Как найти высоту зная длину основания

Как посчитать высоту равнобедренного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как посчитать высоту равнобедренного треугольника

Чтобы посчитать чему равна высота равнобедренного треугольника просто воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

равнобедренный треугольник

Чтобы вычислить высоту равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

  • длину двух равных сторон (a) и длину основания (b)
  • длину двух равных сторон (a) и угол α
  • длину двух равных сторон (a) и угол β
  • длину основания (b) и угол α
  • длину основания (b) и угол β

Введите их в соответствующие поля и получите результат.

Если известны длина стороны а и основания b

Чему равна высота h равнобедренного треугольника если длина сторон

a =

, а длина основания

b =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и длина основания b?

Формула

h = a2 – (b/2)2

Пример

Если сторона a = 10 см, а сторона b = 5 см, то:

h = 102 – (5/2)2 = 100 – 6.25 ≈ 9.68 см

Если известны длина стороны а и угол α

Чему равна высота h равнобедренного треугольника если длина сторон

a =

, а угол

α =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол α?

Формула

h = a⋅sin α

Пример

Если сторона a = 5 см, а ∠α = 45°, то:

h = 5⋅sin 45 ≈ 3,53 см

Если известны длина стороны а и угол β

Чему равна высота h равнобедренного треугольника если длина сторон

a =

, а угол

β =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол β?

Формула

h = a⋅cos β/2

Пример

Если сторона a = 5 см, а ∠β = 30°, то:

h = 5⋅cos 30/2 ≈ 4.83 см

Если известны длина стороны b и угол α

Чему равна высота h равнобедренного треугольника если длина основания

b =

, а угол

α =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол α?

Формула

h = b/2tg α

Пример

Если сторона b = 20 см, а ∠α = 35°, то:

h = 20/2tg 35 = 10⋅0.7 = 7 см

Если известны длина стороны b и угол β

Чему равна высота h равнобедренного треугольника если длина основания

b =

, а угол

β =?

Ответ:

h =

0

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол β?

Формула

h = b/2ctg β/2

Пример

Если сторона b = 15 см, а ∠β = 40°, то:

h = 15/2ctg 40/2 = 7.5⋅2.7474 ≈ 20.6 см

См. также

Все формулы высоты треугольника

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

H – высота треугольника

a – сторона, основание

b, c – стороны

β , γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

Высота треугольника онлайн

С помощю этого онлайн калькулятора можно найти высоту треугольника. Для нахождения высоты треугольника введите известные элементы треугольника и нажмите на кнопку “Вычислить”. Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

Высота треугольника. Определение

Определение 1. Отрезок, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.

Высота треугольника может содержаться внутри треугольника (Рис.1), совпадать со стороной треугольника (при прямоугольном треугольнике высота совпадает с катетом (Рис.2) ), проходить вне треугольника (при тупоугольном треугольнике(Рис.3)).

Теорема о пересечении высот треугольника

Теорема 1. Все три высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство. Рассмотрим произвольный треугольник ABC (Рис.4). Докажем, что высоты ( small AA_1 ,) ( small BB_1 ,) ( small CC_1 ) пересекаются в одной точке. Из каждой вершины треугольника проведем прямую, параллельно противоположной стороне. Получим треугольник ( small A_2B_2C_2. ) Покажем, что точки ( small A, B, C ) являются серединами сторон треугольника ( small A_2B_2C_2. ) ( small AB=A_2C ) так как они являются противоположными сторонами параллелограмма ( small ABA_2C. ) ( small AB=CB_2 ) так как они являются противоположными сторонами параллелограмма ( small ABCB_2. ) Тогда ( small CB_2=CA_2, ) то есть точка ( small C ) является серединой стороны ( small A_2B_2 ) треугольника ( small A_2B_2C_2. ) Аналогично доказывается, что точки ( small A ) и ( small B ) являются серединами сторон ( small B_2C_2 ) и ( small A_2C_2, ) соответственно.

Далее из ( small AA_1⊥BC ) следует, что ( small AA_1⊥B_2C_2 ) поскольку ( small BC ǁ B_2C_2 ). Аналогично, ( small BB_1⊥A_2C_2, ) ( small CC_1⊥A_2B_2. ) Получили, что ( small AA_1,) ( small BB_1, ) ( small CC_1) являются серединными перпендикулярами сторон ( small B_2C_2, ) ( small A_2C_2, ) ( small A_2B_2, ) соответственно. Но серединные перпендикуляры треугольника пересекаются в одной точке (см. статью Серединные перпендикуляры к сторонам треугольника). Следовательно высоты треугольника или их продолжения пересекаются в одной точке.

