Как найти высоту равностороннего треугольника 8 класс

Высота равностороннего треугольника

Формулы, используемые для этого, несложны. Вывод выражений основан на свойствах треугольника, при этом точка пересечения высот считается замечательной и даже имеет своё название — ортоцентр.

Общие сведения

Три отрезка, не принадлежащие одной прямой, каждый из которых соединяется с другими в двух точках, образуют геометрическую фигуру — треугольник. Прямые линии — это стороны, а точки их соприкосновения вершины. Один из отрезков, обычно который проходит параллельно горизонтальной плоскости, называют основанием.

В зависимости от размера внутренних углов замкнутой фигуры, треугольники разделяют на следующие виды:

  • остроугольные — все углы тела не превышают 90 градусов;
  • тупоугольные — один из разворотов имеет тупую форму;
  • прямоугольные — размер одного из трёх углов составляет 90 градусов.

По числу равных сторон треугольные фигуры разделяют на разносторонние, равнобедренные, равносторонние. Последние часто называют правильными, так как все стороны у такого объекта равны друг другу. Кроме этого, из особенностей равносторонней фигуры можно отметить, что центры вписанной и описанной окружности совпадают, а каждый из углов равен 60 градусам. Сумма всех углов треугольника равняется 180 градусам.

В любой трёхугольной фигуре можно построить так называемые 3 замечательные линии: медиана, биссектриса и высота.

Как найти высоту равностороннего треугольника

В правильном треугольнике эти 3 отрезка совпадают, то есть линия, опущенная из вершины к противолежащей стороне, одновременно являясь медианой, биссектрисой и высотой, образует прямой угол с основанием. При этом она делит его пополам. Фактически высота играет роль катета.

Получается, что в середине фигуры можно построить 3 отрезка, которые и будут высотами. Две из них будут опущены на боковые грани, а одна на основание. Точка пересечения перпендикулярных линий называется ортоцентром. Она располагается внутри геометрического тела и совпадает с центром вписанной окружности.

Для трёхугольного тела существует 2 теоремы. Одна из них утверждает, что противолежащие боковые стороны имеют одинаковую длину, а вторая, что если 2 угла невырожденного треугольника равны, то грани, противоположные им, также равны.

Интересно то, что эти правила справедливы как для абсолютной, так и сферической геометрии.

Свойства равносторонней фигуры

При решении задач, связанных с нахождением высоты в равностороннем треугольнике, часто приходится использовать его свойства. Зная их, найти нужные параметры будет несложно. Тем более что все они связаны с главной особенностью фигуры — равенством его всех сторон.

Равностороннее тело с тремя углами обладает следующими особенностями:

  • в нём все углы одинаковые и равны 60 градусов;
  • середина пересечения отрезков, совпадающих с высотой, биссектрисой и медианой, является центром геометрического тела;
  • радиус описанной окружности превышает радиус вписанной в 2 раза;
  • в равностороннем треугольнике длины всех элементов выражаются через длину стороны.

Высота в равностороннем треугольнике

Эти свойства очевидны. Если начертить треугольник с равными сторонами и вписать его в окружность, за центр можно принять точку O, при этом радиус описанного круга будет OK. Тогда линия, проведённая из неё к вершине, будет радиусом. Пусть конечная точка будет B. Но так как место пересечения является общим и для высот и медиан, из свойства последних можно сделать вывод, что в точке линия делится в отношении 2 к 1. Отсчёт следует вести с вершины треугольника. Значит: OB = 2 * OK.

Из основных формул, которые используются при вычислениях, в первую очередь нужно запомнить:

  • радиус описанной окружности: R = (a * √3) / 3;‎
  • диаметр вписанного круга: r = (a * √3) / 6;
  • медиана: h = (a * √3) / 2;
  • площадь: s = (a2 * √3) / 4;
  • периметр: p = 3 * a.

Если рассмотреть треугольник ABC с проведённой высотой BN, можно утверждать, что грань АВ = ВС = АС = AN /2 = NC /2. Так как фигура ABN является копией BNC в зеркальном отражении, разделённые углы у вершины будут одинаковыми, а и их разворот составлять 30 градусов. Из этого следует, что угол A равен 60 градусам, значит, отрезок BN = AB * sin 600 = (AB * √3) / 2.

Зная длину медианы (высоты), вычислить другие параметры треугольника не составит труда. Например, периметр, P = 2 √3 * h; площадь — S = (h * 2) / √3.

При этом замечательным свойством является ещё и то, что ортоцентр одновременно будет в фигуре и центром тяжести (центроидом), поэтому точка пересечения высот и делит отрезок в отношении 2 к 1.

