Как найти высоту традиции

Трапецией принято называть выпуклую четырёхугольную четырехугольник с парой параллельных и двумя не
параллельными сторонами. Отрезки, которые создают параллельные прямы называются «основанием
трапеции», две других стороны играют роль «боковой стороны трапеции». Средняя линия трапеции будет
соединять два центра боковых сторон.

  • Высота трапеции через боковую сторону и прилегающий угол
    при основании
  • Высота трапеции через площадь и длины оснований
  • Высота трапеции через площадь и среднию линию
  • Высота трапеции через основании, диагонали и угол между
    диагоналями
  • Высота трапеции через среднию линию, диагонали и угол между
    диагоналями

Как найти высоту при помощи боковой стороны и прилегающего угла при основании

Для вычисления высоты трапеции через боковую сторону и прилегающий угол при основании нужно
воспользоваться нижеприведенной формулой:

h = a · sin α

где h — это искомая высота трапеции, a — известная боковая сторона, sin α — угол
при основании.

Цифр после
запятой:

Результат в:

Пример. Чтобы разобраться с применением формулы, давайте рассмотрим пример. Дана
некая трапеция. Нам известно, что боковая сторона равна 10 сантиметрам, а прилегающих угол
составляет 30 гр. Нам нужно найти высоту данной трапеции. Для решения у нас есть вся нужная
информация и формула выше. Подставляем значения в формулу: h = a · sin, h = 10 · sin 30, h = 10 · 1/2, h = 5 см

Как найти высоту трапецию при помощи длины основания и площади трапеции

Чтобы найти высоту трапеции через известные длины основания и площадь, нужно воспользоваться
формулой:

h = (2S) / (a + b)

где h — это искомая высота трапеции, S — известная площадь фигуры, a и b — длины
обеих оснований.

Цифр после
запятой:

Результат в:

Пример. Закрепим на примере: Нам известно, что в трапеции АВСD основания a и b равны
5 и 10 сантиметров. Площадь фигуры равна 30 квадратных сантиметров. Для решения нужно
воспользоваться формулой. h = (2S) / (a + b), h = (2 х 30) / (5 + 10), h = 60 /15, h = 4 см.
Высота трапеции равна 4 см.

Как найти высоту при помощи диагоналей, углу между диагоналями и средней линией трапеции

Чтобы найти высоту трапеции через среднюю линию, известные диагонали и угол между ними, нужно
прибегнуть к применению выведенной формулы:

h = ((D x d) / (2m)) x sin (α)

где h — это искомая высота трапеции, D и d — известные диагонали, m — средняя
линия, sin(α) — угол между диагоналями.

Цифр после
запятой:

Результат в:

Пример. Закрепим на примере: Дана трапеция с диагоналями 5 и 12 сантиметров.
Известно, что средняя линия фигуры равна 6 см, а угол между диагоналями – 30 градусов. Применив
формулу выше, мы сможем с легкостью найти высоту трапеции. h = ((D x d) / (2m)) x sin (α), h = ((5 x 12) / (2 х 6)) x sin (30), h = (60 /12) x 0.5, h = 2.5 см.
Высота трапеции равна 2.5 см.

Как найти высоту при помощи средней линии и площади трапеции

Чтобы найти высоту трапеции через площадь и среднюю линию воспользуемся выведенной формулой:

h = (2S) / m

где h — это искомая высота трапеции, S — известная площадь фигуры, а m — средняя
линия.

Цифр после
запятой:

Результат в:

Пример. Закрепим на примере: Площадь произвольной трапеции составляет 30 квадратных
сантиметров. Средняя линия фигуры равна 5 см. Нужно найти высоту по формуле. h = (2S) / m, h = (2 х 30) / 5, h = 60 / 5, h = 12 см. 12
см – высота трапеции.

Как найти высоту при помощи известного основания, диагоналей трапеции и угла между диагоналями

Для нахождения высоты трапеции при помощи известного основания, диагонали и углу между диагоналями
используют нижеприведенную формулу:

h = ((Dd) / (a + b)) x sin (α)

где h — это искомая высота трапеции, D и d — известные диагонали, a и b — длины
обеих оснований, sin(α) — угол между диагоналями.

