Содержание материала
- Варианты определения высоты
- Видео
- Диагонали ромба
- Формулы определения длины диагонали ромба:
- Как найти высоту ромба, если известна площадь и периметр (какая формула)?
- Основные свойства ромба
- Нахождение высоты ромба через вписанную окружность
- Как посчитать высоту ромба, если известна сторона и диагональ?
Варианты определения высоты
Если вам известно, чему равна сторона ромба (обозначается буквой а) и его площадь (S), вычислить высоту можно по простой формуле: h=S:a. Основная формула служит для определения площади: S=a*h.
Если для определения высоты по указанной выше формуле у вас не достает данных, вы можете воспользоваться некоторыми другими. Найдя с их помощью нужные значения, вы сможете подставить их в ту, по которой можно определить высоту.
Если вам известна длина диагоналей, вы легко найдете площадь. S=(d1*d2)/2.
Зная периметр ромба, можно найти длину его стороны: P=4a.
Еще одна формула для определения площади. S=a*a*sin (a).
Расшифровка:
- S — площадь ромба;
- a — длина стороны ромба;
- d1 — длина одной диагонали;
- d2 — длина второй диагонали;
- h — высота;
- Р — периметр;
- sin (a) — синус угла а.
Важно: существуют еще более сложные формулы, которые помогут определить дополнительные параметры. Как правило, в школьных задачах никто не предоставляет данные, по которым легко определить высоту ромба. Чтобы дать правильный ответ на поставленный вопрос, требуется применение нескольких формул. Совет: нарисуйте небольшую шпаргалку (ромб с обозначение сторон + формулы).
Можете также узнать косинус 210° градусов или sin(0°).
Видео
Диагонали ромба
Определение. Диагональю ромба называется любой отрезок соединяющий две вершины противоположных углов ромба.Ромб имеет две диагонали — длинную d1, и короткую — d2
Формулы определения длины диагонали ромба:
1. Формулы большой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)
d1 = a√2 + 2 · cosα
d1 = a√2 — 2 · cosβ
2. Формулы малой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)
d2 = a√2 + 2 · cosβ
d2 = a√2 — 2 · cosα
3. Формулы большой диагонали ромба через сторону и половинный угол:
d1 = 2a · cos(α/2)
d1 = 2a · sin(β/2)
4. Формулы малой диагонали ромба через сторону и половинный угол:
d2 = 2a · sin(α/2)
d2 = 2a · cos(β/2)
5. Формулы диагоналей ромба через сторону и другую диагональ:
d1 = √4a2 — d22
d2 = √4a2 — d12
6. Формулы диагоналей через тангенс острого tgα или тупого tgβ угла и другую диагональ:
d1 = d2 · tg(β/2)
d2 = d1 · tg(α/2)
7. Формулы диагоналей через площадь и другую диагональ:
8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:
d 1 = 2r sin (α /2) d 2 = 2r sin (β /2)
Как найти высоту ромба, если известна площадь и периметр (какая формула)?
Ознакомьтесь со всеми формулами расчета площади ромба:
Чтобы узнать высоту, нам нужна самая первая формула (Площадь = Высота умножить на Длину стороны).
Допустим, что периметр равен 124 см, а площадь — 155 см кв.
Нам играет на руку то, что у ромба все стороны одинаковые, потому его периметр — это 4 умножить на длину одного катета.
- Найдем длину стороны ромба через известный периметр. Для этого значение периметра (124) делим на 4, и получаем значение 31 сантиметр — длина катета.
- Подсчитываем высоту через формулу площади. Делим площадь (155 см кв.) на размер катета (31 см) и получаем 5 сантиметров — это размер высоты данной геометрической фигуры.
Основные свойства ромба
1. Имеет все свойства параллелограмма 2. Диагонали перпендикулярны:
AC┴BD
3. Диагонали являются биссектрисами его углов:
∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC
4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:
AC2 + BD2 = 4AB2
5. Точка пересечения диагоналей называется центром симметрии ромба. 6. В любой ромб можно вписать окружность.
7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.
Нахождение высоты ромба через вписанную окружность
Вне зависимости от длины сторон и величины углов ромба в него можно вписать окружность. Центр данной геометрической фигуры будет совпадать с точкой пересечения диагоналей равностороннего параллелограмма. Информация о величине радиуса такой окружности поможет определить высоту ромба, т.к. r = H/2, где:
- r – радиус вписанного в ромб круга,
- H – искомая высота фигуры.
Из данного соотношения следует, что высота равнобокого параллелограмма соответствует удвоенному радиусу вписанного в этот параллелограмм круга – H = 2r .