Формула высоты

В равностороннем треугольнике длина стороны равна произведению удвоенной высоты и квадратного корня из трёх. Эту формулу легко доказать, используя теорему Пифагора. Так как высота одновременно является и биссектрисой, она, проведённая на противоположное основание, разделяет треугольник на 2 симметричные фигуры. Исходя из того, что отрезок — это перпендикуляр, полученные геометрические тела будут прямоугольными.

 высота правильного треугольника

Гипотенуза будет являться гранью основного тела, одним из катетов — проведённая линия, а вторым — половина основания. Последнее утверждение правдиво, так как в равносторонней фигуре все стороны равны. Соответственно, используя теорему Пифагора: c2 = b2 + a2, для рассматриваемого случая можно записать следующую формулу: a2 = h2 + a2 / 22, где: a — грань. После математических преобразований выражение примет вид: a = (2 * h) / √‎3. Отсюда уже можно вывести формулу для нахождения длины: h = (a * √‎3) / 2.

Аналогичное определение можно получить, используя для доказательства формулу Герона. Отрезок, являющийся высотой, можно найти из выражения: h = (2 * √‎p * (p — a) * (p — b) * (p — a)) / b. В равенстве p является периметром и находится как сумма всех сторон: p = (a + b + a). Так как одна из граней делится пополам, формулу можно привести к виду: p = (a + b + a) / 2 = a + b / 2.

После подстановки полученного выражения в формулу Герона, оно примет вид: h = 2 * √((a + b/2) * (b/2) * (a -b/2) * (b/2)) / b. Используя формулу сокращённого умножения: разность квадратов, равенство можно привести к виду: (a + b / 2) * (a — b / 2) = a2 — (b / 2)2.

Высота равностороннего треугольника формула

Для упрощения выражения под корень можно внести двойку и знаменатель b. Таким образом, формула примет вид: h = √(22 * (a2 — (b/2)2 * (b/2)2) * b2). Выполнив ряд сокращений, равенство можно будет представить: h = √(a2 — (b2/4)). Из-за того, что стороны в трёхугольной фигуре совпадают, окончательный вариант можно записать: h = (a√3) / 2. Что и следовало доказать.

Высоту можно определить, и зная радиус вписанной окружности. Её можно найти по формуле: r = (a √ 3) / 6. Если выражение переписать как r = (1 / 3) * ((a √3) / 2), возможно увидеть, что второй множитель как раз и есть высота. Соответственно, r = (1/3) * h. Отсюда: h = 3 * r. Это довольно простая формула, которая часто используется при геометрических вычислениях, поэтому её тоже нужно запомнить.

Решение примеров

Самостоятельное решение задач позволяет закрепить теоретические знания и запомнить формулы. Существуют определённые типы примеров, с помощью которых можно довольно быстро проработать весь изученный материал. Вот некоторые из них, рассчитанные на учеников восьмых классов средней школы:

Высота правильного треугольника

  1. Определить высоту равносторонней фигуры, если её грань равняется 6 см. Решение задачи нужно строить следующим образом. У такого треугольника все стороны равны. Так как высота является медианой, она делит противоположную сторону вершины, из которой опущена, на 2 равные части. Треугольник можно обозначить ABC, а искомый перпендикуляр BH. Образованное геометрическое тело является прямоугольным. Причём, согласно условию, у него известна гипотенуза и катет. Оставшийся катет, который и является высотой, легко найти по теореме Пифагора: BH2 + 32 = 62. Отсюда: BH2 = 25. Высота рассматриваемой фигуры будет равна 5 см.
  2. Сторона правильного треугольного тела равна √3. Узнать, чему будет равен радиус описанной окружности. Эту задачу можно решить, воспользовавшись свойством высоты в равностороннем треугольнике: точка пересечения медиан делит их в отношении 2 :1. Для наглядности можно нарисовать треугольник c вершинами ABC и высоту AK, а точку пересечения обозначить буквой O. Линия AO будет искомым радиусом окружности и составлять 2/3 от всей высоты AK. Длина отрезка равна: AK = √ (AB2 — AK2). Отсюда: R = (2 * √ (AB2 — AK2)) / 3 = (2 * √ (√ 32 — (3/2)2)) / 3 = 1. Задача решена.

Проверить правильность решения можно, используя онлайн-калькуляторы. Это интернет-сервисы, которые позволяют своим пользователям в автоматическом режиме вычислять различные математические примеры. Свои услуги они предоставляют бесплатно, от пользователя требуется только установленный веб-обозреватель и подключение к сети.

Важно ещё, что калькуляторы не только выдают быстро правильный ответ, но и показывают пошаговое решение. Это очень удобно, когда необходимо определить, на каком этапе была допущена ошибка.

Кроме этого, на своих страницах такого рода сервисы содержат краткий теоретический материал и даже примеры заданий. Так что калькуляторы будут полезны и на стадии обучения.

