент, соединяющий пару противоположных вершин трапеции. Когда трапеция прямоугольная, используя диагональ, мы находим высоту данной фигуры.

Трапецию, одна из боковых сторон которой перпендикулярна основаниям, называют прямоугольной трапецией.

Таким образом, рассмотрим подобную трапецию ABCD, где AD — высота, AC — диагональ, DC-основание. Мы используем теорему Пифагора, которая говорит, что в прямоугольном треугольнике ADC квадрат гипотенузы AC равен сумме квадратов его сторон — катетов AB и BC.

Тогда мы сможем написать:

AC² = AD² + DC².

AD — это катет треугольника, сторона трапеции и, одновременно, ее высота. Так как отрезок перпендикулярен основаниям. Длина катета будет находиться как:

[A D=sqrt{left(A C^{2}-D C^{2}right)}]

Таким образом, у нас есть формула, которая поможет при вычислении найти высоту трапеции AD.

Пример 3

Основания трапеции с прямым углом(DC) равно 14 см, а ее диагональ (AC) равна 15 см, мы будем использовать теорему Пифагора для получения высоты (сторона AD).

Пусть x — неизвестная часть прямоугольного треугольника (AD), тогда

[A C^{2}=A D^{2}+D C^{2}] может быть записан

[15^{2}=14^{2}+x^{2}]

[x=sqrt{left(15^{2}-14^{2}right)}=sqrt{(225-196)}=sqrt{29} mathrm{см}]

Ответ: [sqrt{29} mathrm{см}], что составляет приблизительно 5,385 см

Нет времени решать самому?

Наши эксперты помогут!

Нахождение высоты через стороны

Вычисление высоты трапеции 3

Существует еще один способ найти высоту — через стороны. Помимо высоты в трапеции стоит провести также ее диагональ, которая образует треугольник с прямым углом и даст возможность найти высоты несколькими различными способами через различные треугольники.

Если выразить все длины сторон таких треугольников через стороны трапеции и привести подобные слагаемые, то получится следующая формула:

[mathrm{h}=sqrt{C^{2}-left(frac{(a-b)^{2}+e^{2} d^{2}}{2(a-b)}right)^{2}}]

Пример 4

Дана трапеция, в ней известны основания a и b. Эти основания соответственно равны 4,5 см и 2,5 см. Известны и ее боковые стороны d и c, которые равны 2 см и используем формулу:

[h=sqrt{2^{2}-left(frac{(4,5-2,5)^{2}+2^{2}-2 sqrt{2}^{2}}{2(4,5-2,5)}right)^{2}}=sqrt{4}=2 см]

Ответ: h=2 см.

Нахождение высоты прямоугольной трапеции

В данной публикации мы рассмотрим различные формулы, с помощью которых можно вычислить высоту прямоугольной трапеции.

Напомним, в прямоугольной трапеции одна из боковых сторон перпендикулярна ее основаниями, и потому одновременно является высотой фигуры.

Нахождение высоты прямоугольной трапеции

Через длины сторон

Зная длины обоих оснований и большей боковой стороны прямоугольной трапеции, можно найти ее высоту (или меньшую боковую сторону):

Данная формула следует из теоремы Пифагора. В данном случае высота h – это неизвестный катет прямоугольного треугольника, гипотенуза которого равняется d, а известный катет – разности оснований, т.е. (a-b).

Через основания и прилежащий угол

Если даны длины оснований и любой из прилежащих к ним острых углов, то вычислить высоту прямоугольной трапеции можно по формуле:

Через боковую сторону и прилежащий угол

Если известна длина боковой стороны прямоугольной трапеции и прилежащий к ней угол (любой), найти высоту фигуры удастся таким образом:

Примечание: с помощью этой формулы можно, в т.ч., доказать, что меньшая боковая сторона – это и есть высота трапеции:

Через диагонали и угол между ними

При условии, что известны длины оснований прямоугольной трапеции, диагонали и угол между ними, рассчитать высоту фигуры можно так:

Если вместо суммы оснований известна длина средней линии, то формула примет вид:

m – средняя линия, которая равна половине суммы оснований, т.е.m = (a+b) /2.

