Как найти высоту ртутного столба в физике

Голосование за лучший ответ

Veacheslav Catcov

Мудрец

(16096)


13 лет назад

Формула гидростатического давления р=rgh и зная, что плотность ртути r=13595,1 кг/м3 находим, что 1 атм. =760 мм рт. ст. =1.013·105 Па. Ещё есть барометрическая формула:))

Виктор Туранский

Мыслитель

(5449)


13 лет назад

Вообще, высоту можно найти по всем следующим формулам: V/S, S/l, E/f, p/g(ro). Последняя исходит из гидростатического давления.

Содержание:

Атмосферное давление и его измерение:

Нашу планету Земля окружает мощная газовая оболочка, которую называют атмосферой ( от греческих слов атмос – пар и сфера — шар).

Исследования околоземного пространства с помощью искусственных спутников Земли показали, что её атмосфера простирается на тысячу и более километров в высоту. Резкой границы она не имеет. Её верхние пласты очень разрежены и постепенно переходят в безвоздушное межпланетное пространство (вакуум). С уменьшением высоты плотность воздуха возрастает. Почти 80 % всей массы воздушной оболочки Земли сосредоточены в пределах 15 км над Землей. Опытами установлено, что при температуре 0 0С масса 1 м3 воздуха на уровне моря равна 1,29 кг. На воздушные слои действует сила тяжести, поэтому верхние слои давят на средние, а средние — на нижние. Наибольшее давление, обусловленное весом всей атмосферы, испытывает поверхность Земли, а также все находящиеся на ней тела.

Давление, оказываемое атмосферой на все находящиеся в ней тела, а также на земную поверхность, называют атмосферным давлением.

Выясним, насколько велико это давление.

Формула гидростатического давления Атмосферное давление в физике и его измерение - формулы и определение с примерами

Атмосферное давление в физике и его измерение - формулы и определение с примерами

При этом высота столба ртути в трубке составляла приблизительно 760 мм.

Результаты этого опыта Торричелли объяснил так: «До сих пор существовала мысль, будто сила, которая не даёт возможности ртути, вопреки её естественному свойству, падать вниз, содержится внутри верхней части трубки, т. е. – или в пустоте, или в разрежённом веществе. Однако я утверждаю, что эта сила — внешняя и что сила берётся снаружи. На поверхность жидкости, находящейся в сосуде, действуют своей тяжестью 50 миль воздуха. Что же странного, если ртуть… поднимается настолько, чтобы уравновесить тяжесть внешнего воздуха».

Итак, атмосферное давление согласно закону Паскаля равно давлению столба ртути в трубке:    ратм  =  р ртути

Если бы эти давления не были равны, то ртуть не находилась бы в равновесии: при увеличении давления ртути она выливалась бы из трубки в сосуд, а при уменьшении — поднималась бы по трубке вверх.

Итак, давление атмосферы можно измерить высотой соответствующего ртутного столба. Его высоту обычно измеряют в миллиметрах.

Если, например, говорят, что в некотором месте атмосферное давление равно 760 мм рт. ст., то это означает, что воздух в этом месте создаёт такое же давление, что и вертикальный столб ртути высотой 760 мм.

Чтобы определить это давление в паскалях, воспользуемся формулой гидростатичного давления: Атмосферное давление в физике и его измерение - формулы и определение с примерами. Подставляя в эту формулу значения

Атмосферное давление в физике и его измерение - формулы и определение с примерами = 13 595,10 Атмосферное давление в физике и его измерение - формулы и определение с примерами (плотность ртути при 0°С),Атмосферное давление в физике и его измерение - формулы и определение с примерами = 9,81 Атмосферное давление в физике и его измерение - формулы и определение с примерами и Атмосферное давление в физике и его измерение - формулы и определение с примерами = 760 мм = 0,76 м (высота столба ртути), получим такое значение нормального атмосферного давления: р =101 325 Па.

Давление атмосферы, которое равно давлению столба ртути высотой 760 мм при температуре О 0С, называют нормальным атмосферним давлением.

Единицами атмосферного давления являются 1 мм рт. ст., один паскаль (1 Па) и один гектопаскаль (1 гПа), между ними существуют такие соотношения:

Атмосферное давление в физике и его измерение - формулы и определение с примерами

Об опытах Торричелли узнал французский учёный Блез Паскаль. Он повторил их с разными жидкостями (маслом, вином и водой). Столб воды, уравновешивающий давление атмосферы, оказался намного выше столба ртути.

Однако Паскаль считал, что для окончательного доказательства факта существования атмосферного давления нужен ещё один решающий опыт. Для этого он выполнил опыт Торричелли сначала у подножия горы, а потом — на её вершине. Результаты удивили всех присутствующих. Давление воздуха на вершине горы было почти на 100 мм рт. ст. меньше, чем у подножия. Этим было доказано, что ртуть в трубке в самом деле поддерживается атмосферным давлением.

Если измерить атмосферное давление на разных высотах, то получим такие результаты.

Атмосферное давление в физике и его измерение - формулы и определение с примерами
Наблюдая ежедневно за высотой ртутного столба в трубке, можно заметить, что она изменяется: то увеличивается, то уменьшается. Существованием атмосферного давления можно объяснить много явлений. На рисунке 114 изображена стеклянная трубка, внутри которой имеется поршень, плотно прилегающий к её стенкам. Конец трубки опущен в воду. Если поднимать поршень, то за ним будет подниматься и вода. Между поршнем и водой вследствие поднятия поршня образуется безвоздушное пространство, в котором нет давления атмосферы. В это пространство под давлением внешнего воздуха и входит за поршнем вода. Данное явление используют в работе шприца, водяного насоса.

Опыт 1. Возьмём цилиндрический сосуд, закрытый пробкой, через которую пропущена трубку с краном Выкачаем из неё воздух, закроем кран, трубку опустим в воду и откроем кран. Поскольку атмосферное давление больше давления в сосуде, то под его действием вода будет бить фонтаном внутри сосуда (рис. 115).

Опыт 2. Нальём в стакан воды и накроем его листом бумаги, немного большим диаметра стакана. Держа стакан за нижнюю часть, прижмём бумагу к краям стакана ладонью и перевернём его кверху дном, убрав затем руку от бумаги (рис. 116).

Атмосферное давление в физике и его измерение - формулы и определение с примерами

Удивительно, но вода будет удерживаться в стакане и листок останется на месте — почему? Дело в том, что давление атмосферы на бумагу больше, чем давление столба воды в стакане.

