Как найти высоту равнобедренной трапеции описанной окружности

Как найти высоту равнобедренной трапеции по радиусу описанной окружности

Основания равнобедренной трапеции равны 72 и 30. Радиус описанной окружности равен 39.

Найдите высоту трапеции.

Это задание ещё не решено, приводим решение прототипа.

Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Высота трапеции где KO и OH — высоты равнобедренных треугольников DOC и AOB. По теореме Пифагора:

Тогда

Если бы большее основание трапеции лежало выше центра окружности (то есть оба основания располагались по одну сторону от центра окружности) длина высоты равнялась бы не сумме, а разности найденных отрезков.

Как найти высоту трапеции по радиусу окружности

Как найти высоту трапеции по окружности

Все формулы высоты трапеции

Трапеция это фигура, которая имеет четыре стороны, две из которых параллельны, а две другие, нет. Параллельные стороны называются — верхнее основание и нижнее основание. Две другие, называются боковыми сторонами.
Высота трапеции это отрезок, длина которого, равна кратчайшему расстоянию между основаниями и следовательно расположенному перпендикулярно к этим основаниям.

1. Формула высоты трапеции через стороны и углы при основании

a — нижнее основание

b — верхнее основание

c , d — боковые стороны

h — высота трапеции

Формулы длины высоты, ( h ):

2. Формула высоты трапеции через диагонали и углы между ними

d 1 , d 2 — диагонали трапеции

α , β — углы между диагоналями

a , b — основания

h — высота трапеции

m — средняя линия

Формулы длины высоты, ( h ):

3. Формула высоты трапеции через площадь

S — площадь трапеции

a , b — основания

h — высота трапеции

m — средняя линия

Нахождение высоты трапеции: формулы и примеры задач

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту трапеции, а также разберем примеры решения задач для закрепления материала.

Напомним, высотой трапеции называется отрезок, соединяющий оба ее основания и перпендикулярный им.

Нахождение высоты трапеции

Через длины сторон

Если известны длины всех четырех сторон трапеции, ее высота рассчитывается по формуле ниже:

Через боковую сторону и прилежащий угол

Высоту трапеции можно вычислить, если знать длину любой из ее боковых сторон и значение прилежащего к ней и основанию угла.

Через диагонали и угол между ними

Зная длину оснований трапеции, а также диагоналей и угол между ними, вычислить высоту удастся по формуле:

Если сумму оснований заменить длиной средней линии (m), то формула будет выглядеть следующим образом:

Средняя линия трапеции (m) равняется полусумме ее оснований, т.е m = (a+b) /2.

Через площадь

Высоту трапеции можно вычислить, если известны ее площадь и длины оснований (или средней линии).

Примечание: формулы для нахождения высоты равнобедренной и прямоугольной трапеций представлены на нашем сайте в отдельных публикациях.

Примеры задач

Задание 1
Найдите высоту трапеции, если ее основания равны 9 и 6 см, а боковые стороны – 4 и 5 см.

Решение
Т.к. у нас есть длины всех сторон, мы можем воспользоваться первой формулой для вычисления требуемого значения:

Кстати, т.к. высота равна одной из боковой сторон трапеции, значит она является прямоугольной.

Задание 2
Площадь трапеции равна 26 см 2 . Найдите ее высоту, если основания равны 10 и 3 см.

Решение
В данном случае можно применить последнюю из рассмотренных формул:

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
2 m 2 m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 = d 2 + ab — a ( d 2 — c 2 )
a — b
d 2 = c 2 + ab — a ( c 2 — d 2 )
a — b

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

3. Формула площади через диагонали и угол между ними:

S = d 1 d 2 · sin γ = d 1 d 2 · sin δ
2 2

4. Формула площади через четыре стороны:

S = a + b c 2 — ( ( a — b ) 2 + c 2 — d 2 ) 2
2 2( a — b )

5. Формула Герона для трапеции

S = a + b √ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |
p = a + b + c + d — полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

a — большее основание

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Все формулы высоты трапеции

Трапеция это фигура, которая имеет четыре стороны, две из которых параллельны, а две другие, нет. Параллельные стороны называются — верхнее основание и нижнее основание. Две другие, называются боковыми сторонами.
Высота трапеции это отрезок, длина которого, равна кратчайшему расстоянию между основаниями и следовательно расположенному перпендикулярно к этим основаниям.