Точка пересечения высот треугольника называется ортоцентром.

Высота треугольника по основанию и площади

Пусть известны сторона треугольника и площадь. Найти высоту треугольника, отпущенная на известную сторону (Рис.5).

Решение. Площадь треугольника по основанию и высоте вычисляется из формулы:

.

. (1)

Пример 1. Сторона треугольника равна ( small a=5 ) а площадь ( small S=7. ) Найти высоту треугольника.

Применим формулу (1). Подставляя значения ( small a ) и ( small S ) в (1), получим:

Ответ:

Высота треугольника по трем сторонам

Формула площади треугольника по трем сторонам имеет следующий вид (см. статью на странице Площадь треугольника онлайн):

(2)

где ( small a, b, c ) стороны треугольника а полупериод ( small p ) вычисляется из формулы:

(3)

Высота треугольника, отпущенная на сторону ( small a) вычисляется из формулы (1). Подставляя (2) в (1), получим формулу вычисления высоты треугольника по трем сторонам:

. (4)

Пример 2. Известны стороны треугольника: ( small a=5, ) ( small b= 4, ) ( small c=7. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Найдем, сначала полупериод ( small p ) треугольника из формулы (3):

Подставляя значения ( small a , b, c ) и ( small p ) в (4), получим:

Ответ:

Высота треугольника по двум сторонам и радиусу описанной окружности

Рассмотрим треугольник на рисунке 6. Из теоремы синусов имеем:

(5)
(6)

Далее, из теоремы синусов имеем:

(7)

Подставляя (6) в (7), получим:

(8)

Отметим, что радиус описанной окружности должен удовлетворять следующему неравенству:

(small max (b,c) ≤2R Пример 3. Известны стороны треугольника: ( small b=7, ) ( small c= 3 ) и радиус описанной окружности ( small R=4. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Проверим сначала условие (9):

(small max (7,3) ≤2 cdot 4 Ответ: ( small 2frac<5><8>. )

Высота треугольника по стороне и прилежащему к ней углу

Найдем высоту ( small h_a ) треугольника на рисунке 7. Из теоремы синусов имеем:

( small frac<large h_a><large sin angle B>=frac<large c><large sin 90°>, )

( small h_a=c cdot sin angle B. ) (11)

Пример 4. Известны сторона ( small c=12 ) треугольника и прилежащий угол ( small angle B=30°. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Для нахождения высоты треугольника подставим значения ( small c=12 ) и ( small angle B=30° ) в (11). Имеем:

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

1. Через площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

где p – это полупериметр треугольника, который рассчитывается так:

3. Через длину прилежащей стороны и синус угла

4. Через стороны и радиус описанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

2. Через стороны треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

[spoiler title=”источники:”]

http://matworld.ru/geometry/vysota-treugolnika.php

[/spoiler]


Загрузить PDF


Загрузить PDF

Для вычисления площади треугольника вам необходимо знать его высоту. Если она не дана, вы можете вычислить ее по известным вам величинам! В этой статье мы расскажем о нескольких способах найти высоту треугольника по известным значениям других величин.

  1. Изображение с названием Find the Height of a Triangle Step 1

    1

    Напомним формулу для вычисления площади треугольника. Площадь треугольника вычисляется по формуле: A = 1/2bh.[1]

    • А – площадь треугольника
    • b – сторона треугольника, на которую опущена высота.
    • h – высота треугольника
  2. Изображение с названием Find the Height of a Triangle Step 2

    2

    Посмотрите на треугольник и подумайте, какие величины вам уже известны. Если вам дана площадь, обозначьте ее буквой «А» или «S». Вам также должно быть дано значение стороны, обозначьте ее буквой «b». Если вам не дана площадь и не дана сторона, воспользуйтесь другим методом.

    • Имейте в виду, что основанием треугольника может быть любая его сторона, на которую опущена высота (независимо от того, как расположен треугольник). Чтобы лучше понять это, представьте, что вы можете повернуть этот треугольник. Поверните его так, чтобы известная вам сторона была обращена вниз.
    • Например, площадь треугольника равна 20, а одна из его сторон равна 4. В этом случае “‘А = 20″‘, ‘”b = 4′”.
  3. Изображение с названием Find the Height of a Triangle Step 3

    3

    Подставьте данные вам значения в формулу для вычисления площади (А = 1/2bh) и найдите высоту. Сначала умножьте сторону (b) на 1/2, а затем разделите площадь (А) на полученное значение. Таким образом, вы найдете высоту треугольника.