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

  • Нахождение высоты треугольника

    • Высота в разностороннем треугольнике

    • Высота в равнобедренном треугольнике

    • Высота в прямоугольном треугольнике

    • Высота в равностороннем треугольнике

  • Примеры задач

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота в разностороннем треугольнике ABC

1. Через площадь и длину стороны

Формула для нахождения высоты треугольника через его площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

Формула для нахождения высоты треугольника через длины его сторон

где p – это полупериметр треугольника, который рассчитывается так:

Формула для расчета полупериметра треугольника

3. Через длину прилежащей стороны и синус угла

Формула для нахождения высоты треугольника через длину стороны и синуса угла

4. Через стороны и радиус описанной окружности

Формула для нахождения высоты треугольника через длины сторон и радиус описанной окружности

Описанная вокруг разностороннего треугольника окружность

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

Опущенная на основание равнобедренного треугольника высота

Высота в прямоугольном треугольнике

Проведенная к гипотенузе высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

2. Через стороны треугольника

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через длины его сторон

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Формула для нахождения высоты в равностороннем треугольнике

Высота в равностороннем треугольнике

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Нахождение высоты треугольника через длину стороны и синус прилежащего угла (пример)

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Нахождение основания равнобедренного треугольника через высоту и боковую сторону (пример)

Равносторонний треугольник является правильным многоугольником (геометрическая фигура, у которой все углы и все стороны равны). Фактически, это значительно упрощает процесс вычисления любых параметров, характеризующих такой треугольник, в том числе, длину высоты.

В равностороннем треугольнике все три высоты – одинаковой длины, поэтому найдя любую из них, можно применять полученное значение в отношении всех трех линий. Более того, все высоты полностью совпадают со всеми тремя медианами, биссектрисами и серединными перпендикулярами, называемыми иначе медиатриссами. Точка пересечения всех трех линий обладает свойствами точки пересечения высот, точки пересечения медиан и точки пересечения биссектрис одновременно, являя собой любой из возможных центров треугольника, в том числе центр вписанной и описанной окружностей.

Исходя из этого, чтобы найти высоту равностороннего треугольника, можно использовать абсолютно любые известные параметры, например, сторону треугольника.

Высота равностороннего треугольника, проведенная к любой стороне, создает внутри него прямоугольный треугольник, в котором можно ее вычислить, используя тригонометрические отношения, так как известно, что все углы в равностороннем треугольнике имеют по 60 градусов. Для полученного прямоугольного треугольника высота будет катетом, противолежащем углу в 60 градусов, а сторона равностороннего треугольника – гипотенузой, соответственно, чтобы найти высоту, нужно применить синус. Если подставить вместо угла альфа 60 градусов, получится, что высота равностороннего треугольника равна половине стороны, умноженной на корень из трех.


Загрузить PDF


Загрузить PDF

Для вычисления площади треугольника вам необходимо знать его высоту. Если она не дана, вы можете вычислить ее по известным вам величинам! В этой статье мы расскажем о нескольких способах найти высоту треугольника по известным значениям других величин.

  1. Изображение с названием Find the Height of a Triangle Step 1

    1

    Напомним формулу для вычисления площади треугольника. Площадь треугольника вычисляется по формуле: A = 1/2bh.[1]

    • А – площадь треугольника
    • b – сторона треугольника, на которую опущена высота.
    • h – высота треугольника
  2. Изображение с названием Find the Height of a Triangle Step 2

    2

    Посмотрите на треугольник и подумайте, какие величины вам уже известны. Если вам дана площадь, обозначьте ее буквой «А» или «S». Вам также должно быть дано значение стороны, обозначьте ее буквой «b». Если вам не дана площадь и не дана сторона, воспользуйтесь другим методом.

    • Имейте в виду, что основанием треугольника может быть любая его сторона, на которую опущена высота (независимо от того, как расположен треугольник). Чтобы лучше понять это, представьте, что вы можете повернуть этот треугольник. Поверните его так, чтобы известная вам сторона была обращена вниз.
    • Например, площадь треугольника равна 20, а одна из его сторон равна 4. В этом случае “‘А = 20″‘, ‘”b = 4′”.
  3. Изображение с названием Find the Height of a Triangle Step 3

    3

    Подставьте данные вам значения в формулу для вычисления площади (А = 1/2bh) и найдите высоту. Сначала умножьте сторону (b) на 1/2, а затем разделите площадь (А) на полученное значение. Таким образом, вы найдете высоту треугольника.

