mb78
Мудрец
(11464)
11 лет назад
Помню была какая-то формула: в школе она звучала: ро жэ аш
Возможно по ней можно рассчитать.
Введите в поиске: рожеаш, и откроются разные форумы об этом
Ссылку не охото давать, здесь это не приветствуется.
Председатель
Искусственный Интеллект
(230083)
11 лет назад
Нормальным атмосферным давлением называют давление на уровне моря при температуре 15 °C. Оно равно 760 мм рт. ст.
На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт. ст.
Значит, нужно измерить давление на земле, а потом на крыше: разница в показаниях (в мм) , умноженная на 12, и даст высоту дома.
ТаисияКоновалова
Высший разум
(275539)
11 лет назад
Если это вопрос по географии, то у Вас в учебнике сказано, что при подъеме на 100 м давление падает на 10 мм. , при подъеме на 1000м – давление падает на 100 мм. .
Высота 0 м. – 760 мм.
Высота 1000 м – 660 мм. ,
Высота 2000 м. – 560 мм,
Высота 3000 м. – 460 мм,
Высота 4000 м. – 360 мм. и т. д. Составь себе табличку и смотри.
А если это по физике, то там дается формула. p = ρgh h = p/ρg
Witaliy KasсhinУченик (178)
1 год назад
По физике у Вас явно было 2. Я 7 классник и то знаю что атмосферное давление нельзя расчитать по формуле рожеаш. h(высота)= разница между давлением на земле (760 мм рт. ст.) и давлением на высоте, которую мы ищим умножить на 12.
Содержание:
Атмосферное давление и его измерение:
Нашу планету Земля окружает мощная газовая оболочка, которую называют атмосферой ( от греческих слов атмос – пар и сфера — шар).
Исследования околоземного пространства с помощью искусственных спутников Земли показали, что её атмосфера простирается на тысячу и более километров в высоту. Резкой границы она не имеет. Её верхние пласты очень разрежены и постепенно переходят в безвоздушное межпланетное пространство (вакуум). С уменьшением высоты плотность воздуха возрастает. Почти 80 % всей массы воздушной оболочки Земли сосредоточены в пределах 15 км над Землей. Опытами установлено, что при температуре 0 0С масса 1 м3 воздуха на уровне моря равна 1,29 кг. На воздушные слои действует сила тяжести, поэтому верхние слои давят на средние, а средние — на нижние. Наибольшее давление, обусловленное весом всей атмосферы, испытывает поверхность Земли, а также все находящиеся на ней тела.
Давление, оказываемое атмосферой на все находящиеся в ней тела, а также на земную поверхность, называют атмосферным давлением.
Выясним, насколько велико это давление.
Формула гидростатического давления
При этом высота столба ртути в трубке составляла приблизительно 760 мм.
Результаты этого опыта Торричелли объяснил так: «До сих пор существовала мысль, будто сила, которая не даёт возможности ртути, вопреки её естественному свойству, падать вниз, содержится внутри верхней части трубки, т. е. – или в пустоте, или в разрежённом веществе. Однако я утверждаю, что эта сила — внешняя и что сила берётся снаружи. На поверхность жидкости, находящейся в сосуде, действуют своей тяжестью 50 миль воздуха. Что же странного, если ртуть… поднимается настолько, чтобы уравновесить тяжесть внешнего воздуха».
Итак, атмосферное давление согласно закону Паскаля равно давлению столба ртути в трубке: ратм = р ртути
Если бы эти давления не были равны, то ртуть не находилась бы в равновесии: при увеличении давления ртути она выливалась бы из трубки в сосуд, а при уменьшении — поднималась бы по трубке вверх.
Итак, давление атмосферы можно измерить высотой соответствующего ртутного столба. Его высоту обычно измеряют в миллиметрах.
Если, например, говорят, что в некотором месте атмосферное давление равно 760 мм рт. ст., то это означает, что воздух в этом месте создаёт такое же давление, что и вертикальный столб ртути высотой 760 мм.