    • В нашем примере: 20 = 1/2(4)h
    • 20 = 2h
    • 10 = h

    Реклама

  1. Изображение с названием Find the Height of a Triangle Step 4

    1

    Вспомните свойства равностороннего треугольника. В равностороннем треугольнике все стороны и все углы равны (каждый угол равен 60˚). Если в таком треугольнике провести высоту, вы получите два равных прямоугольных треугольника. [2]

    • Например, рассмотрим равносторонний треугольник со стороной 8.
  2. Изображение с названием Find the Height of a Triangle Step 5

    2

    Вспомните теорему Пифагора. Теорема Пифагора гласит, что в любом прямоугольном треугольнике с катетами «а» и «b» гипотенуза «с» равна: a2+b2=c2. Эту теорему можно использовать, чтобы найти высоту равностороннего треугольника![3]

  3. Изображение с названием Find the Height of a Triangle Step 6

    3

    Разделите равносторонний треугольник на два прямоугольных треугольника (для этого проведите высоту). Затем обозначьте стороны одного из прямоугольных треугольников. Боковая сторона равностороннего треугольника – это гипотенуза «с» прямоугольного треугольника. Катет «а» равен 1/2 стороне равностороннего треугольника, а катет «b» – это искомая высота равностороннего треугольника.

    • Итак, в нашем примере с равносторонним треугольником с известной стороной, равной 8: c = 8 и a = 4.
  4. Изображение с названием Find the Height of a Triangle Step 7

    4

    Подставьте эти значения в теорему Пифагора и вычислите b2. Сначала возведите в квадрат «с» и «а» (умножьте каждое значение само на себя). Затем вычтите a2 из c2.

    • 42 + b2 = 82
    • 16 + b2 = 64
    • b2 = 48
  5. Изображение с названием Find the Height of a Triangle Step 8

    5

    Извлеките квадратный корень из b2, чтобы найти высоту треугольника. Для этого воспользуйтесь калькулятором. Полученное значение и будет высотой вашего равностороннего треугольника!

    • b = √48 = 6,93

    Реклама

  1. Изображение с названием Find the Height of a Triangle Step 9

    1

    Подумайте, какие значения вам известны. Вы можете найти высоту треугольника, если вам известны значения сторон и углов. Например, если известен угол между основанием и боковой стороной. Или если известны значения всех трех сторон. Итак, обозначим стороны треугольника: «a», «b», «c», углы треугольника: «А», «В», «С», а площадь – буквой «S».

    • Если вам известны все три стороны, вам понадобится значение площади треугольника и формула Герона.
    • Если вам известны две стороны и угол между ними, можете использовать следующую формулу для нахождения площади: S=1/2ab(sinC).[4]
  2. Изображение с названием Find the Height of a Triangle Step 10

    2

    Если вам даны значения всех трех сторон, используйте формулу Герона. По этой формуле придется выполнить несколько действий. Сначала нужно найти переменную «s» (мы обозначим этой буквой половину периметра треугольника). Для этого подставьте известные значения в эту формулу: s = (a+b+c)/2.[5]

    • Для треугольника со сторонами а = 4, b = 3, c = 5, s = (4+3+5)/2. В результате получается: s=12/2, где s=6.
    • Затем вторым действием мы находим площадь (вторая часть формулы Герона). Площадь = √(s(s-a)(s-b)(s-c)). Вместо слова «площадь» вставьте эквивалентную формулу для поиска площади: 1/2bh (или 1/2ah, или 1/2ch).
    • Теперь найдите эквивалентное выражение для высоты (h). Для нашего треугольника будет справедливо следующее уравнение: 1/2(3)h = (6(6-4)(6-3)(6-5)). Где 3/2h=√(6(2(3(1))). Получается, 3/2h = √(36). С помощью калькулятора вычислите квадратный корень. В нашем примере: 3/2h = 6. Получается, что высота (h) равна 4, сторона b – основание.
  3. Изображение с названием Find the Height of a Triangle Step 11

    3

    Если по условию задачи известны две стороны и угол, вы можете использовать другую формулу. Замените площадь в формуле эквивалентным выражением: 1/2bh. Таким образом, у вас получится следующая формула: 1/2bh = 1/2ab(sinC). Ее можно упростить до следующего вида: h = a(sin C), чтобы убрать одну неизвестную переменную.[6]

    • Теперь осталось решить полученное уравнение. Например, пусть «а» = 3, «С» = 40 градусов. Тогда уравнение будет выглядеть так: «h» = 3(sin 40). С помощью калькулятора и таблицы синусов подсчитайте значение «h». В нашем примере h = 1,928.