Наблюдение. Влияние атмосферного давления весьма заметно проявляется во время ходьбы по вязкой почве (засасывающее действие трясины). При подъёме ноги под ней образуется разрежённое пространство, и вследствие присасывания нога тянет за собой тяжёлую трясину (как поршень — жидкость в насосе).

Благодаря давлению атмосферного воздуха работают присоски для крепления предметов на гладких плоских поверхностях. Если вытеснить воздух под присоской, то она прижмётся силой давления атмосферы, и чтобы её оторвать, нужно приложить довольно большое усилие (рис. 117).

Атмосферное давление в физике и его измерение - формулы и определение с примерами

Результаты простых вычислений показывают, что сила давления атмосферы на поверхность обычной тетради равна 3000 Н. Почему же вы так легко можете поднять тетрадь? Дело в том, что силы давления воздуха зверху и снизу тетради уравновешиваются, и при подъёме вам приходится преодолевать лишь вес самой тетради.

Для измерения атмосферного давления используют ртутный барометр, барометр-анероид и барограф.

Если трубку, подобную той, что использовал в своём опыте Торричелли, снабдить шкалой, то получим простейший прибор для измерения атмосферного давления — ртутный барометр (от греческих слов барос – вес, тяжесть; метрео — измеряю) (рис. 118).

Барометр-анероид (от греческих слов: барос, метрео, анероид) изображён на рисунке 119. Основная часть прибора — круглые гофрированные металлические коробочки, соединённые между собой. Внутри коробок создано разряжение (давление в коробках ниже атмосферного). С увеличением атмосферного давления коробки сжимаются и тянут прикреплённую к ним пружину. Перемещение конца пружины через специальные устройства передаётся стрелке, а её указатель движется вдоль шкалы. Против штрихов шкалы нанесены значения атмосферного давления. Например, если стрелка останавливается напротив отметки 750, то это значит, что атмосферное давление равно 750 мм рт. ст. При уменьшении давления стенки коробочек расходятся, растяжение пружины уменьшается, и стрелка движется в сторону уменьшения значений давления.

Барометр-анероид — это один из основных приборов, который используют метеорологи для составления прогнозов погоды на ближайшие дни, так как её изменение зависит от изменения атмосферного давления.

Для автоматической и непрерывной записи изменений атмосферного давления используют барограф (от греческих слов барос; графо — пишу). Кроме металлических гофрированных коробочек в этом приборе есть механизм для движения бумажной ленты, на которой нанесены сетка значений давления и дни недели (рис. 120). По таким лентам можно выяснить, как изменялось атмосферное давление в течение любой недели.

Атмосферное давление в физике и его измерение - формулы и определение с примерами

Кстати:

Вывод о существовании атмосферного давления независимо от Э. Торричелли сделал немецкий физик Отто фон Герике (1602-1686). Откачивая воздух из тонкостенного металлического шара, от увидел, что шар сплющился. Анализируя причины сплющивания шара, он понял, что оно произошло под действием давления окружающей среды.

Открыв атмосферное давление. Герике построил перед фасадом своего дома в г. Магдебурге водяной барометр, в котором на поверхности жидкости плавала фигурка человека, указывающая на деления, нанесённые на стекле. • В 1654 г Герике, желая убедить всех в существовании атмосферного давления, выполнил знаменитый опыт с «магде-бургскими полушариями». На демонстрации опыта присутствовали члены Регенсбургского рейхстага и император Фердинанд III. В их присутствии из полости между двумя составленными вместе металлическими полушариями выкачали воздух. При этом силы атмосферного давления так крепко прижали эти полушария одно к другому, что их не смогли разъединить восемь пар лошадей (рис. 121).

Атмосферное давление в физике и его измерение - формулы и определение с примерами

В природе существует более 400 растений-барометров. Цветочный барометр можно найти и на огороде. Это маленькая ветвистая трава-мокрец. По её мелким белым цветкам можно предсказывать погоду в течение всего лета: если утром венчики не раскрываются – днем будет дождь.

  • Заказать решение задач по физике

Атмосферное давление и опыт Торричелли

Атмосфера Земли — это смесь различных газов, удерживающихся возле планеты благодаря действию силы тяжести на их молекулы, которые одновременно и беспрерывно двигаются, создавая давление. Это давление называют атмосферным.

Доказать существование атмосферного давления можно при помощи простых опытов.

Какие последствия действия атмосферного давления

Если взять трубку с поршнем, опустить ее одним концом в сосуд с водой и поднимать поршень вверх, то вода будет подниматься вслед за поршнем (рис. 102). Это возможно только тогда, когда давление воды в сосуде будет больше, чем под поршнем. За счет весового давления вода не сможет подниматься, так как уровень воды под поршнем выше, чем в сосуде, а поэтому и его давление больше. Вода должна вылиться обратно в сосуд. Следовательно, на жидкость в сосуде действует дополнительное давление, значение которого больше давления жидкости столба воды под поршнем. Это давление создают молекулы атмосферного воздуха. Действуя на свободную поверхность воды, атмосферное давление согласно закону Паскаля передается во всех направлениях одинаково.
Атмосферное давление в физике и его измерение - формулы и определение с примерами

Так как под поршнем воздуха нет, то вода будет заходить в трубку под действием неуравновешенного давления.

Каково значение атмосферного давления

Значение атмосферного давления достаточно большое. Убедиться в этом можно на многих опытах.

Возьмем два полых полушария, имеющие хорошо отшлифованные поверхности сечений. В одной из них есть специальный штуцер с краном, через который можно откачивать воздух.

Подвесим к штативу одно из полушарий, присоединим к нему снизу другое и начнем откачивать насосом через кран воздух из полости. Нижнее полушарие крепко прижмется к верхнему. Это возможно только тогда, когда давление в полости шара будет меньше давления снаружи.

В результате действия воздушного насоса, который откачивает воздух, давление в полости полушарий уменьшится, а наружное давление останется без изменений. Поэтому нижнее полушарие плотно прижмется к верхнему.    ЮЗ

О значении силы при некотором уменьшении давления в шаре можно судить по массе груза, который может удерживаться, если его подвесить к нижнему полушарию. Если же открыть кран и в полость шара зайдет воздух, то нижнее полушарие вместе с грузом отпадет.

Как начали исследовать атмосферное давление

Подобный опыт провел и описал в 1654 г. немецкий физик, бургомистр города Магдебург а Отто Герике.

