Как найти x при y 3 парабола

В предыдущем уроке мы подробно разобрали,
как построить параболу.
В этом уроке мы разберем, как решать типовые задачи на квадратичную функцию.


Как найти нули квадратичной функции

Запомните!
!

Чтобы найти координаты точек нулей функции, нужно
в исходную функцию подставить вместо «y» число
ноль.

Рассмотрим задачу.

Найти нули квадратичной
функции «y = x2 − 3».

Подставим в исходную функцию вместо «y» ноль и решим полученное
квадратное уравнение.

0 = x2 − 3
x2 − 3 = 0

x1;2 =

0 ±
02 − 4 · 1 · (−3)
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1;2 = ±√3

Ответ: нули функции «y = x2 − 3» :
    

x1 = √3;
    

x2 = 3 .

Как найти при каких значениях
«x» квадратичная функция принимает заданное
числовое значение

Запомните!
!

Чтобы найти при каких значениях «x» квадратичная функция принимает заданное числовое значение,
нужно:

  • вместо «y» подставить в функцию заданное числовое значение;
  • решить полученное квадратное уравнение относительно «x».

Рассмотрим задачу.

При каких значениях «x» функция
«y = x2 − x − 3» принимает значение
«−3»
.

Подставим в исходную функцию
«y = x2 − x − 3» вместо «y = −3» и
найдем «x».

y = x2 − x − 3

−3 = x2 − x − 3
x2 − x − 3 = −3
x2 − x − 3 + 3 = 0
x2 − x = 0
x1;2 =

1 ±
12 − 4 · 1 · 0
2 · 1

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 1 x2 = 0

Ответ: при «x = 0» и
«x = 1» функция «y = x2 − x − 3»
принимает значение «y = −3».

Как найти координаты точек пересечения параболы и прямой

Запомните!
!

Чтобы найти точки пересечения параболы с прямой нужно:

  • приравнять правые части функций (те части функций, в которых содержатся «x»);
  • решить полученное уравнение относительно «x»;
  • подставить полученные числовые значения «x»
    в любую из функций и найти координаты точек по оси «Оy».

Рассмотрим задачу.

Найти координаты точек пересечения параболы «y = x2»
и прямой «y = 3 − 2x».

Приравняем правые части функций и решим
полученное уравнение относительно «x».

x2 = 3 − 2x
x2 − 3 + 2x = 0
x2 + 2x − 3 = 0

x1;2 =

−2 ±
22 − 4 · 1 · (−3)
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 1 x2 = −3

Теперь подставим в любую из заданных функций (например, в
«y = 3 − 2x») полученные
числовые значения «x», чтобы найти координаты
«y» точек пересечения.


1)   x = −3
y = 3 − 2x
y(−3) = 3 − 2 · (−3) = 3 − (−6) = 3 + 6 = 9
(·) A (−3; 9)
— первая точка пересечения.


2)   x = 1
y = 3 − 2x
y(1) = 3 − 2 · 1 = 3 − 2 = 1
(·) B (1; 1)
— вторая точка пересечения.

Запишем полученные точки пересечения с их координатами в ответ.

Ответ: точки пересечения параболы
«y = x2»
и прямой «y = 3 − 2x»:
(·) A (−3; 9) и
(·) B (1; 1).

Как определить, принадлежит ли точка графику функции параболы

Запомните!
!

Чтобы проверить принадлежность точки параболе нет необходимости строить график функции.

Достаточно подставить координаты точки в формулу функции (координату по оси
«Ox» вместо
«x», а координату по оси
«Oy» вместо «y») и выполнить арифметические расчеты.

  • Если получится верное равенство, значит, точка принадлежит графику функции.
  • Если получится неверное равенство, значит, точка
    не принадлежит графику функции.

Рассмотрим задачу:

Не строя графика функции «y = x2», определить, какие точки принадлежат ему:
(·) А(2; 6),    
(·) B(−1; 1)
.

Подставим в функцию
«y = x2»

координаты точки (·) А(2; 6).


y = x2
6 = 22
6 = 4


(неверно)

Значит, точка (·) А(2; 6)
не принадлежит графику функции
«y = x2».

Подставим в функцию
«y = x2»

координаты точки (·) B(−1; 1).


y = x2
1 = (−)12
1 = 1


(верно)

Значит, точка (·) B(−1; 1)
принадлежит графику функции
«y = x2».


Как найти точки пересечения параболы с осями координат

Рассмотрим задачу

Найти координаты точек пересечения параболы
«y = x2 −3x + 2» с осями координат
.

Сначала определим точки пересечения функции с осью «Ox».
На графике функции эти точки выглядят так:

точки пересечения с осью Ox

Как видно на рисунке выше, координата «y» точек пересечения с осью «Ox»
равна нулю, поэтому подставим «y = 0» в
исходную функцию «y = x2 −3x + 2»
и найдем их координаты по оси «Ox».

0 = x2 −3x + 2
x2 −3x + 2 = 0

x1;2 =

3 ±
32 − 4 · 1 · 2
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 2 x2 = 1

Запишем координаты точек пересечения графика с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).