1. Формула высоты трапеции через стороны и углы при основании

a — нижнее основание

b — верхнее основание

c , d — боковые стороны

h — высота трапеции

Формулы длины высоты, ( h ):

2. Формула высоты трапеции через диагонали и углы между ними

d 1 , d 2 — диагонали трапеции

α , β — углы между диагоналями

a , b — основания

h — высота трапеции

m — средняя линия

Формулы длины высоты, ( h ):

3. Формула высоты трапеции через площадь

S — площадь трапеции

a , b — основания

h — высота трапеции

m — средняя линия

Как найти высоту трапеции по радиусу окружности

Основания равнобедренной трапеции равны 72 и 30. Радиус описанной окружности равен 39.

Найдите высоту трапеции.

Это задание ещё не решено, приводим решение прототипа.

Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Высота трапеции где KO и OH — высоты равнобедренных треугольников DOC и AOB. По теореме Пифагора:

Тогда

Если бы большее основание трапеции лежало выше центра окружности (то есть оба основания располагались по одну сторону от центра окружности) длина высоты равнялась бы не сумме, а разности найденных отрезков.

Решение №2085 Основания равнобедренной трапеции равны 32 и 24. Радиус описанной окружности равен 20. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Основания равнобедренной трапеции равны 32 и 24. Радиус описанной окружности равен 20. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Через центр окружности О проведём высоту НМ, она делит основания равнобедренной трапеции пополам:

DH = DC/2 = 24/2 = 12
АМ = АВ/2 = 32/2 = 16

Проведём радиусы DO и АО, получаем два прямоугольных треугольника ΔDHO и ΔAMO, найдём в них по теореме Пифагора катеты HO и МО соответственно:

Найдём высоту трапеции НМ:

НМ = НО + МО = 16 + 12 = 28

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/kak-nayti-vysotu-trapetsii-po-radiusu-okruzhnosti

[/spoiler]

Основания равнобедренной трапеции равны 32 и 24. Радиус описанной окружности равен 20. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Основания равнобедренной трапеции равны 32 и 24. Радиус описанной окружности равен 20. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Источник: mathege

Решение:

    Через центр окружности О проведём высоту НМ, она делит основания равнобедренной трапеции пополам:

Основания равнобедренной трапеции равны 32 и 24. Радиус описанной окружности равен 20.

DH = DC/2 = 24/2 = 12
АМ = АВ/2 = 32/2 = 16

    Проведём радиусы DO и АО, получаем два прямоугольных треугольника ΔDHO и ΔAMO, найдём в них по теореме Пифагора катеты HO и МО соответственно:

    Найдём высоту трапеции НМ:

НМ = НО + МО = 16 + 12 = 28

Ответ: 28.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 4.8 / 5. Количество оценок: 32

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

chet

Описанная окружность и трапеция. Здравствуйте! Для вас ещё одна публикация, в которой рассмотрим задачи с трапециями. Задания входят в состав экзамена по математике. Здесь они объединены в группу, дана не просто одна трапеция, а комбинация тел – трапеция и окружность. Большинство из таких задачек решаются устно. Но есть и такие на которые нужно обратить особое внимание, например, задача 27926.

Какую теорию необходимо помнить? Это:

1. Свойство сторон четырёхугольника описанного около окружности.

2. Теорему Пифагора. *Куда мы без неё )

3. Понятие средней линии трапеции.

Задачи с трапециями, которые имеются на блоге можно посмотреть здесь.

zadacha

27924. Около трапеции описана окружность. Периметр трапеции равен 22, средняя линия равна 5. Найдите боковую сторону трапеции.

1

Отметим, что описать окружность можно только около равнобедренной трапеции. Нам дана средняя линия, значит можем определить сумму оснований, то есть:

2

Значит сумма боковых сторон будет равна 22–10=12 (периметр минус основания).  Так как боковые стороны равнобедренной трапеции равны, то одна сторона будет равна шести.

Ответ: 6

zadacha

27925. Боковая сторона равнобедренной трапеции равна ее меньшему основанию, угол при основании равен 600, большее основание равно 12. Найдите радиус описанной окружности этой трапеции.

3

Если вы решали задачи с окружностью и вписанным в неё шестиугольником, то сразу озвучите ответ – радиус равен 6. Почему?