    Реклама

Об этой статье

Эту страницу просматривали 436 640 раз.

Была ли эта статья полезной?

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

  • Нахождение высоты треугольника

    • Высота в разностороннем треугольнике

    • Высота в равнобедренном треугольнике

    • Высота в прямоугольном треугольнике

    • Высота в равностороннем треугольнике

  • Примеры задач

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота в разностороннем треугольнике ABC

1. Через площадь и длину стороны

Формула для нахождения высоты треугольника через его площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

Формула для нахождения высоты треугольника через длины его сторон

где p – это полупериметр треугольника, который рассчитывается так:

Формула для расчета полупериметра треугольника

3. Через длину прилежащей стороны и синус угла

Формула для нахождения высоты треугольника через длину стороны и синуса угла

4. Через стороны и радиус описанной окружности

Формула для нахождения высоты треугольника через длины сторон и радиус описанной окружности

Описанная вокруг разностороннего треугольника окружность

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

Опущенная на основание равнобедренного треугольника высота

Высота в прямоугольном треугольнике

Проведенная к гипотенузе высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

2. Через стороны треугольника

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через длины его сторон

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Формула для нахождения высоты в равностороннем треугольнике

Высота в равностороннем треугольнике

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Нахождение высоты треугольника через длину стороны и синус прилежащего угла (пример)

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Нахождение основания равнобедренного треугольника через высоту и боковую сторону (пример)


Download Article


Download Article

To calculate the area of a triangle you need to know its height. To find the height follow these instructions. You must at least have a base to find the height.

  1. Image titled Find the Height of a Triangle Step 1

    1

    Recall the formula for the area of a triangle. The formula for the area of a triangle is

    A=1/2bh.

    [1]

    • A = Area of the triangle
    • b = Length of the base of the triangle
    • h = Height of the base of the triangle
  2. Image titled Find the Height of a Triangle Step 2

    2

    Look at your triangle and determine which variables you know. You already know the area, so assign that value to A. You should also know the value of one side length; assign that value to “‘b'”.

    Any side of a triangle can be the base,

    regardless of how the triangle is drawn. To visualize this, just imagine rotating the triangle until the known side length is at the bottom.

    Example
    If you know that the area of a triangle is 20, and one side is 4, then:
    A = 20 and b = 4.

    Advertisement

  3. Image titled Find the Height of a Triangle Step 3

    3

    Plug your values into the equation A=1/2bh and do the math. First multiply the base (b) by 1/2, then divide the area (A) by the product. The resulting value will be the height of your triangle!

    Example
    20 = 1/2(4)h Plug the numbers into the equation.
    20 = 2h Multiply 4 by 1/2.
    10 = h Divide by 2 to find the value for height.

  4. Advertisement

  1. Image titled Find the Height of a Triangle Step 4

    1

    Recall the properties of an equilateral triangle. An equilateral triangle has three equal sides, and three equal angles that are each 60 degrees. If you

    cut an equilateral triangle in half, you will end up with two congruent right triangles.

    [2]

    • In this example, we will be using an equilateral triangle with side lengths of 8.
  2. Image titled Find the Height of a Triangle Step 5

    2

    Recall the Pythagorean Theorem. The Pythagorean Theorem states that for any right triangle with sides of length a and b, and hypotenuse of length c:

    a2 + b2 = c2.

    We can use this theorem to find the height of our equilateral triangle![3]

  3. Image titled Find the Height of a Triangle Step 6

    3

    Break the equilateral triangle in half, and assign values to variables a, b, and c. The hypotenuse c will be equal to the original side length. Side a will be equal to 1/2 the side length, and side b is the height of the triangle that we need to solve.

    • Using our example equilateral triangle with sides of 8, c = 8 and a = 4.
  4. Image titled Find the Height of a Triangle Step 7

    4

    Plug the values into the Pythagorean Theorem and solve for b2.[4]
    First square c and a by multiplying each number by itself. Then subtract a2 from c2.