Чтобы определить это давление в паскалях, воспользуемся формулой гидростатичного давления: . Подставляя в эту формулу значения
= 13 595,10 (плотность ртути при 0°С), = 9,81 и = 760 мм = 0,76 м (высота столба ртути), получим такое значение нормального атмосферного давления: р =101 325 Па.
Давление атмосферы, которое равно давлению столба ртути высотой 760 мм при температуре О 0С, называют нормальным атмосферним давлением.
Единицами атмосферного давления являются 1 мм рт. ст., один паскаль (1 Па) и один гектопаскаль (1 гПа), между ними существуют такие соотношения:
Об опытах Торричелли узнал французский учёный Блез Паскаль. Он повторил их с разными жидкостями (маслом, вином и водой). Столб воды, уравновешивающий давление атмосферы, оказался намного выше столба ртути.
Однако Паскаль считал, что для окончательного доказательства факта существования атмосферного давления нужен ещё один решающий опыт. Для этого он выполнил опыт Торричелли сначала у подножия горы, а потом — на её вершине. Результаты удивили всех присутствующих. Давление воздуха на вершине горы было почти на 100 мм рт. ст. меньше, чем у подножия. Этим было доказано, что ртуть в трубке в самом деле поддерживается атмосферным давлением.
Если измерить атмосферное давление на разных высотах, то получим такие результаты.
Наблюдая ежедневно за высотой ртутного столба в трубке, можно заметить, что она изменяется: то увеличивается, то уменьшается. Существованием атмосферного давления можно объяснить много явлений. На рисунке 114 изображена стеклянная трубка, внутри которой имеется поршень, плотно прилегающий к её стенкам. Конец трубки опущен в воду. Если поднимать поршень, то за ним будет подниматься и вода. Между поршнем и водой вследствие поднятия поршня образуется безвоздушное пространство, в котором нет давления атмосферы. В это пространство под давлением внешнего воздуха и входит за поршнем вода. Данное явление используют в работе шприца, водяного насоса.
Опыт 1. Возьмём цилиндрический сосуд, закрытый пробкой, через которую пропущена трубку с краном Выкачаем из неё воздух, закроем кран, трубку опустим в воду и откроем кран. Поскольку атмосферное давление больше давления в сосуде, то под его действием вода будет бить фонтаном внутри сосуда (рис. 115).
Опыт 2. Нальём в стакан воды и накроем его листом бумаги, немного большим диаметра стакана. Держа стакан за нижнюю часть, прижмём бумагу к краям стакана ладонью и перевернём его кверху дном, убрав затем руку от бумаги (рис. 116).
Удивительно, но вода будет удерживаться в стакане и листок останется на месте — почему? Дело в том, что давление атмосферы на бумагу больше, чем давление столба воды в стакане.
Наблюдение. Влияние атмосферного давления весьма заметно проявляется во время ходьбы по вязкой почве (засасывающее действие трясины). При подъёме ноги под ней образуется разрежённое пространство, и вследствие присасывания нога тянет за собой тяжёлую трясину (как поршень — жидкость в насосе).
Благодаря давлению атмосферного воздуха работают присоски для крепления предметов на гладких плоских поверхностях. Если вытеснить воздух под присоской, то она прижмётся силой давления атмосферы, и чтобы её оторвать, нужно приложить довольно большое усилие (рис. 117).
Результаты простых вычислений показывают, что сила давления атмосферы на поверхность обычной тетради равна 3000 Н. Почему же вы так легко можете поднять тетрадь? Дело в том, что силы давления воздуха зверху и снизу тетради уравновешиваются, и при подъёме вам приходится преодолевать лишь вес самой тетради.
Для измерения атмосферного давления используют ртутный барометр, барометр-анероид и барограф.
Если трубку, подобную той, что использовал в своём опыте Торричелли, снабдить шкалой, то получим простейший прибор для измерения атмосферного давления — ртутный барометр (от греческих слов барос – вес, тяжесть; метрео — измеряю) (рис. 118).