Через площадь и основания

Если известна площадь прямоугольной трапеции и длина ее оснований (или средней линии), найти высоту можно таким образом:

Свойства прямоугольной трапеции

В данной статье мы расскажем Вам о свойствах прямоугольной трапеции, как обычной, так и той, в которую вписана окружность.

Для начала напомним некоторые основные определения.

Трапеция – это четырехугольник, имеющий 2 параллельные друг другу стороны, причем 2 другие стороны параллельными не являются.

Прямоугольная трапеция – это такая трапеция, одна из боковых сторон которой перпендикулярна ее основаниям (изображена на рис.).

Средняя линия трапеции – это отрезок, который соединяет середины боковых сторон фигуры (на рис. EF).

Основные свойства прямоугольной трапеции

  1. Средняя линия EF равна половине суммы ее оснований BC и AD.
  • Средняя линия EF параллельна основаниям трапеции BC и AD.
  • На одной прямой размещаются:
    • точка пересечения (H) диагоналей прямоугольной трапеции AC и BD;
    • точка пересечения (E) продолжений боковых сторон трапеции AB и CD;
    • середины (F и G) оснований трапеции BC и AD.

    Данным свойством обладает как прямоугольная, так и равносторонняя трапеция.

  • Свойства прямоугольной трапеции, в которую вписана окружность

    SABCD = BC * AD

    Узнать подробнее о свойствах трапеции с прямым углом, в которую вписана окружность, а также ознакомиться с доказательствами этих свойств, можно на сайте uznateshe.ru.

    Понравилась статья, расскажите о ней друзьям:

    Узнать ещё

    Знание — сила. Познавательная информация

    В прямоугольную трапецию вписана окружность

    Если в условии задачи сказано, что в прямоугольную трапецию вписана окружность, можно использовать следующие свойства.

    1. Сумма оснований трапеции равна сумме боковых сторон.

    2. Расстояния от вершины трапеции до точек касания вписанной окружности равны.

    3. Высота прямоугольной трапеции равна ее меньшей боковой стороне и равна диаметру вписанной окружности.

    4. Центр вписанной окружности является точкой пересечения биссектрис углов трапеции.

    5. Если точка касания делит боковую сторону на отрезки m и n, то радиус вписанной окружности равен

    И еще два полезных свойства прямоугольной трапеции, в которую вписана окружность:

    1) Четырехугольник, образованный центром вписанной окружности, точками касания и вершиной трапеции — квадрат, сторона которого равна радиусу. (AMOE и BKOM — квадраты со стороной r).

    2) Если в прямоугольную трапецию вписана окружность, площадь трапеции равна произведению ее оснований.

    Площадь трапеции равна произведению полусуммы ее оснований на высоту:

    Обозначим CF=m, FD=n. Поскольку расстояния от вершин до точек касания равны, высота трапеции равна двум радиусам вписанной окружности, а

    [spoiler title=”источники:”]

    http://people-ask.ru/nauki/geometriya/svojstva-pryamougolnoj-trapecii

    [/spoiler]

    Трапецией принято называть выпуклую четырёхугольную четырехугольник с парой параллельных и двумя не
    параллельными сторонами. Отрезки, которые создают параллельные прямы называются «основанием
    трапеции», две других стороны играют роль «боковой стороны трапеции». Средняя линия трапеции будет
    соединять два центра боковых сторон.

    • Высота трапеции через боковую сторону и прилегающий угол
      при основании
    • Высота трапеции через площадь и длины оснований
    • Высота трапеции через площадь и среднию линию
    • Высота трапеции через основании, диагонали и угол между
      диагоналями
    • Высота трапеции через среднию линию, диагонали и угол между
      диагоналями

    Как найти высоту при помощи боковой стороны и прилегающего угла при основании

    Для вычисления высоты трапеции через боковую сторону и прилегающий угол при основании нужно
    воспользоваться нижеприведенной формулой:

    h = a · sin α

    где h — это искомая высота трапеции, a — известная боковая сторона, sin α — угол
    при основании.