    Example
    42 + b2 = 82 Plug in the values for a and c.
    16 + b2 = 64 Square a and c.
    b2 = 48 Subtract a2 from c2.

  5. Image titled Find the Height of a Triangle Step 8

    5

    Find the square root of b2 to get the height of your triangle! Use the square root function on your calculator to find Sqrt(2. The answer is the height of your equilateral triangle!

    • b = Sqrt (48) = 6.93
  6. Advertisement

  1. Image titled Find the Height of a Triangle Step 9

    1

    Determine what variables you know. The height of a triangle can be found if you have 2 sides and the angle in between them, or all three sides. We’ll call the sides of the triangle a, b, and c, and the angles, A, B, and C.

    • If you have all three sides, you’ll use

      Heron’s formula

      , and the formula for the area of a triangle.

    • If you have two sides and an angle, you’ll use the formula for the area given two angles and a side.

      A = 1/2ab(sin C).[5]

  2. Image titled Find the Height of a Triangle Step 10

    2

    Use Heron’s formula if you have all three sides. Heron’s formula has two parts. First, you must find the variable

    s, which is equal to half of the perimeter of the triangle.

    This is done with this formula:

    s = (a+b+c)/2.[6]

    Heron’s Formula Example
    For a triangle with sides a = 4, b = 3, and c = 5:
    s = (4+3+5)/2
    s = (12)/2
    s = 6

    Then use the second part of Heron’s formula, Area = sqr(s(s-a)(s-b)(s-c). Replace Area in the equation with its equivalent in the area formula: 1/2bh (or 1/2ah or 1/2ch).
    Solve for h. For our example triangle this looks like:
    1/2(3)h = sqr(6(6-4)(6-3)(6-5).
    3/2h = sqr(6(2)(3)(1)
    3/2h = sqr(36)

    Use a calculator to calculate the square root, which in this case makes it 3/2h = 6.
    Therefore, height is equal to 4, using side b as the base.

  3. Image titled Find the Height of a Triangle Step 11

    3

    Use the area given two sides and an angle formula if you have a side and an angle. Replace area in the formula with its equivalent in the area of a triangle formula: 1/2bh. This gives you a formula that looks like 1/2bh = 1/2ab(sin C). This can be simplified to

    h = a(sin C)

    , thereby eliminating one of the side variables.[7]
    Note that angle C and side a are both positioned across from the height that you need to find (both on the right side from it, or both on the left side).

    Finding Height with 1 Side and 1 Angle Example
    For example, with a = 3, and C = 40 degrees, the equation looks like this:
    h = 3(sin 40)
    Use your calculator to finish the equation, which makes h roughly 1.928.

  4. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    How do I find the area of an equilateral triangle when only the height is given?

    Community Answer

    H = height, S = side, A = area, B = base. You know that each angle is 60 degrees because it is an equilateral triangle. If you look at one of the triangle halves, H/S = sin 60 degrees because S is the longest side (the hypotenuse) and H is across from the 60 degree angle, so now you can find S. The base of the triangle is S because all the sides are the same, so B = S. Using A = (1/2)*BH, you get A = (1/2)*SH, which you can now find.

  • Question

    How do I calculate the height of a right triangle, given only the length of the base and the interior angle at the base?

    Donagan

    Look up the tangent of the angle in a trigonometry table. Multiply the tangent by the length of the base.

  • Question

    How do I determine the height of a triangle when I know the length of all three sides?

    Community Answer

    You already know the base, so calculate the area by Heron’s formula. Then, substitute the values you know in the formula. Area=1/2 * base * height or height=2 * Area/base and find your answer.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

References

About This Article

Article SummaryX

If you know the base and area of the triangle, you can divide the base by 2, then divide that by the area to find the height. To find the height of an equilateral triangle, use the Pythagorean Theorem, a^2 + b^2 = c^2. Cut the triangle in half down the middle, so that c is equal to the original side length, a equals half of the original side length, and b is the height. Plug a and c into the equation, squaring both of them. Then subtract a^2 from c^2 and take the square root of the difference to find the height. If you want to learn how to calculate the area if you only know the angles and sides, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 2,397,778 times.

Reader Success Stories

  • Kai Parker

    “My Geometry teacher is not the best teacher, and I usually have to look up terms and lessons so I can teach myself…” more

Did this article help you?

Добавить комментарий