Как посчитать высоту ромба, если известна сторона и диагональ?
В этой задаче нужно использовать прямоугольный треугольник, который образован пересечением диагоналей.
Допустим, что сторона равна 10 см, а диагональ — 12 см.
Наши действия:
Находим размер половины второй диагонали при помощи теоремы Пифагора. Гипотенуза в нашем случае — это сторона, потому величина половины диагонали будет равна разнице квадрата катета (10 в квадрате) и квадрата половины известной диагонали (6 в квадрате). Выходит, что нужно от 100 отнять 36 — имеем 64 сантиметра. Добываем корень из этого числа и получаем длину половины второй диагонали — 8 см. А полная длина равна 16 сантиметрам.
Подсчитываем площадь ромба при помощи двух диагоналей. Умножаем длину первой диагонали (12 см) на длину второй (16 см) и делим это на 2 — получаем 96 см кв. (это площадь ромба).
Вычисляем высоту, зная размер стороны и площадь. Для этого 96 поделите на 10 — выходит 9,6 сантиметров — это окончательный ответ.
Рекомендую еще почитать о способах подсчета площади ромба.
Теги
Высота ромба онлайн
С помощю этого онлайн калькулятора ромба можно найти высоту ромба по известным элементам. Для нахождения высоты ромба введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть смотрите ниже.
Содержание
- Высота ромба через сторону и площадь
- Высота ромба через сторону и угол
- Высота ромба через диагонали
- Высота ромба через угол и противолежащую диагональ
- Высота ромба через угол и диагональ из данного угла
- Высота ромба через радиус вписанной в ромб окружности
1. Высота ромба через сторону и площадь
Пусть задан ромб (Рис.1).
Формула площади ромба через сторону и высоту имеет следующий вид:
Откуда легко вывести формулу высоты ромба через сторону и площадь:
2. Высота ромба через сторону и угол
Рассмотрим ромб со стороной a и углом α между сторонами (Рис.2). Выведем формулу вычисления высоты ромба через сторону и угол.
Проведем высоту AH. Для прямоугольного треугольника AHB применим теорему синусов:
Откуда получим формулу вычисления высоты ромба через сторону и угол между сторонами:
Заметим, что формула (2) справедлива для любого угла ромба, как для острого, так и для тупого угла. Действительно. Из четвертого свойста ромба (см. статью Ромб) следует, что сумма соседних углов ромба равна 180°. Тогда для угла C можно записать: (small angle C=180°-alpha.) Следовательно (small sin angle C=sin(180°-alpha)=sin alpha.) Получили, что синусы углов ромба равны. Поэтому в качестве угла между сторонами ромба можно выбрать любой угол ромба.
3. Высота ромба через диагонали
Выведем формулу вычисления высоты ромба через диагонали. Плошадь ромба через диагонали вычисляется формулой (см. статью Площадь ромба):
а через сторону и высоту, формулой
Из формул (3) и (4) следует:
Выразим сторону a ромба через диагонали. Поскольку диагонали ромба перпендикулярны и делятся пополам точкой их пересечения (свойства 5 и 6 ромба), то диагонали делят ромб на четыре равных прямоугольных треугольника (Рис.3).
Применим к прямоугольному треугольнику AOB теорему Пифагора:
Откуда:
Подставим (7) в (5) и найдем h:
4. Высота ромба через угол и противолежащую диагональ
Пусть известны один из углов α=∠ABC ромба и противолежащая диагональ d=AC (Рис.4). Выведем формулу вычисления высоты ромба.
Проведем другой диагональ BD. Как было отмечено выше, диагонали ромба разделяют его на четыре равных прямоугольных треугольников. Применим теорему синусов для прямоугольного треугольника AOB:
Откуда получим:
С другой стороны (см. параграф 2):
Подставим (9) в (10):
Применяя формулу двойного угла для (small sin alpha, ) имеем: (small sin alpha=2 cdot sin frac{alpha}{2} cdot cos frac{alpha}{2} . ) Подставляя это равенство в формулу (11), получим формулу высоты ромба через угол и противолежащую диагональ:
5. Высота ромба через угол и диагональ из данного угла
Пусть известны один из углов α=∠ABC ромба и диагональ из данного угла d=BD (Рис.5). Выведем формулу вычисления высоты ромба.