Посмотрите: равнобедренная трапеция с углом при основании равным 600 и равными сторонами AD, DC и CB, представляет собой половину правильного шестиугольника:

4

В таком шестиугольнике отрезок соединяющий противоположные вершины проходит через центр окружности. *Центр шестиугольника и центр окружности совпадают, подробнее здесь п.6

То есть большее основание этой трапеции совпадает с диаметром описанной окружности. Таким образом радиус равен шести.

*Конечно, можно рассмотреть равенство треугольников ADO, DOС и OCB. Доказать что они равносторонние. Далее сделать вывод о том, что угол AOB равен 1800 и точка О равноудалена от вершин A, D, C и B, а и значит АО=ОВ=12/2=6.

Ответ: 6

zadacha

27926. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Найдите высоту трапеции.

5

Отметим, что центр описанной окружности лежит на оси симметрии, при чём если построить высоту трапеции проходящую через этот центр, то она при пересечении с основаниями разделит их пополам. Покажем это на эскизе, также соединим центр с вершинами:

6

Отрезок EF является высотой трапеции, его нам нужно найти.

В прямоугольном треугольнике OFC нам известна гипотенуза (это радиус окружности),  FC=3 (так как  DF=FC). По теореме Пифагора можем вычислить OF:

7

В прямоугольном треугольнике OEB нам известна гипотенуза (это радиус окружности),  EB=4 (так как  AE=EB). По теореме Пифагора можем вычислить OE:

8

Таким образом EF=FO+OE=4+3=7.

Ответ: 7

Теперь важный нюанс!

В этой задаче на рисунке чётко показано, что основания лежат по разные стороны от центра окружности, поэтому задача решается именно так.

А если бы в условии не было дано эскиза?

Тогда у задачи было бы два ответа. Почему? Посмотрите внимательно – в любую окружность можно вписать две трапеции с заданными основаниями:

10

*То есть при данных основаниях трапеции и радиусе окружности существует две трапеции.

И решение будет «второго варианта» будет следующим.

По теореме Пифагора вычисляем OF:

11

Также вычислим OE:

12

Таким образом EF=FO–OE=4–3=1.

Конечно, в задаче с кратким ответом на ЕГЭ двух ответов быть не может, и подобная задача без эскиза дана не будет. Поэтому обратите особое внимание на эскиз! А именно: как расположены основания трапеции. А вот в заданиях с развёрнутым ответом такая в прошлые годы присутствовала (немного с усложнённым условием). Тот, кто рассматривал только один вариант расположения трапеции теряли балл на этом задании.

zadacha

27937. Около окружности описана трапеция, периметр которой равен 40. Найдите ее среднюю линию.

13

Здесь сразу следует вспомнить свойство  четырёхугольника описанного около окружности:

14

Суммы противоположных сторон любого четырёхугольника описанного около окружности равны.

Значит

15

А средняя линия равна половине суммы оснований, то есть 10.

Ответ: 10

zadacha

27938. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

16

Радиус окружности равен половине высоты. Используя свойство указанное в предыдущей задаче получим:

17

Большая сторона у нас это СВ, следовательно можем вычислить AD=11–CB=11–7=4. Таким образом, радиус будет равен 2.

Ответ: 2

27915. Найдите высоту трапеции, в которую вписана окружность радиуса 1.

Посмотреть решение

27936. Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите среднюю линию трапеции.

18

Посмотреть решение

На этом всё, успеха вам!

С уважением, Александр Крутицких.

*Расскажите о сайте в социальных сетях.

Задание. Основания равнобедренной трапеции равны 24 и 10. Радиус описанной окружности равен 13. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.

Решение:

Проведем радиусы ОВ и ОС окружности, ОВ = ОС, тогда треугольник ΔВОС – равнобедренный и ОМ – высота и медиана треугольника ΔВОС.

Из прямоугольного треугольника ΔОМС по теореме Пифагора найдем ОМ:

ОМ2 = ОС2 – МС2

ОМ2 = 132 – 52 = 169 – 25 = 144

OM = 12

Проведем радиусы ОA и ОD окружности, ОA = ОD, тогда треугольник ΔAОD – равнобедренный и ОN – высота и медиана треугольника ΔAОD.

Из прямоугольного треугольника ΔОND по теореме Пифагора найдем ОN:

ОN2 = ОD2 – ND2

ОN2 = 132 – 122 = 169 – 144 = 25

ON = 5

Так как ВС параллельна AD, OM ⊥ BC, ON ⊥ AD, то точки M, О и N лежат на одной прямой и MN – высота трапеции.