Барометр-анероид (от греческих слов: барос, метрео, анероид) изображён на рисунке 119. Основная часть прибора — круглые гофрированные металлические коробочки, соединённые между собой. Внутри коробок создано разряжение (давление в коробках ниже атмосферного). С увеличением атмосферного давления коробки сжимаются и тянут прикреплённую к ним пружину. Перемещение конца пружины через специальные устройства передаётся стрелке, а её указатель движется вдоль шкалы. Против штрихов шкалы нанесены значения атмосферного давления. Например, если стрелка останавливается напротив отметки 750, то это значит, что атмосферное давление равно 750 мм рт. ст. При уменьшении давления стенки коробочек расходятся, растяжение пружины уменьшается, и стрелка движется в сторону уменьшения значений давления.
Барометр-анероид — это один из основных приборов, который используют метеорологи для составления прогнозов погоды на ближайшие дни, так как её изменение зависит от изменения атмосферного давления.
Для автоматической и непрерывной записи изменений атмосферного давления используют барограф (от греческих слов барос; графо — пишу). Кроме металлических гофрированных коробочек в этом приборе есть механизм для движения бумажной ленты, на которой нанесены сетка значений давления и дни недели (рис. 120). По таким лентам можно выяснить, как изменялось атмосферное давление в течение любой недели.
Кстати:
Вывод о существовании атмосферного давления независимо от Э. Торричелли сделал немецкий физик Отто фон Герике (1602-1686). Откачивая воздух из тонкостенного металлического шара, от увидел, что шар сплющился. Анализируя причины сплющивания шара, он понял, что оно произошло под действием давления окружающей среды.
Открыв атмосферное давление. Герике построил перед фасадом своего дома в г. Магдебурге водяной барометр, в котором на поверхности жидкости плавала фигурка человека, указывающая на деления, нанесённые на стекле. • В 1654 г Герике, желая убедить всех в существовании атмосферного давления, выполнил знаменитый опыт с «магде-бургскими полушариями». На демонстрации опыта присутствовали члены Регенсбургского рейхстага и император Фердинанд III. В их присутствии из полости между двумя составленными вместе металлическими полушариями выкачали воздух. При этом силы атмосферного давления так крепко прижали эти полушария одно к другому, что их не смогли разъединить восемь пар лошадей (рис. 121).
В природе существует более 400 растений-барометров. Цветочный барометр можно найти и на огороде. Это маленькая ветвистая трава-мокрец. По её мелким белым цветкам можно предсказывать погоду в течение всего лета: если утром венчики не раскрываются – днем будет дождь.
- Заказать решение задач по физике
Атмосферное давление и опыт Торричелли
Атмосфера Земли — это смесь различных газов, удерживающихся возле планеты благодаря действию силы тяжести на их молекулы, которые одновременно и беспрерывно двигаются, создавая давление. Это давление называют атмосферным.
Доказать существование атмосферного давления можно при помощи простых опытов.
Какие последствия действия атмосферного давления
Если взять трубку с поршнем, опустить ее одним концом в сосуд с водой и поднимать поршень вверх, то вода будет подниматься вслед за поршнем (рис. 102). Это возможно только тогда, когда давление воды в сосуде будет больше, чем под поршнем. За счет весового давления вода не сможет подниматься, так как уровень воды под поршнем выше, чем в сосуде, а поэтому и его давление больше. Вода должна вылиться обратно в сосуд. Следовательно, на жидкость в сосуде действует дополнительное давление, значение которого больше давления жидкости столба воды под поршнем. Это давление создают молекулы атмосферного воздуха. Действуя на свободную поверхность воды, атмосферное давление согласно закону Паскаля передается во всех направлениях одинаково.
Так как под поршнем воздуха нет, то вода будет заходить в трубку под действием неуравновешенного давления.
Каково значение атмосферного давления
Значение атмосферного давления достаточно большое. Убедиться в этом можно на многих опытах.
Возьмем два полых полушария, имеющие хорошо отшлифованные поверхности сечений. В одной из них есть специальный штуцер с краном, через который можно откачивать воздух.
Подвесим к штативу одно из полушарий, присоединим к нему снизу другое и начнем откачивать насосом через кран воздух из полости. Нижнее полушарие крепко прижмется к верхнему. Это возможно только тогда, когда давление в полости шара будет меньше давления снаружи.