    • В нашем примере: 20 = 1/2(4)h
    • 20 = 2h
    • 10 = h

    Реклама

  1. Изображение с названием Find the Height of a Triangle Step 4

    1

    Вспомните свойства равностороннего треугольника. В равностороннем треугольнике все стороны и все углы равны (каждый угол равен 60˚). Если в таком треугольнике провести высоту, вы получите два равных прямоугольных треугольника. [2]

    • Например, рассмотрим равносторонний треугольник со стороной 8.
  2. Изображение с названием Find the Height of a Triangle Step 5

    2

    Вспомните теорему Пифагора. Теорема Пифагора гласит, что в любом прямоугольном треугольнике с катетами «а» и «b» гипотенуза «с» равна: a2+b2=c2. Эту теорему можно использовать, чтобы найти высоту равностороннего треугольника![3]

  3. Изображение с названием Find the Height of a Triangle Step 6

    3

    Разделите равносторонний треугольник на два прямоугольных треугольника (для этого проведите высоту). Затем обозначьте стороны одного из прямоугольных треугольников. Боковая сторона равностороннего треугольника – это гипотенуза «с» прямоугольного треугольника. Катет «а» равен 1/2 стороне равностороннего треугольника, а катет «b» – это искомая высота равностороннего треугольника.

    • Итак, в нашем примере с равносторонним треугольником с известной стороной, равной 8: c = 8 и a = 4.
  4. Изображение с названием Find the Height of a Triangle Step 7

    4

    Подставьте эти значения в теорему Пифагора и вычислите b2. Сначала возведите в квадрат «с» и «а» (умножьте каждое значение само на себя). Затем вычтите a2 из c2.

    • 42 + b2 = 82
    • 16 + b2 = 64
    • b2 = 48
  5. Изображение с названием Find the Height of a Triangle Step 8

    5

    Извлеките квадратный корень из b2, чтобы найти высоту треугольника. Для этого воспользуйтесь калькулятором. Полученное значение и будет высотой вашего равностороннего треугольника!

    • b = √48 = 6,93

    Реклама

  1. Изображение с названием Find the Height of a Triangle Step 9

    1

    Подумайте, какие значения вам известны. Вы можете найти высоту треугольника, если вам известны значения сторон и углов. Например, если известен угол между основанием и боковой стороной. Или если известны значения всех трех сторон. Итак, обозначим стороны треугольника: «a», «b», «c», углы треугольника: «А», «В», «С», а площадь – буквой «S».

    • Если вам известны все три стороны, вам понадобится значение площади треугольника и формула Герона.
    • Если вам известны две стороны и угол между ними, можете использовать следующую формулу для нахождения площади: S=1/2ab(sinC).[4]
  2. Изображение с названием Find the Height of a Triangle Step 10

    2

    Если вам даны значения всех трех сторон, используйте формулу Герона. По этой формуле придется выполнить несколько действий. Сначала нужно найти переменную «s» (мы обозначим этой буквой половину периметра треугольника). Для этого подставьте известные значения в эту формулу: s = (a+b+c)/2.[5]

    • Для треугольника со сторонами а = 4, b = 3, c = 5, s = (4+3+5)/2. В результате получается: s=12/2, где s=6.
    • Затем вторым действием мы находим площадь (вторая часть формулы Герона). Площадь = √(s(s-a)(s-b)(s-c)). Вместо слова «площадь» вставьте эквивалентную формулу для поиска площади: 1/2bh (или 1/2ah, или 1/2ch).
    • Теперь найдите эквивалентное выражение для высоты (h). Для нашего треугольника будет справедливо следующее уравнение: 1/2(3)h = (6(6-4)(6-3)(6-5)). Где 3/2h=√(6(2(3(1))). Получается, 3/2h = √(36). С помощью калькулятора вычислите квадратный корень. В нашем примере: 3/2h = 6. Получается, что высота (h) равна 4, сторона b – основание.
  3. Изображение с названием Find the Height of a Triangle Step 11

    3

    Если по условию задачи известны две стороны и угол, вы можете использовать другую формулу. Замените площадь в формуле эквивалентным выражением: 1/2bh. Таким образом, у вас получится следующая формула: 1/2bh = 1/2ab(sinC). Ее можно упростить до следующего вида: h = a(sin C), чтобы убрать одну неизвестную переменную.[6]

    • Теперь осталось решить полученное уравнение. Например, пусть «а» = 3, «С» = 40 градусов. Тогда уравнение будет выглядеть так: «h» = 3(sin 40). С помощью калькулятора и таблицы синусов подсчитайте значение «h». В нашем примере h = 1,928.

    Реклама

Об этой статье

Эту страницу просматривали 436 860 раз.

Была ли эта статья полезной?

Высота равностороннего треугольника, формула

Высота равностороннего треугольника
Высота равностороннего треугольника получается из формулы высоты равнобедренного треугольника

[
h=sqrt{a^2-frac{a^2}{4}}
]

[
h=frac{sqrt{3}}{2}a
]

Вычислить, найти высоту равностороннего треугольника по формуле (2)

a (сторона равностороннего треугольника) 

Вычислить

нажмите кнопку для расчета

Высота равностороннего треугольника

стр. 233

Добавить комментарий