Атмосферное давление в физике и его измерение - формулы и определение с примерамиОтто Герике (1602-1686) – немецкий физик, который экспериментально изучал атмосферное давление. С помощью «магдебургских полушарий» он продемонстрировал действие атмосферного давления. Изучал также электрические явления, объяснил природу трения. Сконструировал первую электрическую машину.

Это событие осталось в истории науки благодаря образной гравюре того времени (рис. 103).

Атмосферное давление в физике и его измерение - формулы и определение с примерами

В современном производстве используют множество приспособлений, основанных на действии атмосферного давления. Для расчетов результатов их работы нужно знать значение атмосферного давления.

Способ измерения атмосферного давления впервые предложил итальянский ученый Эванджелиста Торричелли.

Атмосферное давление в физике и его измерение - формулы и определение с примерами Эванджелиста Торричелли (1608-1647) – итальянский ученый. Первым измерил атмосферное давление с помощью сконструированного им ртутного барометра. Доказал, что высота ртутного столба барометра равна примерно Атмосферное давление в физике и его измерение - формулы и определение с примерами высоты водяного столба.

Он установил, что если закрытую с одной стороны трубку заполнить полностью ртутью, перевернуть ее и опустить в сосуд с ртутью, то выльется только часть этой ртути (рис. 104). Высота столба ртути в его опытах была примерно 760 мм. Результаты опыта дали возможность сделать вывод, что давление ртутного столба уравновешивается атмосферным давлением, которое действует на свободную поверхность ртути в сосуде. Атмосферное давление при таких условиях называют нормальным. С того времени в науку была введена единица измерения атмосферного давления – миллиметр ртутного столба (мм рт. ст.).

Атмосферное давление в физике и его измерение - формулы и определение с примерами

Как рассчитать атмосферное давление

Выразим значение давления столба ртути высотой 760 мм (нормальное) в системных единицах измерения давления паскалях. Из предыдущих параграфов известно, что давление жидкости рассчитывается по формуле:

Атмосферное давление в физике и его измерение - формулы и определение с примерами

Учитывая, что плотность ртути Атмосферное давление в физике и его измерение - формулы и определение с примерами получаем

Атмосферное давление в физике и его измерение - формулы и определение с примерами

  • Манометры в физике
  • Барометры в физике
  • Жидкостные насосы в физике
  • Выталкивающая сила в физике
  • Движение жидкостей и газов
  • Гидравлические машины в физике
  • Весовое давление жидкостей в физике
  • Сообщающиеся ссуды в физике

Конспект по физике для 7 класса «Измерение атмосферного давления. Опыт Торричелли». ВЫ УЗНАЕТЕ: Как можно измерить атмосферное давление. В каких единицах измеряется атмосферное давление. Чему равно нормальное атмосферное давление. В чём заключается опыт Торричелли. ВСПОМНИТЕ: Что такое атмосфера? Что такое атмосферное давление?

Конспекты по физике    Учебник физики    Тесты по физике


Измерение атмосферного давления.
Опыт Торричелли

Давление в жидкости и газе определяют по формуле р = pgh. Следовательно, для определения атмосферного давления необходимо знать плотность воздуха и высоту воздушного столба над поверхностью Земли. Но атмосфера не имеет чёткой верхней границы, а плотность воздуха существенно меняется с высотой. Опыт, помогающий измерит атмосферное давление, был предложен в 1643 г. итальянским учёным Е. Торричелли.

ОПЫТ ТОРРИЧЕЛЛИ

Торричелли использовал стеклянную трубку длиной около 1 м. запаянную с одного конца и наполненную ртутью. Закрыв открытый конец трубки, он перевернул ее и опустил в чашку с ртутью. После того как он открыл конец трубки, часть ртути вылилась в чашку, а часть её осталась в трубке. Высота столба ртути, оставшейся в трубке, оказалась равной приблизительно 760 мм. Над ртутью в трубке образовалось безвоздушное пространство, так как воздух там отсутствовал. Впоследствие пустота, образующаяся в трубке при опыте Торричелли, получила название «торричеллиева пустота».

Почему же вся ртуть из трубки не вылилась в чашку? Сам Торричелли предложил следующее объяснение происходящего. Сила тяжести заставляет ртуть двигаться вниз. При этом на поверхность ртути в чашке оказывает давление атмосфера Земли. Это давление по закону Паскаля передаётся без изменения в каждую точку жидкости и оказывает воздействие на ртуть в трубке снизу. Следовательно, столбик ртути перестаёт перемещаться, когда силы уравновешиваются, т. е. когда давление столба ртути на уровне, совпадающем с уровнем свободной поверхности ртути в чашке, становится равным атмосферному давлению.

Паскаль считал, что для окончательного доказательства факта существования атмосферного давления не обходимо проделать опыт Торричелли один раз у подножия какой-нибудь горы, другой раз на её вершине и в обоих случаях измерить высоту ртутного столба в трубке.

В 1648 г. по поручению Паскаля такой эксперимент проделал Ф. Перье. Он полностью подтвердил предположение Паскаля о том, что атмосферное давление зависит от высоты При высоте горы около 1,5 км разница уровней ртути составила более 8 см.

НОРМАЛЬНОЕ АТМОСФЕРНОЕ ДАВЛЕНИЕ

Значение атмосферного давления, равное давлению столба ртути высотой 760 мм при температуре 0°С называют нормальным атмосферным давлением.

Измерив высоту столба ртути, можно рассчитать давление, которое производит ртуть. Если внимательно отмечать положение уровня ртути, можно заметить, что с течением времени оно меняется. Это указывает на то, что атмосферное давление может изменяться по ряду причин (изменение температуры, смена направлений ветра и т. д.).

Если атмосферное давление уменьшается, то столб ртути в опыте Торричелли понижается. Чем больше атмосферное давление, тем выше столб ртути в опыте Торричелли.

ЕДИНИЦЫ АТМОСФЕРНОГО ДАВЛЕНИЯ

На практике атмосферное давление часто удобно измерять высотой ртутного столба. В этом случае единицей атмосферного давления является 1 миллиметр ртутного столба (1 мм рт. ст.). Например, если говорят, что атмосферное давление равно 770 мм рт. ст., то это значит, что воздух производит такое же давление, какое производит вертикальный столб ртути высотой 770 мм.