Теперь найдем координаты точки пересечения с осью «Oy».

точки пересечения с осью Oy

Как видно на рисунке выше, координата «x»
точки пересечения с осью «Oy» равна нулю.

Подставим «x = 0»
в исходную функцию
«y = x2 −3x + 2»
и найдем координату точки по оси
«Oy».

y(0) = 02 − 3 · 0 + 2 = 2

Выпишем координаты полученной точки: (·) C (0; 2)

Запишем в ответ все координаты точек пересечения параболы с осями.

Ответ: точки пересечения с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).
С осью «Oy»: (·)C (0; 2).


Как определить при каких значениях x функция принимает
положительные или
отрицательные значения

Напоминаем, что когда в задании говорится «функция принимает
значения» — речь идет о
значениях«y».
Другими словами, необходимо ответить на вопрос: при каких значениях
«x», координата
«y» положительна или отрицательна.

Запомните!
!

Чтобы по графику функции определить, где функция принимает положительные или отрицательные значения нужно:

  • провести прямые через точки в местах, где график пересекает ось «Ox»;
  • определить положительные или отрицательные значения принимает функция на промежутках между проведенными прямыми;
  • записать ответ для каждого промежутка относительно «x».

Рассмотрим задачу.

С помощью графика квадратичной функции, изображенного на рисунке, ответить:
При каких значениях «x» функция принимает 1) положительные значения; 2) отрицательные значения.

положительные и отрицательные значения функциии

Проведем через точки, где график функции пересекает ось «Ox» прямые.

положительные и отрицательные значения функциии с доп. прямыми

Определим области, где функция принимает отрицательные или положительные значения.

положительные и отрицательные значения на графике

Подпишем над каждой полученной областью, какие значения принимает
«x» в каждой из выделенных областей.

положительные и отрицательные значения на графике c подписью относительно x

Ответ: при «x < −1» и
«x > 2» функция принимает отрицательные значения;
при «−1 < x < 2» функция принимает
положительные значения.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Как найти вершину параболы

Общие сведения

Парабола — кривая, состоящая из равноудаленных точек от заданной точки (вершина) и прямой. Последняя называется директрисой. График функции имеет ось симметрии, которая проходит по определенной траектории и зависит от функции кривой (рис. 1). Ее вершина находится в центре координат.

Как находить вершину параболы

Рисунок 1. График квадратичной функции с вершиной в начале координат.

Однако существуют и другие случаи прохождения кривой. Она может пересекать оси абсцисс или ординат. В некоторых случаях ее ветви направлены вниз. При вращении вокруг оси симметрии получается поверхность, которая используется в различных устройствах. По этому принципу изготовлены фары автомобиля, зеркала в телескопах и т. д. Кроме того, парабола — это квадратичная зависимость переменных друг от друга. Парабола имеет некоторые свойства:

Формула нахождения вершины параболы

  1. Парабола — кривая второго порядка.
  2. Ось симметрии перпендикулярна директрисе и проходит через фокус и вершины.
  3. Оптическое свойство отражения.
  4. Отрезок, который соединяет середину любой хорды параболы и точку пересечения касательных прямых, является перпендикуляром относительно директрисы.
  5. Подобность всех парабол.
  6. Траектория фокуса, которая катится по произвольной прямой — цепная молния.

Следует отметить, что оптическое свойство — это способность отражать свет от источника. Если пучок лучей, которые являются параллельными ее оси, отражаются в параболе, то они собираются в фокусе кривой. При нахождении источника света в фокусе происходит отражение параллельного пучка лучей относительно ее оси.

Уравнения квадратичной функции

Параболу можно описать несколькими способами. Каждый из них нужно применять в конкретных случаях для удобства вычислений. Существует три формы описания кривой:

  1. Каноническая.
  2. Квадратичная.
  3. Общая.

В первой форме она имеет следующий вид: y 2 = 2px. Если поменять местами оси декартовой системы, то получится следующий вид: x 2 = 2yp. Коэффициент p — фокальный параметр. Он соответствует расстоянию между фокусом и директрисой. Кроме того, его значение всегда больше нуля. Вершина лежит всегда между фокусом и директрисой кривой на расстоянии, равном p/2 (рис. 2).

Нахождения вершины параболы формула

Рисунок 2. Директриса и фокус.

Пусть уравнение директрисы (прямая, которая параллельна оси ОУ) имеет следующий вид: х + p/2 = 0. Координаты фокуса F — (р/2;0). Начало координат делит луч, проходящий из точки F и точки пересечения с директрисой на 2 равных отрезка. Величина FM рассчитывается таким образом: FM = [(x — p/2)^2 + y 2 ]^0.5. Отрезок (луч) из точки М до директрисы равен p/2 + x. Если приравнять оба выражения, то равенство имеет такой вид: p/2 + x = [(x — p/2)^2 + y 2 ]^0.5. При возведении в квадрат и приведении подобных слагаемых, получается искомое уравнение параболы (y 2 = 2px).