Цифр после
запятой:

Результат в:

Пример. Закрепим на примере: В трапеции ABCD диагонали равны 10 см каждая. Известно,
что сумма основ фигура равна 20 см. Угол, созданный между диагоналями – 30 градусов. Нужно найти
высоту. Для этого нужно воспользоваться выше предоставленной формулой. h = ((Dd) / (a+b)) x sin (α), h = ((10 х 10) / (20)) x sin (30), h = 5 x sin (30), h = 2.5 см.
Высота трапеции равна 2.5 см

Можно выделить 2 разновидности трапеции:

  1. Трапеция, в которой одна из боковых сторон лежит под перпендикулярным углом с обеими основами
    называется прямоугольной.
  2. Трапеции с равными боковыми сторонами называется равнобедренной.

Высотой трапеции принято называть отрезок, которой показывает самое короткое расстояние между верхним
и нижним основанием фигуры. Существует большое количество математических задач разного уровня
сложности, для решения которых активно применяют высоту. Стоит разобраться со всеми возможными
формулами, которые используются для нахождения высоты трапеции.


1. Формула высоты равнобедренной трапеции через стороны и углы при основании

Высота равнобедренной трапеции через стороны и углы при основании

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

α – угол при нижнем основании

h – высота трапеции

Формулы длины высоты, (h ):

Формула высоты равнобедренной трапеции через стороны

Формула высоты равнобедренной трапеции через стороны и угол

2. Формула высоты равнобедренной трапеции через диагонали и углы между ними

Высота равнобедренной трапеции через диагонали и углы между ними

d – диагонали трапеции

α , β – углы между диагоналями

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):

Формулы длины высоты равнобедренной трапеции

Формулы длины высоты равнобедренной трапеции


3. Формула высоты равнобедренной трапеции через площадь

Высота равнобедренной трапеции через площадь

S – площадь трапеции

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):

Формула высоты равнобедренной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

Подробности

Опубликовано: 10 октября 2013

Обновлено: 13 августа 2021

Высота трапеции

Содержание:

  • Что такое трапеция
  • Как найти высоту трапеции

    • Через стороны
    • Через среднюю линию и площадь
    • Через боковую сторону и угол
    • Через диагонали, угол между ними и основания
    • Через диагонали, угол и среднюю линию
    • Через радиус вписанной окружности
  • Примеры вычисления

Что такое трапеция

Трапеция

 

Определение

Трапеция — это геометрическая фигура, которая состоит из двух параллельных и неравных друг другу отрезков (оснований) и боковых сторон.

Все стороны трапеции могут иметь разную величину. Но если ее боковые стороны равны, значит трапеция равнобедренная.

Определение

Высота трапеции — это перпендикуляр, проведенный из любой точки одного основания фигуры до другого.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Как найти высоту трапеции

Как найти высоту трапеции 

 

Через стороны

Если нам известны стороны фигуры, мы можем найти ее высоту по формуле:

(h=sqrt{b^2-(frac{{(a-d)}^2+d^2+c^2}{2cdot(a-b)}})^2)

Где h — высота, a — большее основание, b — меньшее основание, c и d — боковые стороны.

Через среднюю линию и площадь

Если в условии есть данные о величине средней линии и площади, можем использовать формулу:

(h=frac Sm)

Где m — средняя линия трапеции.

Через боковую сторону и угол

Когда нам известна величина одной из боковых сторон и угол между этой стороной и большим основанием, используем формулу:

(h=ccdotsinleft(alpharight))

Где alpha — это угол между стороной c и большим основанием a.

Через диагонали, угол между ними и основания

Если нам известны длины обоих диагоналей трапеции, а также угол между ними, можем найти высоту следующим образом:

(h=frac{d_1d_2}{a+b}cdotsinleft(gammaright))

Где (d_1) и (d_2) — диагонали трапеции, а (gamma) — угол между ними.