В результате действия воздушного насоса, который откачивает воздух, давление в полости полушарий уменьшится, а наружное давление останется без изменений. Поэтому нижнее полушарие плотно прижмется к верхнему. ЮЗ
О значении силы при некотором уменьшении давления в шаре можно судить по массе груза, который может удерживаться, если его подвесить к нижнему полушарию. Если же открыть кран и в полость шара зайдет воздух, то нижнее полушарие вместе с грузом отпадет.
Как начали исследовать атмосферное давление
Подобный опыт провел и описал в 1654 г. немецкий физик, бургомистр города Магдебург а Отто Герике.
Отто Герике (1602-1686) – немецкий физик, который экспериментально изучал атмосферное давление. С помощью «магдебургских полушарий» он продемонстрировал действие атмосферного давления. Изучал также электрические явления, объяснил природу трения. Сконструировал первую электрическую машину.
Это событие осталось в истории науки благодаря образной гравюре того времени (рис. 103).
В современном производстве используют множество приспособлений, основанных на действии атмосферного давления. Для расчетов результатов их работы нужно знать значение атмосферного давления.
Способ измерения атмосферного давления впервые предложил итальянский ученый Эванджелиста Торричелли.
Эванджелиста Торричелли (1608-1647) – итальянский ученый. Первым измерил атмосферное давление с помощью сконструированного им ртутного барометра. Доказал, что высота ртутного столба барометра равна примерно высоты водяного столба.
Он установил, что если закрытую с одной стороны трубку заполнить полностью ртутью, перевернуть ее и опустить в сосуд с ртутью, то выльется только часть этой ртути (рис. 104). Высота столба ртути в его опытах была примерно 760 мм. Результаты опыта дали возможность сделать вывод, что давление ртутного столба уравновешивается атмосферным давлением, которое действует на свободную поверхность ртути в сосуде. Атмосферное давление при таких условиях называют нормальным. С того времени в науку была введена единица измерения атмосферного давления – миллиметр ртутного столба (мм рт. ст.).
Как рассчитать атмосферное давление
Выразим значение давления столба ртути высотой 760 мм (нормальное) в системных единицах измерения давления паскалях. Из предыдущих параграфов известно, что давление жидкости рассчитывается по формуле:
Учитывая, что плотность ртути получаем
- Манометры в физике
- Барометры в физике
- Жидкостные насосы в физике
- Выталкивающая сила в физике
- Движение жидкостей и газов
- Гидравлические машины в физике
- Весовое давление жидкостей в физике
- Сообщающиеся ссуды в физике
Мы знаем, что воздушная оболочка Земли оказывает на все находящиеся в ней тела некоторое давление. Это давление называется атмосферным. Насколько оно велико?
Формула давления p = ρgh для расчета атмосферного давления не подходит, так как атмосферный воздух не обладает постоянной плотностью (она на различных высотах разная) и не имеет определенной высоты (у атмосферы нет резкой границы). Тем не менее узнать, чему равно атмосферное давление, можно.
Как измерить давление атмосферы, впервые догадался итальянский ученый Э. Торричелли. Предложенный им опыт был осуществлен в 1643 г. учеником Галилея В. Вивиани. В этом опыте использовалась запаянная с одного конца стеклянная трубка длиной около 1 м. Ее наполнили ртутью и, закрыв пальцем (чтобы ртуть не вылилась раньше времени), перевернув, опустили в широкую чашу со ртутью. После того как трубку открыли, часть ртути из нее вылилась и в ее верхней части образовалось безвоздушное пространство — «торричеллиева пустота» (рис. 118). При этом высота столба ртути в трубке оказалась равной примерно 760 мм (если отсчитывать ее от уровня ртути в чаше).
Результаты этого опыта Торричелли объяснил следующим образом. «До сих пор,— писал он,— существовало мнение, будто сила, не позволяющая ртути, вопреки ее природному свойству, падать вниз, находится внутри верхней части трубки, т. е. заключается либо в пустоте, либо в веществе предельно разреженном. Однако я утверждаю, что это сила — внешняя — и что сила берется извне. На поверхность жидкости, находящейся в чаше, действуют своей тяжестью 50 миль воздуха. Что же удивительного, если ртуть… поднимается настолько, чтобы уравновесить тяжесть наружного воздуха».