Парабола может задаваться квадратичной функцией. Она имеет такой вид: y = ax 2 + bx + c. Следует учитывать, что коэффициент «a» не должен быть равен 0. Если a=1, b = 0 и с = 0, функция принимает такой вид: y = ax 2 . В этом случае формула нахождения вершины параболы выглядит таким образом:

Формула нахождения вершины параболы

  1. Абсцисса вершины параболы: xa = -b / 2a.
  2. Координата «игрек» по оси ординат: yb = – D / 2a.

В последней формуле переменная D является дискриминантом квадратного уравнения искомой функции. Он вычисляется с помощью такого соотношения: D = b 2 — 4ac. При а>0 фокус лежит на оси, и находится над вершиной. Ось симметрии параллельна оси ординат. Кроме того, она проходит через вершину кривой. Расстояние до нее равно ¼ величины «а». Если а<0, то ось ее симметрии параллельна оси абсцисс. Расстояние до фокуса также равно ¼а. Уравнение y = a (x — xa)^2 + ya — функция, определяющая кривую II порядка, как параболу.

Поскольку искомую функцию можно назвать кривой второго порядка, то ее уравнение может быть записано в виде квадратного многочлена в декартовой системе координат. Вид его имеет такой вид: Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0. Дискриминант равен нулю (при старших членах).

В полярной системе координат с осями p и v уравнение квадратичной функции имеет такой вид: p (1 + cos (v)) = p. Расстояние от фокуса до директрисы обозначается фокальным коэффициентом p. Кроме того, p соответствует удвоенной длине отрезка, проведенного от фокуса до вершины.

Методы нахождения вершины

В математике есть три способа нахождения координат точки вершины кривой: по формуле, выделением полного квадрата и нахождением производной. Следует отметить, что первый способ не подойдет в том случае, когда функция отличается от вида y = ax 2 + bx + c. Первый способ — расчет по формуле вершины параболы квадратичной функции. Координата x0 вычисляется таким образом: x0 = -b / 2a. Для нахождения координаты y0 следует подставить в функцию найденное значение x0.

Когда функция представлена неполным квадратом, нужно прибавить или отнять одинаковое число к двум частям уравнения. Если воспользоваться этим методом, то можно вычислить сразу значения х и у. Алгоритм нахождения вершины для функции у = x 2 + 4x + 2 имеет такой вид:

Общие сведения о квадратичной функции

  1. Приравнять многочлен к нулю, и перенести свободный член в правую сторону с противоположным знаком: x 2 + 4x = -2.
  2. Дополнить до полного квадрата. Необходимо вычислить свободный член по такому соотношению: с = (b/2)^2 = (4/2)^2 = 4.
  3. Записать полный квадрат, отняв и прибавив свободный член: x 2 + 4x + 4 — 4 = -2.
  4. Выделить квадрат: (x 2 + 2x + 4) — 4 = -2.
  5. Перенести свободное число в правую сторону с противоположным знаком: (x 2 + 2x + 4) = 4 — 2.
  6. Уравнение принимает следующий вид: (x + 2)^2 = 2.
  7. Для того чтобы вычислить x0, нужно решить уравнение (x + 2)^2 = 0. Следовательно, x = -2.
  8. Ординату точки определить очень просто, поскольку ее значение соответствует числу (нужно брать с противоположным знаком), которое находится в правой части уравнения, т. е. у = -2.

При изображении графика вершину нужно сместить в точку (-2;2). Третий способ позволяет узнать координаты вершины с помощью определения производной. Находить ее следует от заданной функции. Для вычисления координат вершины нужно действовать по следующему алгоритму:

  1. Найти производную и приравнять ее к нулю: f'(x) = (ax 2 + bx + c)’ = 2ax + b.
  2. Выразить х: х = -b / (2a).
  3. Подставить в функцию для вычисления y.
  4. Записать координаты точки.

Однако эти все три метода относятся к ручному вычислению. Автоматизация действий осуществляется с помощью специализированного программного обеспечения. Для этой цели подойдет онлайн-калькулятор, поддерживающий функцию нахождения точек вершины квадратичной кривой. Программы рекомендуется применять только для проверки решения, поскольку очень важно знать методы нахождения этой точки.

Алгоритм построения

В различных задачах нужно выполнить построение графика функции. В некоторых случаях даются координаты вершины, а в других — их следует искать, используя какой-либо метод. Чтобы построить квадратичную функцию, нужно воспользоваться таким алгоритмом:

Примеры решения задач

  1. Если вершина не задана, то нужно найти ее любым из методов.
  2. Определить точки пересечения с осями декартовой системы координат.
  3. Построить таблицу зависимости ординаты от абсциссы. Для этой цели нужно выделить минимум 3 значения «х». Вершина должна находиться по центру таблицы.
  4. Выполнить построение, соединив точки.

Если необходим более точный график, то необходимо брать больше точек. Значения рассчитываются при подстановке значений «х» в функцию. Когда парабола задана функцией y = x 2 + c, нет смысла брать разные значения. Нужно использовать для построения искомой таблицы числа с противоположными знаками. Например, x1 = 2 и x2 = -2.

