Как найти высоту в треугольнике через векторы

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Как найти высоту треугольника через векторы

И в итоге: x+2y+z-9=0
это вы написали уравнение плоскости, проходящей через точку С перпендикулярно АВ.

Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости

I. «Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости»

Нужно найти не длину, а уравнение CH.

II. «Можно воспользоваться двойным векторным произведением. и найти направляющий вектор высоты. »
То есть:
AC<2,2,2>
AB

Нужно найти не длину, а уравнение CH. – Если найдёте `H`, то сможете написать уравнение по двум точкам.

Так? – Да. только вычисления не проверял. а в том, что получили, можно сократить на 36.

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

1. Через площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

где p – это полупериметр треугольника, который рассчитывается так:

3. Через длину прилежащей стороны и синус угла

4. Через стороны и радиус описанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

2. Через стороны треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

[spoiler title=”источники:”]

http://diary.ru/~eek/p183898406_uravnenie-vysoty-treugolnika-v-prostranstve.htm

Формулы для нахождения высоты треугольника

[/spoiler]

Высота, проведенная к стороне АС, перпендикулярна к стороне АС по определению. Значит вектор высоты, обозначим его Х (х1,х2), должен быть перпендикулярным к вектору АС.

В качестве вектора высоты Х можно взять вектор
Х (с2-а2, -с1+а1). Чтобы проверить, что этот вектор перпендикулярен к вектору АС, надо посчитать скалярное произведение.
Получаем:
(с1-а1)*(с2-а2) + (с2-а2)*(-с1+а1) = 0
Раз скалярное произведение равно нулю, значит векторы перпендикулярны, что нам и нужно.

вектор a(2, -1, 1) вектор b (0, 4, 1)

задан 27 Янв ’14 18:40

Длины векторов легко находятся. Далее через скалярное произведение выражаем косинус угла. Зная косинус, находим синус. Через синус и длины выражаем площадь. Длина разности векторов — это противолежащая сторона. Поделив на неё удвоенную площадь, находим длину высоты.

Здравствуйте

Математика — это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.

И в итоге: x+2y+z-9=0
это вы написали уравнение плоскости, проходящей через точку С перпендикулярно АВ.

Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости

I. «Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости»

Нужно найти не длину, а уравнение CH.

II. «Можно воспользоваться двойным векторным произведением. и найти направляющий вектор высоты. »
То есть:
AC<2,2,2>
AB

Нужно найти не длину, а уравнение CH. — Если найдёте `H`, то сможете написать уравнение по двум точкам.

Так? — Да. только вычисления не проверял. а в том, что получили, можно сократить на 36.

Тема: Векторная алгебра. Нужно вычислить длину высоты в треугольнике  (Прочитано 15618 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Всем здрасте! Прошу помощи в решении этой задачи. Нужно вычислить длину высоты опущенной из вершины треугольника А на сторону ВС, если известны все его вершины:А(5;-6;3)В(1;-1;3)С(1;3;0)

Думаю, что есть какая-то формула. но не знаю какая точно.

« Последнее редактирование: 16 Января 2011, 21:02:37 от Asix »


1. составляйте уравнение стороны BC
2. используя уравнение расстояния от точки до прямой, найдете искомую высоту

« Последнее редактирование: 16 Января 2011, 21:02:44 от Asix »

Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.


но там ведь только с х и у без z….не подскажете как с z  будут выглядеть эти формулы?

« Последнее редактирование: 16 Января 2011, 21:03:15 от Asix »


« Последнее редактирование: 16 Января 2011, 21:03:27 от Asix »

Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.


Для начала
1. Находите координаты вектора BC
2. Через точку (например B) и вектор BC строите прямую

( overrightarrow{BC} {l,m,n} )
( B(x_0,y_0) )
тогда уравнение прямой
( frac{x-x_0}{l}=frac{y-y_0}{m}=frac{z-z_0}{n} )

« Последнее редактирование: 16 Января 2011, 21:07:07 от Dlacier »

Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.