Проведем другой диагональ AC. Как было отмечено в выше, диагонали ромба разделяют его на четыре равных прямоугольных треугольников. Для прямоугольного треугольника AOB, имеем:
Учитывая, что ( small BO=frac{large d}{large 2}) и ( small angle ABO=frac{large alpha}{large 2}), формулу (13) можно записать так:
или
Подставим (14) в (2):
или, учитывая что (small sin alpha=2 cdot sin frac{alpha}{2} cdot cos frac{alpha}{2} , ) получим:
6. Высота ромба через радиус вписанной в ромб окружности
Покажем, что высота ромба через радиус вписанной окружности вычисляется по формуле:
В статье Площадь ромба показали, что площадь ромба через сторону и высоту вычисляется формулой
а площадь ромба через сторону и радиус вписанной окружности − формулой:
Тогда из формул (16) и (17) следует:
или:
Автор:
Monica Porter
Дата создания:
15 Март 2021
Дата обновления:
15 Май 2023
Содержание
- TL; DR (слишком долго; не читал)
- Свойства ромба
- Нахождение высоты от области и базы
- Нахождение высоты от диагоналей
Параллелограмм – это плоская форма с противоположными сторонами, которые параллельны и равны по длине. Ромб – это параллелограмм с четырьмя равными (конгруэнтными) сторонами, например, ромб. Квадраты и прямоугольники также являются типами параллелограммов. Вы можете определить высоту ромба, если знаете другие значения, такие как площадь, основание или диагонали.
TL; DR (слишком долго; не читал)
Чтобы найти высоту ромба, используйте формулу высота = площадь ÷ базы. Если вы знаете диагонали ромба, но не его площадь, используйте формулу area = (d1 x d2) ÷ 2, затем примените площадь к первой формуле.
Свойства ромба
Независимо от размера ромба, всегда применяются определенные правила. Все его стороны равны, его противоположные углы равны, а две его диагонали перпендикулярны (это означает, что они делят пополам друг друга под углом 90 градусов). Высота ромба (также называемая его высотой) является кратчайшим перпендикулярным расстоянием от его основания до его противоположной стороны. Основание ромба может быть любым из четырех его сторон, в зависимости от того, как оно расположено.
Нахождение высоты от области и базы
Формула для высоты ромба есть высота = площадь ÷ базы. Например, если вы знаете, что площадь ромба составляет 64 см2, а основание составляет 8 см, вы получите 64 ÷ 8 = 8. Высота ромба составляет 8 см. Помните, что основание – это одна из сторон, и они равны по длине, поэтому, если вы знаете длину одной из сторон, вы знаете длину их всех.
Та же формула применяется независимо от размера ромба или единиц измерения. Например, скажем, у вас есть ромб с площадью 1000 дюймов и основанием 20 дюймов. Отработать 1000 ÷ 20 = 50. Высота ромба составляет 50 дюймов.
Нахождение высоты от диагоналей
Если вам известны диагонали и основание ромба, но нет области, используйте формулу area = (d1 x d2) ÷ 2. Например, если вы знаете, что d1 составляет 4 см, а d2 составляет 6 см, вы работаете (4 x 6) ÷ 2 = 12. Знаете, площадь 12 см2. Если основание составляет 2 см, отработайте 12 ÷ 2 = 6. Высота ромба составляет 6 см.
-
Главная
-
В Плюсе
-
ОГЭ 23 | КАК НАЙТИ ВЫСОТУ РОМБА | Если известны отрезки, на которые высота делит сторону
Просмотров: 397
Если вам понравилось бесплатно смотреть видео огэ 23 | как найти высоту ромба | если известны отрезки, на которые высота делит сторону онлайн которое загрузил В Плюсе 22 августа 2021 длительностью 00 ч 00 мин 56 сек в хорошем качестве, то расскажите об этом видео своим друзьям, ведь его посмотрели 397 раз.
Copyright ©
Epicube.su
Смотрите видео на портале epicube.su совершенно бесплатно и без регистрации. Наша видеотека каждый день обновляется лучшими роликами со всего мира!
admin@epicube.su Наша почта для ваших пожеланий и связи с нами.
Ромб – это фигура, являющаяся параллелограммом. Но его особенность в том, что он обладает четырьмя
одинаковыми сторонами. Имеет некоторые важные геометрические свойства, а если быть точнее:
- Два угла будут равны, если они противоположные.
- Точка пересечения делить диагонали пополам.
- Стороны, которые находятся друг напротив друга, попарно равны.
- Если сложить градусную меру соседних углов, то получится 180 градусов.
- Биссектрисами ромба являются все его диагонали
- Высота ромба через сторону и синус любого угла
- Высота ромба через длинную диагональ и синус острого
угла - Высота ромба через короткую диагональ и синус тупого
угла - Высота ромба через диагонали
- Высота ромба через диагонали и сторону
Через диагонали
Бывают случаи, когда из всех возможных данных нам известны только две диагонали: длинная и короткая,
тогда математики применяют такую формулу:
h = D * d / (√D² + d²)
где h – высота ромба, D – длинная диагональ, d – короткая диагональ.