Специалисты-математики настоятельно рекомендуют не усложнять вычисления. Возможно, в школьных программах и рассматриваются различные случаи. Однако в высших учебных заведениях основной аспект изучения дисциплин с физико-математическим уклоном сводится к оптимизации процесса решения задачи.

Примеры решений

В математике существует определенная классификация заданий на простые и сложные типы. Все они считаются однотипными, но отличаются только объемами вычислений и необходимостью построения графиков. Для решения нужно воспользоваться рекомендуемыми алгоритмами, которые существенно оптимизируют вычисления.

«Корень» трудностей при расчете — отсутствие систематизации вычислений. Не все ими пользуются. В результате простая задача становится очень сложной, поскольку в ней присутствует много ненужных вычислений. Кроме того, как отмечалось выше, рекомендуется «набить руку» на ручных вычислениях, ведь не всегда можно будет воспользоваться программами.

Упрощенная задача

Простым примером задания является следующий: необходимо вычислить координаты вершины точки параболы y = x 2 + 3x — 18. Следует продемонстрировать решение тремя способами. Решение первым методом:

  1. Координата по оси абсцисс: х0 = -3 / (2 * 1) = -1,5.
  2. По ординате: (-1,5)^2 + 3 * (-1,5) — 18 — y= 0. Отсюда, y = -20,25.

Следовательно, вершина находится в точке (-1,5;20,25). Второй способ решения данной задачи имеет такой вид:

Как найти х вершину параболы

  1. Составить уравнение и перенести свободный член: x 2 + 3x = 18.
  2. Вычислить свободный член: с = (b/2)^2 = 2,25.
  3. Записать выражение: x 2 + 3x + 2,25 — 2,25 = 18.
  4. Выделить квадрат: (x 2 + 3x + 2,25) = 20,25.
  5. Определить координаты: (x + 1,5)^2 = 20,25.
  6. Искомая точка: (-1,5;20,25).

Для решения третьим методом следует найти производную: y’ = (x 2 + 3x — 18)’ = 2x + 3. Затем нужно приравнять ее к нулю: 2х + 3 = 0. Уравнение является простым, а его переменная легко находится: x = -3 / 2 = -1,5. После этого необходимо подставить абсциссу в функцию, приравняв ее к 0: y = 20,25.

Повышенная сложность

Задания повышенной сложности сводятся к вычислению нескольких значений. Кроме того, в некоторых случаях следует построить график параболы y = x 2 — 7x +10. Необходимо выполнить такие действия:

  1. Пересечение с осями.
  2. Вычислить экстремум (вершину) всеми методами.
  3. Выполнить графический эскиз (график).

Точек пересечения по ОУ нет. Они есть по оси абсцисс. Следует приравнять функцию к 0. Нахождение корней выполняется по теореме Виета: x1 = 2 и x2 = 5.

Для нахождения вершины необходимо воспользоваться тремя методами. При решении первым способом находится координата x0 = 7 / (2 * 1) = 3,5. Ордината определяется таким образом: y0 = (3,5)^2 — (7 * 3,5) + 10 = -2,25. Точка экстремума имеет координаты (3,5;-2,25). Находить вершину параболы необходимо по такому алгоритму:

  1. Записать уравнение, и выполнить перенос свободного члена: x 2 — 7x = -10.
  2. Найти свободный член: с = (7/2)^2 = 12,25.
  3. Составить уравнение: x 2 — 7x + 12,25 — 12,25 = -10.
  4. Выделить квадрат: (x — 3,5)^2 = 2,25.
  5. Экстремум: (3,5;-2,25).

Для следующего метода нужно найти производную: y’ = (x 2 — 7x +10)’ = 2x — 7. Далее нужно приравнять y’ к нулю: 2x — 7 = 0. Значение по оси абсцисс равно х0 = 3,5, а y0 = -2,25. Далее нужно заполнить таблицу зависимостей ординаты от переменной.

y 4 0 -2 -2,25 -2 0 4
x 1 2 3 3,5 4 5 6

Таблица 1. Зависимость y от x.

После заполнения таблицы следует построить график искомой функции (рис. 3). Таблица состоит из следующих элементов: вершины, точек пересечения с осью абсцисс и 4 произвольных значений.

Как вычислить вершину параболы

Рисунок 3. График функции.

Математики рекомендуют использовать для построения графика полученные значения при расчетах, поскольку подстановка и вычисление произвольных х существенно снижает скорость вычислений.

Таким образом, нахождение координат вершины параболы является довольно простой задачей, поскольку существует несколько методов. Из них можно выбрать оптимальный, который подходит в конкретной ситуации.

y=x2+x+

Правила ввода

Если вы хотите ввести неполную квадратичную параболу y=ax², y=ax²+bx или y=ax²+c вам нужно вместо соответствующих коэффициентов вписать 0. Если поля останутся пустыми программа впишет 1.

Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.