Найдём соотношение между этой единицей и паскалем (Па). Для этого рассчитаем давление столбика ртути высотой 1 мм:

Итак, 1 мм рт. ст. = 133,3 Па. На практике также используют специальную единицу давления — атмосферу. Одна атмосфера равна 105 Па.

Опытами установлено, что при подъёме в среднем на каждые 12 м давление уменьшается на 1 мм рт. ст.

ОПЫТ ГЕРИКЕ

В 1654 г., спустя 11 лет после открытия Торричелли, действие атмосферного давления было наглядно показано бургомистром г. Магдебурга Отто фон Герике.

Два медных полушария были соединены кольцевой прокладкой. Через кран, приделанный к одному из полушариев, из составленного шара был выкачан воздух. Давление наружного воздуха прижало полушария друг к другу настолько сильно, что их не могли разнять восемь пар лошадей.


ДЛЯ СПРАВКИ:

Евангелиста Торричелли (1608–1647) Итальянский математик и физик, живший во Флоренции.

Отто фон Герике (1602–1686). Немецкий физик, инженер и философ. Изобрёл вакуумную откачку и провёл известный эксперимент с «магдебургскими полушариями», который доказал наличие давления воздуха.


Вы смотрели Конспект по физике для 7 класса «Измерение атмосферного давления. Опыт Торричелли»: Как можно измерить атмосферное давление. В каких единицах измеряется атмосферное давление. Чему равно нормальное атмосферное давление. В чём заключается опыт Торричелли.

Вернуться к Списку конспектов по физике (В оглавление).

Пройти онлайн-тест «»

Ртутный барометр состоит из металлической чашки, наполненной ртутью, и полой стеклянной трубки, запаянной с одного конца. Последний заполняется ртутью, а его нижний открытый конец погружается в чашку. Вес столба жидкости в трубке уравновешивает давление воздуха, которому подвергается ртуть в чашке.

Атмосферное давление на уровне моря. Атмосферное давление

Давление воздуха в одной и той же точке земной поверхности не остается постоянным, а изменяется в зависимости от различных процессов, происходящих в атмосфере. В качестве «нормального» атмосферного давления условно считается давление 760 мм рт. ст. т. е. одна (естественная) атмосфера (§ 154).

Давление воздуха на уровне моря во всех частях света в среднем близко к атмосферному. Видно, что давление воздуха уменьшается по мере подъема над уровнем моря, соответственно. Его плотность уменьшается. Воздух становится все более разреженным. Если вы откроете хорошо закупоренный контейнер в долине на вершине горы, немного воздуха выйдет наружу. Напротив, если вы откроете его у подножия горы, небольшое количество воздуха попадет в пробку наверху. На высоте около 6 км давление и плотность воздуха снижаются примерно вдвое.

Каждой высоте соответствует определенное давление воздуха. Поэтому можно измерить давление в определенной точке на вершине горы или в корзине воздушного шара, чтобы определить, как меняется атмосферное давление с высотой. Высота над уровнем моря или высота воздушного шара. Чувствительность обычных передних глаз настолько велика, что подъем на 2-3 метра в передней части глаза приведет к значительному смещению индекса. Поднимаясь или опускаясь по лестнице с анатомическими структурами, постепенное изменение давления происходит прямолинейно. Этот опыт удобно проводить на пологой лестнице станции метро. Часто анекдоты калибруются непосредственно по росту. Положение стрелки указывает на высоту, на которой находится прибор. Такие роговицы называются альтиметрами (рис. 295). Ими оснащаются самолеты, позволяя пилоту определять объем полета.

Рисунок 295.Высота полета самолета. Длинные стрелки считаются в сотнях метров, короткие — в километрах. Перед полетом головка может быть обнулена под стрелкой на поверхности земли.

Падение давления воздуха при подъеме объясняется так же, как падает давление в глубокой воде при подъеме со дна на поверхность. Воздух на уровне моря сжимается под действием веса всей атмосферы Земли, тогда как более высокие слои атмосферы сжимаются только под действием веса воздуха, находящегося над этими слоями. В целом, изменение давления от точки к точке в атмосфере или под действием силы тяжести подчиняется тем же законам, что и давление на жидкость. Давление одинаково во всех частях горизонтального уровня — внизу давление уменьшается за счет веса столба воздуха, высота которого равна высоте перехода, а сечение перехода равно единице.

Рис. 296.Изображение уменьшения давления с высотой. Справа — колонны одинаковой толщины, взятые на разных высотах. Самая толстая заштрихованная колонка наиболее сжатого воздуха.

Однако из-за высокой компрессии газа общая картина распределения давления на высоте в атмосфере существенно отличается от распределения давления жидкостей. На самом деле, планируйте снижение давления воздуха с высотой. Оси оператора изображают высоту и так далее. На определенном уровне (например, над уровнем моря), а ось пиков показывает давление (рис. 296). Поднимитесь по лестнице на высоту. Чтобы найти давление на следующем этапе, необходимо равномерно удалить вес столба воздуха на высоте. Однако с увеличением высоты плотность воздуха уменьшается. Поэтому потеря давления при подъеме на следующую ступень тем меньше, чем выше лестница. Поэтому давление снижается неравномерно по мере роста. Высота, на которой плотность воздуха увеличивается, мала, а давление быстро падает. Плотность воздуха уменьшается, и давление снижается.

Барическая ступень

1 Высота, на которой давление должно повыситься или понизиться, чтобы его изменил HPA (экстракт), называется барометрическим шагом. Барометрический шаг удобно использовать для решения задач, не требующих высокой точности, чтобы оценить давление по известным различиям в высоте над уровнем моря. Из фундаментального закона статики, барометрический шаг (h) равен: h = -dz/Δp= 1/g m/gpa. При температуре воздуха 0°C и давлении 1000 гПа барометрический шаг равен 8 /hPa. Таким образом, для повышения давления на 1 HPA требуется увеличение на 8 метров.

При повышении температуры и высоты над уровнем моря (в частности, на 0,4% на градус тепла). Другими словами, он прямо пропорционален температуре и обратно пропорционален давлению. Обратной стороной парикмахера является вертикальный парикмахер. То есть, изменение давления при подъеме или опускании на 100 метров. При температуре 0°C и давлении 1000 гПа это составляет 12,5 гПа.