Цифр после
запятой:
Результат в:
Пример. Имеем ромб ABCD, длинная диагональ равна 7 см, а короткая – 4 см. В условиях
сказано, что нужно найти высоту, округлив ответ до десятых. Используя предыдущую формулу,
подставляем вместо переменных следующие числа: h = 7 * 4 / (√7² + 4²) = 3.4. Ответ: 3.4 см.
Через диагонали и сторону
Когда в условиях задачи нам даны обе диагонали (и короткая, и длинная) вместо с одной из сторон, то
нужно следовать этой формуле:
h = Dd / 2a
где h – высота, D – длинная диагональ, d – короткая диагональ, a – одна из сторон
Цифр после
запятой:
Результат в:
Пример. Решим задачу. Дан ромб ABCD. Имеется две диагонали: короткая диагональ равна
3 см, а длинная 6. Сторона AB в длину составляет 8 см. Найдите высоту, ответ дайте в десятых. Режим
задачу при помощи формулы: h = 6 * 3 / 2 * 8 = 1,2 см. Ответ: 1,2 см.
Через длинную диагональ и синус острого угла
Если в задаче дан синус острого угла, а так же нам известно значение длинной диагонали, то можно
использовать данный способ:
h = D * sin α/2
где h – высота, D – длинная диагональ, sin α – синус острого угла.
Цифр после
запятой:
Результат в:
Пример. Приведём одну из возможных ситуаций. В задаче представлен ромб ABCD. Нам
неизвестны его стороны, однако мы знаем, что длинная диагональ равна 9 сантиметрам. Так же мы имеем
острый угол α в 30°. Нужно найти его высоту, ответ округляем до десятых. Для этого мы умножаем
диагональ на sin острого угла, так как он равен 30°, то его синус равен 1/2, соответственно: h = 9 * 1/2 = 2.3 сантиметра. Ответ: 2.3 см.
Через короткую диагональ и синус тупого угла
Допустим, в условиях прописано, какая длина у короткой диагонали. Так же мы знаем градус одного
тупого угла. Для решения задач подобного типа используем эту формулу:
h = d * sin β/2
где h – высота, d – короткая диагональ, β – синус тупого угла
Цифр после
запятой:
Результат в:
Пример. Решим одну из задач. Нам дан ромб ABCD. У этой фигуры короткая диагональ
равна 10 см, мы знаем, что в ромбе есть тупой угол в 150°. Найдите высоту с точностью до десятых.
Чтобы узнать необходимую величину, необходимо умножить D, что обозначает длинную диагональ на sin
150°/2, получается: h = 10 * (sin 150º / 2) = 9.8 сантиметров. Ответ: 9.8
см.
Через сторону и синус любого угла
Для того чтобы найти высоту фигуры используя сторону и любой синус, нужно обратиться к следующей
формуле:
h = a * sin α
где h является высотой, a – сторона ромба, sin α – синус любого угла, который мы решили взять
Цифр после
запятой:
Результат в:
Пример. Рассмотрим формулу на примере. Имеем ромб ABCD, где сторона CB = 5
сантиметров, а угол C равен 90°. Чтобы найти его высоту, нам необходимо умножить CB на sin угла C.
Так как синус угла 90 градусов равен 1, соответственно, получаем следующее выражение: h = 5 • 1 = 5 сантиметров составляет высота ромба ABCD. Ответ: 5 см
Если быть внимательным, то можно заметить необычные признаки ромба, по которым его легко отличить от
других:
- Если в параллелограмме есть возможность вписать окружность, то это ромб.
- Если в параллелограмме все высоты равны, то это ромб.
- Если в параллелограмме под углом в 90° пересекаются диагонали, то это ромб.
- Если в параллелограмме диагонали перпендикулярны друг друга, кроме этого ещё и делятся точкой
пересечения, то это ромб. - Если все четыре стороны параллелограмма равны, то это ромб.
Задачи на нахождение различных величин ромба встречаются во многих экзаменах, в том числе на ОГЭ и
ЕГЭ.
Порой в задачах необходимо определить высоту ромба, чтобы при её помощи узнать основную неизвестную
величину. К примеру, для того, чтобы вычислить площадь ромба, в одной из формул нам необходимо знать
высоту: , где a – это одна из сторон ромба, а h – высота. По обратной формуле можно будет найти
сторону ромба, для этого будет необходимо разделить площадь на высоту: .