Формулы вычисления координат вершины параболы

Графиком квадратичной функции является парабола

[large y=ax^2+bx+c, ane0]

[large x_0=-frac{b}{2a}]

[large y_0=frac{4ac-b^2}{4a}]

Вывод формул вычисления координат вершины параболы

Для того, чтобы вывести формулу вершины параболы необходимо из квадратного трёхчлена выделить полный квадрат по формуле

[large (a+b)^2=a^2+2ab+b^2]

Возьмём формулу квадратного трёхчлена

[large y=ax^2+bx+c, ane0]

Вынесем коэффициент a за скобку

[large y=a(x^2+frac{b}{a}x)+c]

Прибавим и вычтем второе слагаемое квадрата суммы

[large y=aBig(x^2+2frac{b}{2a}x+Big(frac{b}{2a}Big)^2-Big(frac{b}{2a}Big)^2Big)+c]

Выделим квадрат суммы

[large y=aBig(x+frac{b}{2a}Big)^2 + frac{4ac-b^2}{4a}]

По сути у нас получается функция вида (y=a(x+l)^2+m) которая отличается от функции (y=ax^2) смещением по оси абцисс на (-l), а по оси ординат на m

[large l=x_0=-frac{b}{2a}]

[large m=y_0=frac{4ac-b^2}{4a}]

Способы вычисления координат вершины параболы

1) Если дискриминант равен 0 то уравнение будет иметь один корень. Другими словами вершина параболы будет лежать на оси абцисс. Соответственно корень уравнения и будет координатой вершины параболы. Координату по оси ординат можно будет найти подставив найденный корень в уравнение.

Разберём пример
Найдём координаты вершины параболы x²+2x+1=y
D=2²-4×1×1=0
x=(-2)/(2×1)=-1
Подставим в наше уравнение -1
y=(-1)²+2×(-1)+1=0
Соответственно координаты вершины параболы будут в точке (-1, 0)

2) Если дискриминант больше 0 то уравнение имеет 2 корня. Парабола симметрична относительно вертикали проходящей через её вершину. Соответственно координата x0 равна среднему арифметическому его корней т.е x0=(x1+x2)/2.

Разберём пример
Найдём координаты вершины параболы 2x²+3x-5=y
D=3²-4×2×(-5)=49
x1=(-3+7)/(2×2)=1
x2=(-3-7)/(2×2)=-2.5
x0=(1+(-2.5))/2=-0.75
Подставим в наше уравнение -0.75
y=2×(-0.75)²+3×(-0.75)-5=-6.125
Соответственно координаты вершины параболы будут в точке (-0.75, -6.125)

3) Если квадратный трёхчлен привести к виду y=a(x+l)²+m то координаты вершины параболы будут в точке (-l,m)

Разберём пример
Найдём координаты вершины параболы y=2x²-20x+54
Вынесем 2 за скобку
y=2(x²-10x)+54
Прибавим и отнимем 25
y=2(x²-10x+25-25)+54
y=2(x²-2×5x+5²-25)+54
y=2((x-5)²-25)+54
y=2(x-5)²-50+54
y=2(x-5)²+4
Соответственно координаты вершины параболы будут в точке (5, 4)

Home » 8 класс » Как построить параболу? Что такое парабола? Как решаются квадратные уравнения?

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax2+bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1 ) Формула параболы y=ax2+bx+c,
если а>0 то ветви параболы направленны вверх,
а<0 то ветви параболы направлены вниз.
Свободный член c эта точке пересекается параболы с осью OY;

парабола

парабола

2 ) Вершина параболы, ее находят по формуле x=(-b)/2a, найденный x подставляем в уравнение параболы и находим y;

Вершина параболы

3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax2+bx+c=0;

   Виды уравнений:

a) Полное квадратное уравнение имеет вид ax2+bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax2+bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax2+bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax2+c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

Как решать квадратные уравнения посмотреть тут.

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x2+4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2)2+4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x2+4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b2-4ac=16-12=4
x=(-b±√(D))/2a
x1=(-4+2)/2=-1
x2=(-4-2)/2=-3
y=x^2+4x+3 парабола
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x2+4x+3 значения
y=(-4)2+4*(-4)+3=16-16+3=3
y=(-3)2+4*(-3)+3=9-12+3=0
y=(-1)2+4*(-1)+3=1-4+3=0
y=(0)2+4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x2+4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1<0.
a=-1 b=4 c=0 x=(-b)/2a=(-4)/(2*(-1))=2 y=-(2)2+4*2=-4+8=4 вершина находится в точке (2;4)
Найдем корни уравнения -x2+4x=0
Неполное квадратное уравнение вида ax2+bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.
y=-x^2+4x
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x2+4x значения
y=02+4*0=0
y=-(1)2+4*1=-1+4=3
y=-(3)2+4*3=-9+13=3
y=-(4)2+4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x2-4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0)2-4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x2-4=0
Неполное квадратное уравнение вида ax2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x2=4
x1=2
x2=-2

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x2-4 значения
y=(-2)2-4=4-4=0
y=(-1)2-4=1-4=-3
y=12-4=1-4=-3
y=22-4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE, чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

Расположение графика квадратного трёхчлена относительно осей координат

В §28 данного справочника мы показали, что квадратный трёхчлен можно представить в виде:

$$ ax^2+bx+c = a(x+ frac{b}{2a})^2-frac{D}{4a}, D = b^2-4ac $$

Мы получаем:

  • ось симметрии $x = -frac{b}{2a}$
  • вершину параболы на оси симметрии $(–frac{b}{2a}; -frac{D}{4a})$
  • точку пересечения (0;c) с осью OY

Любая парабола $y = ax^2+bx+c, a ≠ 0$ пересекается с осью OY в единственной точке (0;c).