Приведение к уровню моря

Давление адаптируется к уровню моря, чтобы все метеостанции посылали короткие телеграммы. Для того чтобы сравнить давление на станциях, расположенных на разных высотах, давления наносятся на обзорную карту и приводятся к уровню моря, который является единой точкой отсчета. При давлении на уровне моря используется короткий тип Лапласа вида Z 2 -Z 1 = 18400 (1+λT)LG (P 1 /P 2). Это означает, что, зная давление и температуру на уровне Z 2, мы можем найти давление (P 1) на уровне моря (Z 1 = 0).

Расчет давления на высоте H от давления P o до уровня моря и температуры:.

Где P o — давление PA на уровне моря pa-m — молекулярный вес сухого воздуха 0,029 кг/моль- g — ускорение силы тяжести 9,81 м/с²-р. Предельная температура воздуха k, t = t + 273, где t — температура °C-h — высота m.

На более низких высотах атмосферное давление снижается на 1 мм рт. ст. на каждые 12 метров подъема. На больших высотах эта закономерность прерывается.

Атмосферное давление — это давление столба воздуха на единицу поверхности. Она выражается в килограммах на см2, но в прошлом эта величина измерялась только с помощью ртутных наличников, поэтому принято выражать эту величину в миллиметрах ртути (ММГ). Нормальное атмосферное давление составляет 760 мм рт. ст. или 1,033 кг/см2 и интерпретируется как воздух (1 АТА).

Некоторые операции могут потребовать работы при повышенном или пониженном атмосферном давлении. Это может иметь большое значение (от 0,15-0,2 ата до 5-6 ата и более).

Влияние пониженного атмосферного давления на организм

На больших высотах атмосферное давление снижается. Чем больше высота над уровнем моря, тем ниже атмосферное давление. Так, на высоте 1000 м он составляет 734 мм рт. ст., 2000 м — 569 мм, 3000 м — 526 мм рт. ст. и на высоте 15000 м — 90 мм рт. ст.

Снижение атмосферного давления вызывает изменения в крови в виде более частого и глубокого дыхания, более частых (менее сильных) ударов сердца, небольшого снижения артериального давления и увеличения количества красных кровяных телец. Клетки.

Негативное воздействие низкого атмосферного давления на организм основано на недостатке кислорода. Это связано с тем, что при нормальном функционировании дыхательной и кровеносной систем в организм поступает меньше кислорода из-за снижения парциального давления кислорода при уменьшении атмосферного давления. В результате кровь не полностью насыщается кислородом и органы и ткани не полностью снабжаются им, что приводит к недостатку кислорода (анаэробии). Эти изменения более серьезны при работе с высокоскоростными подъемными механизмами (например, канатами), где происходит быстрое падение атмосферного давления, которое возникает при быстром подъеме на большую высоту. Быстро развивающийся недостаток кислорода влияет на клетки мозга, что вызывает головокружение, тошноту и иногда рвоту, нарушение двигательной координации, потерю памяти, сонливость и снижение окислительных процессов в мышечных клетках из-за недостатка кислорода.

Согласно практике, подъем на высоту более 4500 метров, где атмосферное давление не превышает 430 мм рт. ст., трудно переносится без кислорода для дыхания, а на высоте 8000 метров (давление 277 мм рт. ст.) люди теряют чувствительность.

Летом зоны низкого атмосферного давления восстанавливаются в более теплых широтах Северного полушария. Над Азией формируется огромная область низкого атмосферного давления, ориентированная на тропики, — азиатский минимум.

Какие последствия действия атмосферного давления

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Возьмите трубку с плунжером, опустите один конец в емкость с водой, поднимите плунжер вверх, и вода поднимется за плунжером (рис. 102). Это возможно только в том случае, если давление воды в резервуаре выше, чем давление под поршнем. Из-за давления веса уровень воды под поршнем выше, чем давление в емкости, и вода не может подняться из-за более высокого давления. Вода должна вернуться в емкость. В результате к жидкости в контейнере прикладывается дополнительное давление, которое превышает давление жидкости в толще воды под поршнем. Это давление создается молекулами в атмосфере. Действуя на свободную поверхность воды, атмосферное давление в соответствии с законом Паскаля передается одинаково во всех направлениях.

Поскольку под поршнем нет воздуха, вода поступает в трубу под неравномерным давлением.

Каково значение атмосферного давления

Значение атмосферного давления довольно высокое. Это может быть подтверждено многими экспериментами.

Возьмите два полых полушария с хорошо отполированными поперечными сечениями. Один из них имеет специальное приспособление с краном, в который можно закачивать воздух.

Закрепите одну из полусфер на штативе, подсоедините снизу другую полусферу и начните откачивать воздух из полости с помощью насоса на кране. Нижнее полушарие плотно прижимается к верхнему полушарию. Это возможно только в том случае, если давление в полости баллона меньше внешнего давления.

В результате того, что воздушный насос вытягивает воздух, давление в полусферической полости уменьшается, но внешнее давление остается неизменным. Поэтому нижнее полушарие сильно давит на верхнее. SW.

Величина силы, действующей на уменьшение давления воздушного шара, может быть определена по весу груза, который может быть удержан при размещении его нижним полушарием. Когда кран открывается и входит в полость, взвешенная нижняя полусфера падает.

Как начали исследовать атмосферное давление

Подобный эксперимент был проведен и описан немецким естествоиспытателем Отто Герике, мэром Магдебурга в 1654 году.

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Отто Герике (1602-1686) был немецким физиком, изучавшим атмосферное давление. С помощью «Магдебургской полусферы» он показал влияние атмосферного давления. Он также изучал электрические явления и объяснял природу трения. Он создал первый электрический двигатель.

Он остался в истории науки благодаря своей сезонной производительности (рис. 103).

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

В новейшем процессе используется ряд устройств, основанных на действии атмосферного давления. Для расчета результатов необходимо знать значение атмосферного давления.

Метод измерения атмосферного давления был впервые предложен итальянским ученым Эванджелистой Тричелли.

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Эванджелиста Тричелли (1608-1647) был итальянским ученым. Он первым измерил атмосферное давление с помощью сконструированного им ртутного барометра. Он доказал, что высота ртутного столба барометра приблизительно равна высоте барометра.

Он обнаружил, что если закрытую с одной стороны трубку полностью заполнить ртутью, а затем перевернуть и опустить в сосуд с ртутью, то исчезнет только часть этой ртути (рис. 104). Высота ртутного столба в этом эксперименте составляла приблизительно 760 мм. Результаты эксперимента позволили сделать вывод, что давление столба ртути уравновешивается атмосферным давлением, действующим на свободную поверхность ртути в контейнере. Атмосферное давление при таких условиях называется нормальным. С тех пор в науку была введена единица измерения атмосферного давления. Это миллиметр ртути (MMHG).