    Цифр после
    запятой:

    Результат в:

    Пример. Чтобы разобраться с применением формулы, давайте рассмотрим пример. Дана
    некая трапеция. Нам известно, что боковая сторона равна 10 сантиметрам, а прилегающих угол
    составляет 30 гр. Нам нужно найти высоту данной трапеции. Для решения у нас есть вся нужная
    информация и формула выше. Подставляем значения в формулу: h = a · sin, h = 10 · sin 30, h = 10 · 1/2, h = 5 см

    Как найти высоту трапецию при помощи длины основания и площади трапеции

    Чтобы найти высоту трапеции через известные длины основания и площадь, нужно воспользоваться
    формулой:

    h = (2S) / (a + b)

    где h — это искомая высота трапеции, S — известная площадь фигуры, a и b — длины
    обеих оснований.

    Цифр после
    запятой:

    Результат в:

    Пример. Закрепим на примере: Нам известно, что в трапеции АВСD основания a и b равны
    5 и 10 сантиметров. Площадь фигуры равна 30 квадратных сантиметров. Для решения нужно
    воспользоваться формулой. h = (2S) / (a + b), h = (2 х 30) / (5 + 10), h = 60 /15, h = 4 см.
    Высота трапеции равна 4 см.

    Как найти высоту при помощи диагоналей, углу между диагоналями и средней линией трапеции

    Чтобы найти высоту трапеции через среднюю линию, известные диагонали и угол между ними, нужно
    прибегнуть к применению выведенной формулы:

    h = ((D x d) / (2m)) x sin (α)

    где h — это искомая высота трапеции, D и d — известные диагонали, m — средняя
    линия, sin(α) — угол между диагоналями.

    Цифр после
    запятой:

    Результат в:

    Пример. Закрепим на примере: Дана трапеция с диагоналями 5 и 12 сантиметров.
    Известно, что средняя линия фигуры равна 6 см, а угол между диагоналями – 30 градусов. Применив
    формулу выше, мы сможем с легкостью найти высоту трапеции. h = ((D x d) / (2m)) x sin (α), h = ((5 x 12) / (2 х 6)) x sin (30), h = (60 /12) x 0.5, h = 2.5 см.
    Высота трапеции равна 2.5 см.

    Как найти высоту при помощи средней линии и площади трапеции

    Чтобы найти высоту трапеции через площадь и среднюю линию воспользуемся выведенной формулой:

    h = (2S) / m

    где h — это искомая высота трапеции, S — известная площадь фигуры, а m — средняя
    линия.

    Цифр после
    запятой:

    Результат в:

    Пример. Закрепим на примере: Площадь произвольной трапеции составляет 30 квадратных
    сантиметров. Средняя линия фигуры равна 5 см. Нужно найти высоту по формуле. h = (2S) / m, h = (2 х 30) / 5, h = 60 / 5, h = 12 см. 12
    см – высота трапеции.

    Как найти высоту при помощи известного основания, диагоналей трапеции и угла между диагоналями

    Для нахождения высоты трапеции при помощи известного основания, диагонали и углу между диагоналями
    используют нижеприведенную формулу:

    h = ((Dd) / (a + b)) x sin (α)

    где h — это искомая высота трапеции, D и d — известные диагонали, a и b — длины
    обеих оснований, sin(α) — угол между диагоналями.

    Цифр после
    запятой:

    Результат в:

    Пример. Закрепим на примере: В трапеции ABCD диагонали равны 10 см каждая. Известно,
    что сумма основ фигура равна 20 см. Угол, созданный между диагоналями – 30 градусов. Нужно найти
    высоту. Для этого нужно воспользоваться выше предоставленной формулой. h = ((Dd) / (a+b)) x sin (α), h = ((10 х 10) / (20)) x sin (30), h = 5 x sin (30), h = 2.5 см.
    Высота трапеции равна 2.5 см

    Можно выделить 2 разновидности трапеции:

    1. Трапеция, в которой одна из боковых сторон лежит под перпендикулярным углом с обеими основами
      называется прямоугольной.
    2. Трапеции с равными боковыми сторонами называется равнобедренной.

    Высотой трапеции принято называть отрезок, которой показывает самое короткое расстояние между верхним
    и нижним основанием фигуры. Существует большое количество математических задач разного уровня
    сложности, для решения которых активно применяют высоту. Стоит разобраться со всеми возможными
    формулами, которые используются для нахождения высоты трапеции.

    Добавить комментарий