Количество точек пересечения параболы $y = ax^2+bx+c$ с осью OX зависит от знака дискриминанта.

Если $D gt 0$, парабола имеет две точки пересечения с $x_1,2 = frac{-b pm sqrt{D}}{2a}$ на оси OX.

Если D = 0, парабола имеет одну точку пересечения $x_0 = -frac{b}{2a}$, которая лежит на оси OX и является вершиной параболы.

Если $D lt 0$ у параболы нет ни одной точки пересечения с осью OX.

Точки пересечения параболы с осью OX

$a gt 0$

$a lt 0$

$D gt 0$

Расположение графика квадратного трёхчлена относительно осей координат рис.1 Расположение графика квадратного трёхчлена относительно осей координат рис.2

$x_(1,2) = frac{-b pm sqrt{D}}{2a}$

D = 0

Расположение графика квадратного трёхчлена относительно осей координат рис.3 Расположение графика квадратного трёхчлена относительно осей координат рис.4

$x_0 = -frac{b}{2a}$

$ D lt 0 $

Расположение графика квадратного трёхчлена относительно осей координат рис.5 Расположение графика квадратного трёхчлена относительно осей координат рис.6

${ varnothing }$-нет пересечений

Точки пересечения двух парабол

На практике часто возникает задача «перехвата» одного тела другим, т.е. поиска точек пересечения двух траекторий; а тела в поле тяготения Земли нередко движутся по параболе.

Точки пересечения двух парабол

Поэтому исследовать возможные точки пересечения двух парабол – важная прикладная задача. Пусть уравнения парабол:

$$ y = a_1 x^2+b_1 x+c_1, quad y = a_2 x^2+b_2 x+c_2 $$

В точках пересечения выполняется равенство:

$$ a_1 x^2+b_1 x+c_1 = a_2 x^2+b_2 x+c_2 $$

$$ (a_1-a_2 ) x^2+(b_1-b_2 )x+(c_1-c_2 ) = 0 $$

Если ввести обозначения $A = a_1-a_2, B = b_1-b_2, C = c_1-c_2$, получаем уравнение:

$$ Ax^2+Bx+C = 0 $$

Количество решений этого уравнения в зависимости от нулевых и ненулевых значений параметров равно 11 и описывается схемой общего алгоритма решений квадратного уравнения (см.§25 данного справочника).

A = B = C = 0

$ a_1 = a_2, b_1 = b_2, $

$ c_1 = c_2 $

Две параболы совпадают

Бесконечное множество общих точек, $x in Bbb R$

Бесконечное множество общих точек

$A = B = 0, C neq 0$

$ a_1 = a_2, b_1 = b_2, $

$ c_1 neq c_2 $

Параболы имеют вид

$y = ax^2+bx+c_1$

$ y = ax^2+bx+c_2 $

У них общая ось симметрии

$ x = -frac{b}{2a}$, одна парабола находится над другой.

Ветки сходятся только на бесконечности.

Точек пересечения нет

Точек пересечения нет

$A = 0, B neq 0, C = 0$

$ a_1 = a_2, b_1 neq b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$y = ax^2+b_1 x+c$

$ y = ax^2+b_2 x+c $

Обе проходят через точку (0;c).

Это – единственная точка пересечения.

Одна точка пересечения

(0;c)

Одна точка пересечения

$A = 0, B neq 0, C neq 0$

$ a_1 = a_2, b_1 neq b_2 $

$ c_1 neq c_2 $

Параболы имеют вид

$y = ax^2+b_1 x+c_1$

$ y = ax^2+b_2 x+c_2 $

Абсцисса точки пересечения

$ x = – frac{C}{B} = -frac{c_1-c_2}{b_1-b_2}$

Одна точка пересечения (касание)

Одна точка пересечения (касание)

$A neq 0, B = 0, C = 0$

$ a_1 neq a_2, b_1 = b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$ y = a_1 x^2+bx+c$

$ y = a_2 x^2+bx+c $

Пересекаются при x=0 (точка касания)

Одна точка пересечения (касание) (0;c)

Точек пересечения нет

$A neq 0, B = 0, C neq 0$

$ a_1 neq a_2, b_1 = b_2 $

$ c_1 neq c_2 $

Параболы имеют вид

$ y = a_1 x^2+bx+c_1$

$ y = a_2 x^2+bx+c_2 $

Не пересекаются, если

$- frac{c_1-c_2}{a_1-a_2} lt 0 $

Две точки пересечения

Две точки пересечения

Если

$- frac{c_1-c_2}{a_1-a_2} gt 0 $

Пересекаются в двух точках

$$ x_{1,2} = pm sqrt{-frac{c_1-c_2}{a_1-a_2}} $$

Две точки пересечения

Две точки пересечения, одна из которых (0;c)