Итак, атмосферное давление равно давлению столба в трубке:
pатм = pртути
Если бы эти давления не были равны, то ртуть не находилась бы в равновесии: при pртути > pатм ртуть выливалась бы из трубки в чашу, а при pртути < pатм ртуть поднималась бы по трубке вверх.
Поэтому давление атмосферы можно измерять высотой соответствующего ртутного столба (выраженной обычно в миллиметрах). Если, например, говорят, что в каком-то месте атмосферное давление равно 760 мм рт. ст., то это означает, что воздух в данном месте производит такое же давление, какое производит вертикальный столб ртути высотой 760 мм. Большая высота ртутного столба соответствует и большему атмосферному давлению, меньшая — меньшему.
Если прикрепить к трубке с ртутью, использовавшейся в опыте Торричелли, вертикальную шкалу, то получится простейший прибор для измерения атмосферного давления — ртутный барометр (от греческого слова «барос» — тяжесть).
Наблюдая за высотой ртутного столба в трубке, Торричелли неожиданно для себя заметил, что атмосферное давление непостоянно и в зависимости «от теплоты или холода» (как писал он сам) высота столба ртути оказывается разной.
В настоящее время давление атмосферы, равное давлению столба ртути высотой 760 мм при температуре 0 °С, принято называть нормальным атмосферным давлением.
Чтобы рассчитать это давление в паскалях, воспользуемся формулой гидростатического давления:
p = ρgh
Подставляя в эту формулу значения ρ = 13595,1 кг/м3 (плотность ртути при 0 °С), g = 9,80665 м/с2 (ускорение свободного падения) и h = 760 мм = 0,76 м (высота столба ртути, соответствующая нормальному атмосферному давлению), получим следующую величину:
p = 101 325 Па.
Это и есть нормальное атмосферное давление.
Атмосферное давление, близкое к нормальному, наблюдается обычно в местностях, находящихся на уровне моря. С увеличением высоты над уровнем моря (например, в горах) давление уменьшается.
Опыты Торричелли заинтересовали многих ученых — его современников. Когда о них узнал Паскаль, он повторил их с разными жидкостями (маслом, вином и водой). На рисунке 119 изображен водяной барометр, созданный Паскалем в 1646 г. Столб воды, уравновешивающий давление атмосферы, оказался намного выше столба ртути.
В 1648 г. по поручению Паскаля Ф. Перье измерил высоту столба ртути в барометре у подножия и на вершине горы Пюи-де-Дом и полностью подтвердил предположение Паскаля о том, что атмосферное давление зависит от высоты: на вершине горы столб ртути оказался меньше на 84,4 мм. Для того чтобы не осталось никаких сомнений в том, что давление атмосферы понижается с увеличением высоты над Землей, Паскаль проделал еще несколько опытов, но уже в Париже: внизу и наверху собора Нотр-Дам, башни Сен-Жак, а также высокого дома с 90 ступеньками. Свои результаты он опубликовал в брошюре «Рассказ о великом эксперименте равновесия жидкостей».
Большую известность получили также опыты немецкого физика Отто фон Герике (1602—1686). К выводу о существовании атмосферного давления он пришел независимо от Торричелли (об опытах которого он узнал с опозданием на девять лет). Откачивая как-то воздух из тонкостенного металлического шара, Герике вдруг увидел, как этот шар сплющился. Размышляя над причиной аварии, он понял, что расплющивание шара произошло под действием давления окружающего воздуха.
Открыв атмосферное давление, Герике построил около фасада своего дома в г. Магдебурге водяной барометр, в котором на поверхности жидкости плавала фигурка в виде человечка, указывающего на деления, нанесенные на стекле.