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Как рассчитать атмосферное давление

Выразим значение 760 мм (нормальное) для столба ртути в единице измерения давления Паскаль. Из предыдущего параграфа мы знаем, что давление жидкости рассчитывается по ее типу.

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

Учитывая плотность ртути, получаем

Атмосферное давление в физике и как его измерить - уравнения и определения, включая примеры

При копировании материалов с сайта Evkova.org, пожалуйста, посетите www.evkova.orgへのアクティブなリンクを作成する必要があります.

Сайт создан группой преподавателей на некоммерческой основе для дополнительных молодых людей.

Сайт написан, поддерживается и управляется группой учителей

Telegram и логотип Telegram являются торговыми марками Telegram Corporation FZ-LLC.

Сайт предназначен для информационных целей и ни в коем случае не является публичным тендером, как это определено в статье 437 Гражданского кодекса Российской Федерации. Анна Евкова не оказывает услуг.

Летом зоны низкого атмосферного давления восстанавливаются в более теплых широтах Северного полушария. Над Азией формируется огромная область низкого атмосферного давления, ориентированная на тропики, — азиатский минимум.

Норма атмосферного давления

Воздействие атмосферы считается нормальным, если атмосферное давление находится на уровне моря на широте 45°. Отображение температуры — 0 градусов Цельсия. В 1644 году, благодаря Эванджелисте Торренчели и Винченцо Вивиани, это значение составило 760 мм. Стоит отметить, что эти первооткрыватели были учениками самого Галилео Галилея. Люди чувствуют себя более комфортно при стандартных значениях 750-760 мм рт. ст. Однако эти измерения не всегда абсолютно точны во всех областях в течение года.

Рисунок 2.Атмосферное давление в России в июле

Повышение и понижение давления

Когда барометрическое давление превышает стандартное значение 760 мм рт. ст., воздействие атмосферы увеличивается. В противоположном случае она уменьшается. В течение 24-часового периода между утром и вечером показатели давления значительно возрастают. Низкое давление наблюдается во второй половине дня и после полуночи. Эти изменения связаны с тем, что происходят изменения температуры и движения воздуха. На Земле существует три зоны преимущественно низкого давления и четыре зоны преимущественно высокого давления. Зоны атмосферного давления образуются на планете потому, что тепло от солнца и вращение Земли неравномерны. Солнце не так сильно нагревает земное полушарие в течение года. Отопление зависит от времени года.

Важно: Эксперты зафиксировали падение атмосферного давления в Москве на 727 мм рт. ст. В 2015 году аномальное артериальное давление в Москве составляло 778 мм рт. ст. Кроме того, Москва расположена на границе протяженного циклона, центральная часть которого находится над Латвией.

Влияние на человека. Антициклон

Антициклон определяется как повышение атмосферного давления. В эти периоды мало ветра, погода солнечная и нет резких перепадов температуры. Уровень влажности остается нормальным. Высокое атмосферное давление оказывает негативное влияние на здоровье человека. В частности, на людей с аллергией, астмой и высоким кровяным давлением негативно влияют изменения артериального давления. В периоды высокого давления люди испытывают головные боли и дискомфорт. Считается, что такие периоды приводят к снижению производительности и страданиям. В зависимости от высоты высокого давления, оно может эффективно или неэффективно защищать организм от болезней.

Важно: Чтобы легче переносить высокое давление, эксперты рекомендуют есть больше фруктов, включая калий, заниматься легкими физическими упражнениями и чередовать горячий и холодный душ. Чтобы улучшить работу иммунной и нервной систем, необходимо на время забыть о серьезных проблемах, которые могут поставить под угрозу ваше здоровье. Людям, страдающим от негативных симптомов, в последнее время требуется больше времени на отдых, чтобы восстановиться.

Давление воздуха в одной и той же точке земной поверхности не остается постоянным, а изменяется в зависимости от различных процессов, происходящих в атмосфере. В качестве «нормального» атмосферного давления условно считается давление 760 мм рт. ст. т. е. одна (естественная) атмосфера (§ 154).

Как атмосферное давление влияет на осадки?

Распределение осадков на планете совсем не равномерно. В одних местах влаги слишком много, в других — слишком мало. Эта неравномерность обусловлена зонированием атмосферного давления, описанным ранее. В зонах низкого давления воздух постоянно нагревается и содержит много влаги. Когда влага поднимается вверх, она образует облака и выпадает в виде дождя. Именно поэтому экваториальные зоны и другие регионы низкого давления не лишены влаги.

В зонах высокого давления холодный воздух, содержащий мало или совсем не содержащий влаги, опускается на поверхность почвы. Нагревание и уплотнение образовавшихся газовых масс выводит их из точки насыщения. Именно поэтому в тропиках и полярных регионах выпадает очень мало осадков.

На предыдущих уроках мы рассчитывали давление жидкости на дно и стенки сосуда по формуле $p=rho gh$. Но атмосферное давление так рассчитать не получится.

Почему нельзя рассчитывать давление воздуха так же, как рассчитывают давление жидкости на дно или стенки сосуда?
Для этого нам нужно будет знать высоту атмосферы и плотность воздуха. Но определенной границы у атмосферы нет, а плотность воздуха меняется в зависимости от высоты: в нижних слоях атмосферы она больше, чем в верхних (рисунок 1).

Рисунок 1. Уменьшение плотности воздуха с увеличением высоты

На данном уроке мы рассмотрим известный опыт, который позволяет рассчитать величину атмосферного давления и познакомимся с новой единицей измерения давления — миллиметрами ртутного столба.

Опыт Торричелли

В XVII веке во Флоренции герцог Тосканский готовился к балу в своем замке и приготовил для своих гостей необычный сюрприз. Это был фонтан, струи которого должны были зрелищно окружить террасу своими струями.

Однако, несмотря на работу ручных насосов, вода поднималась только на высоту около 10 метров. Недоумевающие строители обратились за помощью к Галилею, который предложил разобраться в этом своему ученику Торричелли.

Эванджелиста Торричелли (рисунок 2) смог не только объяснить «упрямство фонтана» действием атмосферного давления, но пошел дальше и рассчитал это атмосферное давление.