Через диагонали, угол и среднюю линию

В том случае, если нам известны сразу длины диагоналей, угол между ними и величина средней линии, мы можем узнать высоту трапеции по формуле:

(h=frac{d_1d_2}{2m}cdotsinleft(gammaright))

Через радиус вписанной окружности

Если в трапецию можно вписать окружность, то ее высота будет равна диаметру этой окружности, то есть d=h. Другими словами, высота фигуры будет равна удвоенному радиусу вписанной в нее окружности:

(h=2r)

Где r — радиус выписанной окружности.

Примеры вычисления

Задача 1

Дана трапеция, в которой известны основания a и b. Они равны 4,5 см и 2,5 см. Также известны ее боковые стороны d и c, равные 2 см и (2sqrt2) см соответственно. Найти высоту.

Решение

Чтобы решить эту задачу, используем формулу (h=sqrt{b^2-(frac{{(a-d)}^2+d^2+c^2}{2cdot(a-b)}})^2.)

Подставляем известные значения:

(h=sqrt{2^2-(frac{{(4,5-2,5)}^2+2^2+{(2sqrt2)}^2}{2cdot(4,5-2,5)}}{)^2=}h=sqrt{4-(frac{4+4-8}4}{)^2=sqrt4=2}) см.

Ответ: h=2 см.

Задача 2

Известно, что основания a и b равнобедренной трапеции равны 3 см и 5 см. Площадь фигуры равна 8 см2. Вычислить высоту.

Решение:

Чтобы найти высоту, нужно знать величину средней линии m. Определим ее следующим образом:

(m=frac{a+b}2=frac{3+5}2=4 см.)

Теперь используем формулу (h=frac Sm) и подставим известные значения:

(h=frac84=2) см.

Ответ: h=2 см.

Задача 3

Мы знаем, что сторона c трапеции равна (sqrt2) см, а угол (alpha) между известной стороной и основанием равен 45 градусов. Найти значение высоты.

Решение:

Используем формулу (h=ccdotsinleft(alpharight)) и подставим значения:

(h=sqrt2cdotsinleft(45^circright)=frac{sqrt2cdotsqrt2}2=frac22=1) см.

Ответ: h=1 см.

Задача 4

Даны диагонали трапеции (d_1) и (d_2), равные 2 см и 3 см, а также угол gamma между ними, который равняется 30 градусов. Основания a и b, длина которых 2 см и 1 см соответственно. Найти h.

Решение:

Для решения задачи использует формулу (h=frac{d_1d_2}{a+b}cdotsinleft(gammaright).)

Подставим значения:

(h=frac{2cdot3}{2+1}cdotsinleft(30^circright)=frac63cdotfrac12=1) см.

Ответ: h=1 см.

Насколько полезной была для вас статья?

Рейтинг: 5.00 (Голосов: 1)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту трапеции, а также разберем примеры решения задач для закрепления материала.

Напомним, высотой трапеции называется отрезок, соединяющий оба ее основания и перпендикулярный им.

  • Нахождение высоты трапеции

    • Через длины сторон

    • Через боковую сторону и прилежащий угол

    • Через диагонали и угол между ними

    • Через площадь

  • Примеры задач

Нахождение высоты трапеции

Через длины сторон

Трапеция abcd

Если известны длины всех четырех сторон трапеции, ее высота рассчитывается по формуле ниже:

Формула для нахождения высоты трапеции через ее стороны

Через боковую сторону и прилежащий угол

Трапеция abcd с углами α и β при основании

Высоту трапеции можно вычислить, если знать длину любой из ее боковых сторон и значение прилежащего к ней и основанию угла.

Формула для нахождения высоты трапеции через боковую сторону и прилежащий угол

Через диагонали и угол между ними

Трапеция с диагоналями и высотой

Зная длину оснований трапеции, а также диагоналей и угол между ними, вычислить высоту удастся по формуле:

Нахождение высоты трапеции через диагонали и угол между ними

Элементы трапеции

Если сумму оснований заменить длиной средней линии (m), то формула будет выглядеть следующим образом:

Нахождение высоты трапеции через диагонали и угол между ними

Средняя линия трапеции (m) равняется полусумме ее оснований, т.е m = (a+b)/2.