В 1654 г. Герике, желая убедить всех в существовании атмосферного давления, произвел знаменитый опыт с «магдебургскими полушариями». На демонстрации опыта присутствовали император Фердинанд III и члены Регенсбургского рейхстага. В их присутствии из полости между двумя сложенными вместе металлическими полушариями выкачали воздух. При этом силы атмосферного давления так сильно прижали эти полушария друг к другу, что их не смогли разъединить несколько пар лошадей (рис. 120).
1. Почему давление атмосферы нельзя рассчитать так же, как рассчитывают давление жидкости на дно сосуда? 2. Расскажите об опыте Торричелли. 3. Что означает запись: «Атмосферное давление равно 780 мм рт. ст.»? 4. Как называют прибор для измерения атмосферного давления? 5. Какое давление называют нормальным атмосферным давлением? Чему оно равно? 6. Как изменяется атмосферное давление при увеличении высоты над Землей? Почему?
Экспериментальные задания. 1. Погрузите стакан в воду, переверните его под водой вверх дном и затем медленно вытаскивайте из воды. Почему, пока края стакана находятся под водой, вода остается в стакане (не выливается)? 2. Наполните стакан водой, закройте листом бумаги и, поддерживая лист рукой, быстро переверните стакан вверх дном. Если теперь отнять руку от бумаги, то вода из стакана не выльется. Бумага останется как бы приклеенной к краям стакана. Почему?
Не все знают, что на разной высоте давление атмосферы отличается. Существует даже специальный прибор для измерения и давления, и высоты. Называется он барометр-альтиметр. В статье мы подробно изучим, как с высотой изменяется атмосферное давление и при чем тут плотность воздуха. Рассмотрим эту зависимость на примере графика.
Давление атмосферы на разных высотах
Атмосферное давление зависит от высоты. При ее увеличении на 12 м давление уменьшается на 1 мм ртутного столба. Этот факт можно записать с помощью такого математического выражения: ∆h/∆P=12 м/мм рт. ст. ∆h — это изменение высоты, ∆P — изменение атмосферного давления при изменении высоты на ∆h. Что из этого следует?
Из формулы видно, как с высотой изменяется атмосферное давление. Значит, если мы поднимемся на 12 м, то АД уменьшится на 12 мм ртутного столба, если на 24 м — то на 2 мм ртутного столба. Таким образом, измеряя атмосферное давление, можно судить о высоте.
Миллиметры ртутного столба и гектопаскали
В некоторых задачах давление выражается не в миллиметрах ртутного столба, а в паскалях или гектопаскалях. Запишем вышеприведенное соотношение для случая, когда давление выражено в гектопаскалях. 1 мм рт. ст. =133,3 Па =1,333 гПа.
Теперь выразим соотношение высоты и атмосферного давления не через миллиметры ртутного столба, а через гектопаскали. ∆h/∆P=12 м/1,333 гПа. После вычисления получим: ∆h/∆P=9 м/гПа. Выходит, что когда мы поднимаемся на 9 метров, то давление уменьшается на один гектопаскаль. Нормальное давление — это 1013 гПа. Округлим 1013 до 1000 и примем, что на поверхности Земли именно такое АД.
Если мы поднимаемся на 90 м, как с высотой изменяется атмосферное давление? Оно уменьшается на 10 гПа, на 90 м — на 100 гПа, на 900 м — на 1000 гПа. Если на земле давление в 1000 гПа, а мы поднялись на 900 м вверх, то атмосферное давление стало нулевым. Так что, получается что атмосфера заканчивается на девятикилометровой высоте? Нет. На такой высоте есть воздух, там летают самолеты. Так в чем же дело?
Связь плотности воздуха и высоты. Особенности
Как с высотой изменяется атмосферное давление вблизи поверхности Земли? На этот вопрос уже ответила картинка выше. Чем больше высота, тем меньше плотность воздуха. Покуда мы находимся недалеко от поверхности земли, изменение плотности воздуха незаметно. Поэтому на каждую единицу высоты давление уменьшается примерно на одно и тоже значение. Два записанные нами ранее выражения нужно воспринимать как правильные, только если мы находимся недалеко от поверхности Земли, не выше 1-1,5 км.