Рисунок 2. Эванджелиста Торричелли (1608–1647) — итальянский физик и математик, ученик Галилея

Рассмотрим известнейший опыт Торричелли. На рисунке 3 показана стеклянная трубка длиной $1 space м$, один конец которой запаян. Трубку наполняют ртутью (рисунок 3, а). Затем плотно закрывают ее открытый конец (рисунок 3, б). Далее трубку переворачивают и опускают в чашу с ртутью (рисунок 3, в). После этого трубку открывают (рисунок 3, г).

Рисунок 3. Опыт Торричелли

Мы видим, что часть ртути при этом вылилась в чашу, а другая ее часть осталась в трубке. Высота столба ртути, оставшейся в трубке, равна примерно 760 мм. Заметим, что в трубке над ртутью воздуха нет, там безвоздушное пространство.

Объяснение опыта Торричелли

Теперь давайте рассмотрим объяснение данного опыта. Поверхность ртути в чаше испытывает атмосферное давление. Ртуть в чаше находится в равновесии, то есть давление в трубке на уровне AB (рисунок 4) равно атмосферному давлению $p_{атм}$. Если бы это было не так и давление в трубке было бы больше атмосферного, то ртуть выливалась бы в чашу. А если меньше — то ртуть поднималась бы в трубке вверх.

Рисунок 4. Дополнительная иллюстрация опыта Торричелли

Так как в верхней части трубки воздуха нет, то давление создается только весом столба ртути. Из этого следует, что атмосферное давление равно давлению столба ртути в трубке, то есть:

$p_{атм}=p_{ртути}$.

Соответственно, чтобы посчитать величину атмосферного давления, достаточно измерить высоту столба ртути. Из формулы $p=rho gh$ мы видим, что величина атмосферного давления будет прямо пропорциональна высоте столба ртути в трубке. При уменьшении атмосферного давления мы увидим, что столб ртути понизился, а при увеличении атмосферного давления столб ртути в опыте Торричелли станет выше.

Единицы измерения атмосферного давления

Что означает запись: «Атмосферное давление равно 760 мм рт. ст.»?
На практике атмосферное давление часто измеряется высотой ртутного столба. Если, например, атмосферное давление 760 мм рт. ст., то это значит, что воздух производит такое же давление, что и вертикальный столб ртути высотой 760 мм. Каждый из вас слышал прогноз погоды от гидрометцентра. В сводках погоды атмосферное давление также передают в мм рт. ст.

А в каких единицах мы обычно рассчитываем давление на занятиях, решая задачи? Давайте найдем соотношения между этими единицами и выясним, чему равен 1 мм рт. ст. в паскалях (Па).

Давление столба ртути высотой 1 мм равно:
$p = rho gh$,
$p = 13600 frac{кг}{м^3} cdot 9.8frac{Н}{кг} cdot 0.001 space м approx 133.3 space Па$.

$1 space мм space рт. space ст. = 133.3 space Па$.

Скольким гектопаскалям равно давление ртутного столба высотой 1 мм?
$1 space мм space рт. space ст. = 133.3 space Па = 1.333 space гПа approx 1.3 space гПа$.

Среднее значение атмосферного давления равно 760 мм рт. ст. Выразим это значение в паскалях и в гектопаскалях (также довольно широко используемая величина измерения):
$760 space мм space рт. space ст. approx 101 space 300 space Па approx 1013 space гПа$.

Ртутный барометр

Если к трубке с ртутью, использовавшейся в опыте Торричелли, прикрепить вертикальную шкалу, то получится измерительный прибор — ртутный барометр (рисунок 5).

Ртутный барометр — это прибор для измерения атмосферного давления.

Рисунок 5. Простейший ртутный барометр

После ежедневного наблюдения за высотой столба ртути в трубке, Торричелли сделал вывод, что периодически атмосферное давление меняется и его изменения связаны с погодными условиями.

Другие опыты

В конце 1646 года семья Паскалей жила во французском городе Руане. Блез Паскаль повторил известный опыт, экспериментируя не только с ртутью, как Торричелли, но и с водой, маслом, красным вином.

Интересно, что эти опыты он проводил на улицах Руана, собирая толпы любопытных граждан. Неудивительно, ведь вместо чаши и трубки длиной 1 метр ему понадобились бочки и трубки длиной более 15 метров (рисунок 6).

Рисунок 6. Гигантский водяной барометр Блеза Паскаля

Интересный эксперимент был проведен 19 сентября 1648 года. Блез Паскаль и его зять Флорен Перье проделали опыт, доказавший существование атмосферного давления. При помощи стеклянной трубки и чаши с ртутью предстояло измерить, на какую высоту поднимается в ней ртуть у подножия и на вершине горы Пюи-де-Дом высотой 1647 метров в Клермоне. На вершине столбик ртути остановился на более низкой отметке. Причина — земная атмосфера на вершине на 1647 метров меньше. Разница уровней ртути составила почти 8 см (рисунок 7).

Рисунок 7. Опыт Блеза Паскаля и Флорена Перье на горе Пюи-де-Дом

Интересный факт: самый большой водяной барометр был сконструирован в 1985 году Бертом Болле. Он был хранителем музея барометров в Маартенсдейке (Нидерланды), а высота барометра была более 12,5 метров. Барометр был установлен в этом музее и пробыл там вплоть до его закрытия (рисунок 8).

Рисунок 8. Водяной барометр в центральном зале музея барометров, 1995 год

Упражнения

Упражнение №1

На рисунке 6 изображен водяной барометр, созданный Паскалем в 1646 году. Какой высоты был столб воды в этом барометре при атмосферном давлении, равном 760 мм рт. ст.?

Дано:
$p = 760 space мм space рт. space ст.$
$rho = 1000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

СИ:
$p = 101 space 308 space Па$

$h — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Зная давление, которое оказывает столб воды в барометре, мы можем рассчитать его высоту, используя формулу:
$p = rho gh$.

Выразим высоту и рассчитаем ее:
$h = frac{p}{rho g}$,
$h = frac{101 space 308 space Па}{1000 frac{кг}{м^3} cdot 9.8 frac{Н}{кг}} approx 10.3 space м$.

Ответ: $h approx 10.3 space м$.

Упражнение №2

В 1654 году Отто Герике в городе Магдебурге, чтобы доказать существование атмосферного давления, провел такой опыт. Он выкачал воздух из полости между двумя металлическими полушариями, сложенными вместе. Давление атмосферы так сильно прижало полушария друг к другу, что их не могли разорвать восемь пар лошадей (рисунок 9). Вычислите силу, сжимающую полушария, если считать, что она действует на площадь, равную $2800 space см^2$, а атмосферное давление равно 760 мм рт. ст.