а то, что l=0 не играет роль? ведь на 0 вроде как делить нельзя….


Вы какую-нибудь литературу читали??
Как выглядит каноническое уравнение прямой?
Что такое в уравнении ( l,m,n )?

Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.


у=kx+b? координаты направляющего вектора…


у=kx+b? координаты направляющего вектора…

Это уравнение прямой в декартовой система координат – 2D, а вам надо в 3D.
Dlacier Вам до этого писала каноническое уравнение прямой в 3D.


Если записали уравнение в каноническом виде, дальше нужно делать следующее:
записать уравнение прямой в параметрическом виде и вспомнить/впервые услышать, что
“В пространстве расстояние от точки ( (x_1,;y_1,;z_1) ) до прямой, заданной параметрическим уравнением:
 ( begin{cases}x=x_0+t l, \
y=y_0+tm, \
z=z_0+tn,
end{cases} )
можно найти как минимальное расстояние от заданной точки до произвольной точки прямой. Коэффициент ( t ) этой точки может быть найден по формуле:
 ( t_{min}=dfrac{l(x_1-x_0)+m(y_1-y_0)+n(z_1-z_0)}{l^2+m^2+n^2}. )

Дальше все просто, подставляете найденное ( t ) в параметрическое уравнение прямой, т.о. получите координаты точки. А затем останется найти расстояние между двумя точками.

Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.


Как составить уравнение высоты треугольника по координатам его вершин?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Следовательно, для составления уравнения высоты треугольника нужно:

  1. Найти уравнение стороны треугольника.
  2. Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.

Пример.

Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).

Написать уравнения высот треугольника.

Решение:

1) Составим уравнение стороны BC треугольника ABC.

Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:

    [left{ begin{array}{l} - 3 = k cdot 5 + b; \ 8 = k cdot 1 + b; \ end{array} right. Rightarrow k = - frac{{11}}{4};b = frac{{43}}{4}.]

Таким образом, уравнение прямой BC —

    [y = - frac{{11}}{4}x + frac{{43}}{4}.]

Угловой коэффициент прямой, перпендикулярной BC,

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{{ - frac{{11}}{4}}} = frac{4}{{11}}.]

Значит, уравнение высоты, проведённой к стороне BC, имеет вид

    [y = frac{4}{{11}}x + b.]

Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:

    [2 = frac{4}{{11}} cdot ( - 7) + b, Rightarrow b = frac{{50}}{{11}}.]

Итак, уравнение высоты, проведённой к стороне BC:

    [y = frac{4}{{11}}x + frac{{50}}{{11}}.]

2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):

    [left{ begin{array}{l} 2 = k cdot ( - 7) + b; \ - 3 = k cdot 5 + b; \ end{array} right. Rightarrow k = - frac{5}{{12}};b = - frac{{11}}{{12}}.]

Уравнение прямой AB:

    [y = - frac{5}{{12}}x - frac{{11}}{{12}}.]

Угловой коэффициент перпендикулярной ей прямой

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{{ - frac{5}{{12}}}} = frac{{12}}{5} = 2,5.]

Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):

    [left{ begin{array}{l} 2 = k cdot ( - 7) + b; \ 8 = k cdot 1 + b; \ end{array} right. Rightarrow k = frac{3}{4};b = frac{{29}}{4}.]

Угловой коэффициент прямой, перпендикулярной AC,

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{{frac{3}{4}}} = - frac{4}{3}.]

Таким образом, уравнение перпендикулярной AC прямой имеет вид

    [y = - frac{4}{3}x + b.]

Подставив в него координаты точки B(5;-3), найдём b:

    [- 3 = - frac{4}{3} cdot 5 + b, Rightarrow b = frac{{11}}{3}.]

Итак, уравнение высоты треугольника ABC, опущенной из вершины B:

    [y = - frac{4}{3}x + frac{{11}}{3}.]

uravnenie-vysoty-treugolnika

Добавить комментарий