График, показывающий как атмосферное давление изменяется с высотой
Теперь перейдем к наглядности. Построим график зависимости давления атмосферы от высоты. При нулевой высоте P0=760мм рт. ст. Из-за того, что с ростом высоты давление уменьшается, атмосферный воздух будет менее сжат, его плотность станет меньше. Поэтому на графике зависимость давления от высоты не будет описываться прямой линией. Что это значит?
Как с высотой изменяется атмосферное давление? Над поверхностью земли? На высоте 5,5 км оно уменьшается в 2 раза (Р0/2). Оказывается, что если мы поднимемся еще на такую же высоту, то есть на 11 км, давление уменьшится еще вдвое и будет равно Р0/4 и т. д.
Соединим точки, и мы увидим, что график — это не прямая, а кривая. Почему, когда мы записывали соотношение зависимости, складывалось впечатление, что на высоте 9 км атмосфера заканчивается? Мы считали, что график является прямой на любых высотах. Это было бы так, если бы атмосфера была жидкой, то есть если бы ее плотность была постоянной.
Важно понимать, что этот график является лишь фрагментом зависимости на малых высотах. Ни на какой точке этой линии давление не снижается до нуля. Даже в глубоком космосе существуют молекулы газов, которые, правда, не имеют отношение к земной атмосфере. Ни в одной точке Вселенной не существует абсолютного вакуума, пустоты.
Как найти высоту зная давление
На чтение 2 мин Просмотров 1.7к. Опубликовано 07.05.2019
Значит, нужно измерить давление на земле, а потом на крыше: разница в показаниях (в мм) , умноженная на 12, и даст высоту дома.
Высота 0 м. — 760 мм.
Высота 1000 м — 660 мм. ,
Высота 2000 м. — 560 мм,
Высота 3000 м. — 460 мм,
Высота 4000 м. — 360 мм. и т. д. Составь себе табличку и смотри.
А если это по физике, то там дается формула. p = ρgh h = p/ρg
Значит, нужно измерить давление на земле, а потом на крыше: разница в показаниях (в мм) , умноженная на 12, и даст высоту дома.
Высота 0 м. — 760 мм.
Высота 1000 м — 660 мм. ,
Высота 2000 м. — 560 мм,
Высота 3000 м. — 460 мм,
Высота 4000 м. — 360 мм. и т. д. Составь себе табличку и смотри.
А если это по физике, то там дается формула. p = ρgh h = p/ρg
Собственный вес столба воздуха создает атмосферное давление, которое уменьшается по мере удаления от поверхности Земли.
Вблизи земной поверхности: При подъеме на каждые 8 м атмосферное давление падает на 100 Па = 1 мбар.
Если предположить, что температура воздуха с высотой не меняется, то атмосферное давление уменьшается с высотой по экспоненциальному закону.
p | атмосферное давление у поверхности Земли, | Па |
---|---|---|
ph | атмосферное давление на высоте, | Па |
h | высота над поверхностью Земли, | м |
ρ | плотность воздуха у поверхности Земли, | кг.м 3 |
g | ускорение свободного падения, | м/c 2 |
e | 2.71828, |
то для высот примерно до 100 км давление (при постоянной температуре) рассчитывается по формуле
Если давление у поверхности Земли p = pн = 101.325 кПа (до 1980 г. — 760 мм рт. ст.) и температура воздуха на любой высоте равна 0°С, то из формулы следует:
где высота h выражена в километрах.
Формула (1) называется барометрической формулой высоты. При точных вычислениях атмосферного давления следует учитывать понижение температуры воздуха по мере увеличения высоты.
При pн = 101.325 кПа (среднегодовое значение атмосферного давления на уровне моря) и t = 15°С (среднегодовое значение температуры на уровне моря) для высот до 11 000 м (тропосфера) следует пользоваться международной формулой:
где давление выражено в килопаскалях, высота h — в километрах, или
где плотность выражена в кг/м 3 , высота — в километрах.
Атмосферное давление зависит от места измерения, температуры воздуха и погоды. На уровне моря среднегодовое атмосферное давление составляет pн = 1013.25 мбар = 101,325 кПа (нормальное давление) при среднегодовой температуре 15°С.