Рисунок 9. Опыт Отто Герике

Дано:
$S = 2800 space см^2$
$p = 760 space мм space рт. space ст.$

СИ:
$S = 0.28 space м^2$
$p = 101 space 308 space Па$

$F — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Давление по определению определяется отношением силы, действующей перпендикулярно поверхности, к площади этой поверхности:
$p = frac{F}{S}$.

Выразим из этой формулы силу и рассчитаем ее:
$F = pS$,
$F = 101 space 308 space Па cdot 0.28 space м^2 = 28 space 366.24 space Н approx 28.4 space кН$.

Ответ: $F approx 28.4 space кН$.

Упражнение №3

Из трубки длиной $1 space м$, запаянной с одного конца и с краном на другом конце, выкачали воздух. Поместив конец с краном в ртуть, открыли кран. Заполнит ли ртуть всю трубку? Если вместо ртути взять воду, заполнит ли она всю трубку?

Посмотреть ответ

Скрыть

Ответ:

Среднее значение атмосферного давления составляет 760 мм. рт. ст. Когда мы откроем кран, жидкость будет заходить в трубку под действием атмосферного давления.

Ртуть поднимется в трубке до высоты в 760 мм (рисунок 10, а). Это следует из самого определения миллиметров ртутного столба.

Вода же заполнит трубку полностью (рисунок 10, б). Высоту столба жидкости мы можем рассчитать по формуле: $h = frac{p}{rho g}$. На жидкости действует только атмосферное давление — оно будет иметь одинаковую величину и для ртути, и для воды. Значит, остается плотность жидкости. Чем она больше, тем меньше высота. Плотность воды намного меньше плотности ртути, поэтому она заполнит трубку полностью.

Рисунок 10. Заполнение трубки ртутью и водой

В упражнении №1 мы уже рассчитали высоту столба жидкости. Она составила $10.3 space м$. Но наша трубка имеет высоту всего $1 space м$. Так, вода не только заполнит трубку полностью, но и будет оказывать дополнительное давление на нее изнутри.

Упражнение №4

Выразите в гектопаскалях давление, равное: 740 мм рт. ст.; 780 мм рт. ст.

Посмотреть ответ

Скрыть

Ответ:

$1 space мм space рт. space ст. approx 1.3 space гПа$.

$p_1 = 740 cdot 1.3 space гПа = 962 space гПа$,
$p_2 = 780 cdot 1.3 space гПа = 1014 space гПа$.

Упражнение №5

Рассмотрите рисунок 3. Ответьте на вопросы.

  1. Почему для уравновешивания давления атмосферы, высота которой достигает десятков тысяч километров, достаточно столба ртути высотой около 760 мм?
  2. Сила атмосферного давления действует на ртуть, находящуюся в чашке, сверху вниз. Почему же атмосферное давление удерживает столб ртути в трубке?
  3. Как повлияло бы наличие воздуха в трубке над ртутью на показания ртутного барометра?
  4. Изменится ли показание барометра, если трубку наклонить; опустить глубже в чашку со ртутью?

Посмотреть ответ

Скрыть

Ответ:

  1. Давление, оказываемое жидкостью или газом, зависит от его плотности ($p = rho gh$). Чем больше плотность, тем больше давление. Плотность ртути составляет $13 space 600 frac{кг}{м^3}$, а воздуха у поверхности Земли — $1.29 frac{кг}{м^3}$. При этом плотность воздуха очень сильно уменьшается с увеличением высоты. Именно поэтому давление столба ртути высотой $760 space мм$ уравновешивает атмосферное;
  2. Атмосферное давление действует на ртуть в чашке. В самой ртути давление передается по закону Паскаля одинаково по всем направлениям. Так давление и действует на столб ртути снизу вверх;
  3. Если бы в трубке был воздух, то при подъеме ртути он бы сжимался. Тем самым сжатый воздух создавал бы дополнительное давление на столб ртути, что исказило бы показания барометра;
  4. Нет, показания не изменятся. Ведь вес ртути при таких манипуляциях не изменится, а значит, не изменится и ее давление.

Задания

Задание №1

Погрузите стакан в воду, переверните его под водой вверх дном и затем медленно вытаскивайте из воды (рисунок 11). Почему, пока края стакана находятся под водой, вода остается в стакане (не выливается)?

Рисунок 11. Эксперимент со стаканом №1

Посмотреть ответ

Скрыть

Ответ:

В данном случае наш стакан — своеобразный эквивалент трубки в водяном барометре Паскаля (рисунок 6). В стакане не окажется воздуха, а только вода. Атмосферное давление будет удерживать ее в стакане, пока его края не оторвутся от воды. Тогда в стакан попадет дополнительный воздух и поднимется к верху стакана (его перевернутому дну). Теперь атмосферное давление действует на воду и сверху, и снизу, уравновешивая само себя. Вода выльется под действием силы тяжести.

Задание №2

Налейте в стакан воды, закройте листом бумаги и, поддерживая лист рукой, переверните стакан вверх дном. Если теперь отнять руку от бумаги (рисунок 12), то вода из стакана не выльется. Бумага остается как бы приклеенной к краю стакана. Почему? Ответ обоснуйте.

Рисунок 12. Эксперимент со стаканом №2

Посмотреть ответ

Скрыть

Ответ:

В данном случае сверху на лист бумаги давит столб воды в стакане. Снизу на него оказывает воздействие атмосферное давление. Бумага не отходит от стакана с водой, потому что атмосферное давление оказалось больше давления воды.

Задание №3

Положите на стол длинную деревянную линейку так, чтобы ее конец выходил за край стола. Сверху застелите стол газетой, разгладьте газету руками, чтобы она плотно лежала на столе и линейке. Резко ударьте по свободному концу линейки (рисунок 13) — газета не поднимется, а порвется. Объясните наблюдаемые явления.

Рисунок 13. Эксперимент с газетой и линейкой

Посмотреть ответ

Скрыть

Ответ:

Газета имеет достаточно большую площадь, и на нее всю действует атмосферное давление. Когда вы ударите по линейке, атмосферное давление никуда не денется. Оно все так же прижимает края газеты к столу, поэтому они не приподнимутся. Газета не выдержит такого воздействия и порвется.

Добавить комментарий