$A neq 0, B neq 0, C = 0$

$ a_1 neq a_2, b_1 neq b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$$ y = a_1 x^2+b_1 x+c $$

$$ y = a_2 x^2+b_2 x+c $$

Две точки пересечения

$ x_1 = 0 $

$$x_2 = -frac{b_1-b_2}{a_1-a_2}$$

Две точки пересечения,

одна из которых (0;c)

Две точки пересечения, одна из которых (0;c)

$A neq 0, B neq 0, C neq 0$

$ a_1 neq a_2, b_1 neq b_2 $

$ c_1 neq c_2 $

Все параметры парабол разные

Ищем дискриминант:

$$ D = B^2-4AC $$

Если $D gt 0$

Две точки пересечения

$$ x_1,2 = frac{-B pm sqrt{D}}{2A} $$

Две точки пересечения

Две точки пересечения

Если D = 0

Одна точка пересечения (касание)

$$ x_0 = -frac{B}{2A} $$

Одна точка пересечения

(касание)

Одна точка пересечения

Если $D lt 0$

Точек пересечения нет

Точек пересечения нет

Точек пересечения нет

Внимание!

Если две параболы не совпадают, то они могут иметь 1) две точки пересечения; 2) одну точку пересечения; 3) ни одной точки пересечения.

Иметь ровно 3, 4, 5 и т.д. точек пересечения две параболы не могут!

Примеры

Пример 1. Найдите точки пересечения параболы с осями координат:

$а) y = 3x^2+2x-1$

Пример 1. а)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = -1end{array} right.}$

Пересечение с осью OX:

$$ 3x^2+2x-1 = 0 Rightarrow (3x-1)(x+1) = 0 Rightarrow $$

$ Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x = frac{1}{3} \ y = 0 end{array} right.} \ {left{ begin{array}{c} x = -1 \ y = 0 end{array} right.} end{array} right.$ – две точки пересечения

$б) y = -4x^2-3x+1$

Пример 1. б)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = 1end{array} right.}$

Пересечение с осью OX:

$$ -4x^2-3x+1 = 0 Rightarrow 4x^2+3x-1 = 0 $$

$$ (4x-1)(x+1) = 0 Rightarrow$$

$ Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x = frac{1}{4} \ y = 0 end{array} right.} \ {left{ begin{array}{c} x = -1 \ y = 0 end{array} right.} end{array} right.$ – две точки пересечения

$в) y = 5x^2-2x+1$

Пример 1. в)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = 1end{array} right.}$

Пересечение с осью OX:

$$ 5x^2-2x+1 = 0 $$

$$ D = 2^2-4 cdot 5 cdot 1 = 4-20 = -16 lt 0 $$

Парабола не пересекает ось OX

$ г) y = -x^2+4x-4 $

Пример 1. г)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = -4end{array} right.}$

Пересечение с осью OX:

$$ -x^2+4x-4 = 0 Rightarrow x^2-4x+4 = 0 Rightarrow $$

$$ Rightarrow (x-2)^2 = 0 Rightarrow {left{ begin{array}{c} x = 2 \ y = 0 end{array} right.}$$ – одна точка пересечения

Пример 2*. Даны две параболы

$$ y = 2x^2+5x+1 и y = x^2+3x+k $$

Найдите такое значение параметра k, чтобы параболы

1) имели две точки пересечения; 2) имели одну точку пересечения; 3) не пересекались.

По условию

$$ a_1 = 2, b_1 = 5, c_1 = 1, a_2 = 1, b_2 = 3, c_2 = k $$

$$ a_1 neq a_2, b_1 neq b_2 $$

A = 2-1 = 1, B = 5-3 = 2, C = 1-k

Нам необходимо рассмотреть 4 последних случая из представленных выше, в таблице §29.

1) Параболы имеют две точки пересечения в двух случаях:

1 случай: $c_2 = c_1$, k = 1

Пример 2* 1 случай

$$x_1 = 0, x_2 = -frac{B}{A} = -2$$

$${left{ begin{array}{c} y = 2x^2+5x+1 \ y = x^2+3x+1 end{array} right.} Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x_1 = 0 \ y_1 = 1end{array} right.} \ {left{ begin{array}{c} x_2 = -2 \ y_2 = -1 end{array} right.} end{array} right.$$

2 случай: $c_2 ≠ c_1, D gt 0$

$$ D = B^2-4AC = 2^2-4 cdot 1 cdot (1-k) = 4k gt 0 Rightarrow k gt 0 $$

Пример 2* 2 случай

Например, k = 4

$$ D = 4k = 16 = 4^2 $$

$$ x_1,2 = frac{-B pm sqrt{D}}{2A} = frac{-2 pm 4}{2} = left[ begin{array}{cc} x_1 = -3\ x_2 = 1 end{array} right. $$

Оба случая можем объединить требованием $k gt 0$.