Через площадь

Средняя линия и высота трапеции

Высоту трапеции можно вычислить, если известны ее площадь и длины оснований (или средней линии).

Формула для нахождения высоты трапеции через ее площадь

Примечание: формулы для нахождения высоты равнобедренной и прямоугольной трапеций представлены на нашем сайте в отдельных публикациях.

Примеры задач

Задание 1
Найдите высоту трапеции, если ее основания равны 9 и 6 см, а боковые стороны – 4 и 5 см.

Решение
Т.к. у нас есть длины всех сторон, мы можем воспользоваться первой формулой для вычисления требуемого значения:

Пример расчета высоты трапеции через длины ее сторон

Кстати, т.к. высота равна одной из боковой сторон трапеции, значит она является прямоугольной.

Задание 2
Площадь трапеции равна 26 см2. Найдите ее высоту, если основания равны 10 и 3 см.

Решение
В данном случае можно применить последнюю из рассмотренных формул:

Пример расчета высоты трапеции через ее площадь и основания

Как найти высоту трапеции

Автор статьи

Анна Кирпиченкова

Эксперт по предмету «Калькуляторы»

Задать вопрос автору статьи

На этой странице вы узнаете, как найти высоту трапеции через стороны, а также как рассчитать высоту равнобедренной трапеции, зная среднюю линию и площадь. Также на страницу добавлены онлайн-калькуляторы для расчёта высоты трапеции.

Определение 1

Трапеция — это плоский геометрический объект, состоящий из двух параллельных и не равных друг другу отрезков-оснований и соединяющих их боковых сторон.

Для того чтобы рассчитать высоту трапеции, зная стороны, введите заданные значения в поля для ввода.

Высота трапеции через стороны

Высота трапеции через стороны

Высота трапеции через стороны рассчитывается по формуле:

$h = sqrt{b^2 – (frac{(a – d)^2 + b^2 – c^2}{2 cdot (a – d)})^2}$, где

$a$ — основание большего размера;

$d$ — основание меньшего размера;

$b$ — первая боковая сторона;

$c$ — вторая боковая сторона.

Пример 1

Задача

Дана трапеция с основаниями $a$ и $d$, равными $4.5$ и $2.5$ см и боковыми сторонами $b, c$, равными $2$ и $2sqrt2$ см. Найдите, чему равна высота трапеции $h$.

Решение:

Воспользуемся вышеприведённой формулой:

$h = sqrt{2^2 – (frac{(4.5 – 2.5)^2 + 2^2 – (2sqrt2)^2}{2 cdot (4.5 — 2.5)})^2} = sqrt{4 – (frac{4 + 4 — 8}{4}} = 2$ см.

Проверим полученное значение с помощью онлайн-калькулятора. Результат совпадает, а значит, задача решена верно.

Ниже приведён другой калькулятор, осуществляющий нахождение высоты равнобедренной трапеции через её площадь и среднюю линию.

Высота равнобедренной трапеции через среднюю линию и площадь

Высота равнобедренной трапеции через среднюю линию и площадь

Если известна площадь равнобедренной трапеции и длина её средней линии, то высоту можно рассчитать по формуле:

$h = frac{S}{m}$, где

$m$ — средняя линия трапеции;

$S$ — её площадь.

Рассмотрим на примере, как найти высоту равнобедренной трапеции, если известны основания.

Пример 2

Задача

Дана равнобедренная трапеция с основаниями $a$ и $d$, соответственно равными $3$ и $5$ см, и площадью, равной $8$ $см^2$. Найдите, чему равна высота трапеции.

Решение:

Найдём среднюю линию трапеции:

$m = frac{a + d}{2} = frac{3 + 5}{2} = 4$ см.

Теперь сосчитаем высоту трапеции:

$h = frac{8}{4} = 2$ см.

Результаты совпадают с решением онлайн-калькулятора, а значит, ответ — верный.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата написания статьи: 07.07.2019

Добавить комментарий