MN = ОМ + ON

MN = 12 + 5 = 17

Ответ: 17

Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции

Определение.

Равнобедренная трапеция — это трапеция у котрой боковые стороны равны.

На этой странице представленны формулы характерные равнобедренной трапеции. Не забывайте, что для равнобедренной трапеции выполняются все формулы и свойства трапеции.

Изображение равнобедренной трапеции с обозначениями
Рис.1

Признаки равнобедренной трапеции

Трапеция будет равнобедренной если выполняется одно из этих условий:

1. Углы при основе равны:

∠ABC = ∠BCD и ∠BAD = ∠ADC

2. Диагонали равны:

AC = BD

3. Одинаковые углы между диагоналями и основаниями:

∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC

4. Сумма противоположных углов равна 180°:

∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

5. Вокруг трапеции можно описати окружность

Основные свойства равнобедренной трапеции

1. Сумма углов прилегающих к боковой стороне равнобедренной трапеции равна 180°:

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

2. Если в равнобедренную трапецию можно вписать окружность, то боковая сторона равна средней лини трапеции:

AB = CD = m

3. Вокруг равнобедренной трапеции можно описать окружность

4. Если диагонали взаимно перпендикулярны, то высота равна полусумме оснований (средней лини):

h = m

5. Если диагонали взаимно перпендикулярны, то площадь трапеции равна квадрату высоты:

SABCD = h2

6. Если в равнобедренную трапецию можно вписать окружность, то квадрат высоты равен произведению основ трапеции:

h2 = BC · AD

7. Сумма квадратов диагоналей равна сумме квадратов боковых сторон плюс удвоенному произведению основ трапеции:

AC2 + BD2 = AB2 + CD2 + 2BC · AD

8. Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции:

HF BC, HF AD

9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) – равен полуразности оснований:

Стороны равнобедренной трапеции

Формулы длин сторон равнобедренной трапеции:

1. Формулы длины сторон через другие стороны, высоту и угол:

a = b + 2h ctg α = b + 2c cos α

b = a – 2h ctg α = a – 2c cos α

c =  h  =  ab
sin α 2 cos α

2. Формула длины сторон трапеции через диагонали и другие стороны:

a =  d12c2        b =  d12c2        c = √d12ab
b a

3. Формулы длины основ через площадь, высоту и другую основу:

a =  2S b      b =  2S a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

Средняя линия равнобедренной трапеции

Формулы длины средней линии равнобедренной трапеции:

1. Формула определения длины средней линии через основания, высоту и угол при основании:

m = ah ctg α = b + h ctg α = a – √c2h2 = b + √c2h2

2. Формула средней линии трапеции через площадь и сторону:

Высота равнобедренной трапеции

Формулы определения длины высоты равнобедренной трапеции:

1. Формула высоты через стороны:

2. Формула высоты через стороны и угол прилегающий к основе:

h =  ab tg β  = c sin β
2

Диагонали равнобедренной трапеции

Диагонали равнобедренной трапеции равны:

d1 = d2

Формулы длины диагоналей равнобедренной трапеции:

1. Формула длины диагонали через стороны:

d1 = √с2 + ab

2. Формулы длины диагонали по теореме косинусов:

d1 = √a2 + c2 – 2ac cos α

d1 = √b2 + c2 – 2bc cos β

3. Формула длины диагонали через высоту и среднюю линию:

d1 = √h2 + m2

4. Формула длины диагонали через высоту и основания:

Площадь равнобедренной трапеции

Формулы площади равнобедренной трапеции:

1. Формула площади через стороны:

S =  a + b 4c2 – (ab)2
4

2. Формула площади через стороны и угол:

S = (b + c cos α) c sin α = (ac cos α) c sin α

3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:

S =  4 r 2  =  4 r 2
sin α sin β

4. Формула площади через основания и угол между основой и боковой стороной:

5. Формула площади ранобедренной трапеции в которую можно вписать окружность:

S = (a + b) · r = √ab·c = √ab·m

6. Формула площади через диагонали и угол между ними:

S =  d12 · sin γ  =  d12 · sin δ
2 2

7. Формула площади через среднюю линию, боковую сторону и угол при основании:

S = mc sin α = mc sin β

8. Формула площади через основания и высоту:

Окружность описанная вокруг трапеции

Окружность можно описать только вокруг равнобедренной трапеции!!!

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =  a·c·d1
4√p(pa)(pc)(pd1)

где

a – большее основание

Добавить комментарий