2) Параболы имеют одну точку пересечения, если:

$$ D = 4k = 0 Rightarrow k = 0 $$

Пример 2 случай 2)

$${left{ begin{array}{c} y = 2x^2+5x+1 \ y = x^2+3x end{array} right.} $$

$$ x_0 = frac{-B}{2A} = -1 $$

3) Параболы не имеют общих точек, если:

$$ D = 4k lt 0 Rightarrow k lt 0 $$

Пример 2* 3)

Например, k = -1

Ответ: 1) $k gt 0$; 2) k = 0; 3) $k lt 0$

Пример 3. Две параболы с общей вершиной

Найдите соотношение параметров двух парабол, при котором они будут пересекаться в одной точке – вершине парабол.

Пусть уравнения парабол:

$$ y = a_1 x^2+b_1 x+c_1, y = a_2 x^2+b_2 x+c_2 $$

Координаты вершин:

$$ left( -frac{b_1}{2a_1}, – frac{D_1}{4a_1} right), left(- frac{b_2}{2a_2},- frac{D_2}{4a_2} right) $$

По условию:

$$ {left{ begin{array}{c} -frac{b_1}{2a_1} = -frac{b_2}{2a_2} \ -frac{D_1}{4a_1} = -frac{D_2}{4a_2} end{array} right.} Rightarrow {left{ begin{array}{c} frac{b_1}{a_1} = frac{b_2}{2a_2} \ frac{D_1}{a_1} = frac{D_2}{a_2} end{array} right.} $$

Получаем две пропорции, которым параметры уравнений должны удовлетворять одновременно.

Пример 4. Используя результаты примера 3, найдите две параболы, у которых такая же вершина, как у $y = frac{x^2}{2}-3x+1$.

Координаты вершины:

$$ x_0 = – frac{b}{2a} = – frac{-3}{2 cdot frac{1}{2}} = 3, D = b^2-4ac = 3^2-4 cdot frac{1}{2} cdot 1 = 7 $$

$$ y_0 = – frac{D}{4a} = – frac{7}{4 cdot frac{1}{2}} = -3,5 $$

Уравнение искомой параболы: $y = ax^2+bx+c$

Пропорции для параметров (см. пример 3):

$$ {left{ begin{array}{c} frac{b}{a} = frac{-3}{1/2} = -6 \ frac{D}{a} = frac{7}{1/2} = 14 end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ D = 14a end{array} right.} $$

Пусть для искомых двух парабол a=1 и a=-0,2 (можно взять любые другие значения). Получаем:

$$ {left{ begin{array}{c} a = 1 \ b = -6a = -6 \ D = 14a = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ b^2-4ac = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ 36-4c = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ c = frac{36-14}{4} = 5,5 end{array} right.}$$

$$ y = x^2-6x+5,5 $$

$$ {left{ begin{array}{c} a = -0,2 \ b = -6a = 1,2 \ D = 14a = -2,8 end{array} right.} Rightarrow {left{ begin{array}{c} a = -0,2 \ b = 1,2 \ 1,2^2-4 cdot (-0,2)c = -2,8 end{array} right.} Rightarrow {left{ begin{array}{c} a = -0,2 \ b = 1,2 \ c = – frac{1,44+2,8}{0,8} = -5,3 end{array} right.} $$

$$ y = -0,2x^2+1,2x-5,3 $$

Параболы

$$ y = frac{x^2}{2}-3x+1, y = x^2-6x+5,5, y = -0,2x^2+1,2x-5,3 $$

имеют общую вершину (3;-3,5)

Пример 4.

Пример 5. Комета движется по параболической траектории, которая в выбранной системе координат описывается уравнением $y = frac{x^2}{3}-2x+5$.

Космический аппарат запускается из начала координат и также движется по параболической траектории. Рассчитайте уравнение этой траектории так, чтобы её вершина совпала с вершиной траектории кометы.

Координаты вершины траектории кометы:

$$ x_0 = -frac{b}{2a} = -frac{-2}{2 cdot frac{1}{3}} = 3, D = b^2-4ac = 2^2-4 cdot frac{1}{3} cdot 5 = – frac{8}{3} $$

$$ y_0 = – frac{D}{4a} = – frac{-8/3}{4 cdot 1/3} = 2 $$

Уравнение траектории космического аппарата: $y = ax^2+bx+c$.

Аппарат запускается из начала координат, т.е. его траектория пересекается с осью OY в точке (0;0). Значит, в уравнении параболы c = 0.

Пропорции для параметров (см. пример 3) с учетом c = 0:

$$ {left{ begin{array}{c} frac{b}{a} = frac{-2}{1/3} = -6 \ frac{D}{a} = frac{-frac{8}{3}}{frac{1}{3}} = -8 end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ D = b^2-4a underbrace{c}_{text{= 0 }} = b^2 = -8a end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ b^2 = -8a end{array} right.} Rightarrow $$

$$ {left{ begin{array}{c} b = frac{-8a}{-6a} = frac{4}{3} \ a = -frac{b}{6} = -frac{2}{9} end{array} right.} $$

Уравнение траектории космического аппарата с «перехватом» кометы в вершине:

$$ y = -frac{2}{9} x^2+ frac{4}{3} x $$

Пример 5.

Добавить комментарий