Как найти ядра после распада

Gimi Bob



Ученик

(82),
закрыт



4 года назад

kirill zhuravlev

Мудрец

(11678)


4 года назад

За время полураспада распадается половина всех радиоактивных ядер, существовавших в начале За первый период распалась половина, осталось 50%. За второй период распалась половина от оставшихся 50%, т. е. 25%. Всего распалось 50%+25%=75% всех ядер.

При бета-распаде излучается электрон 

e−01

 (β-частица).

При этом один из нейтронов превращается в протон, а ядро испускает электрон и антинейтрино.

бета-распад.svg

Уравнение β-распада:

XZA→YZA+1+e−01

.

Обрати внимание!

Заряд ядра и соответственно атомный номер элемента при этом увеличивается на единицу, а массовое число остаётся без изменения. Образовавшийся элемент смещается в периодической системе на одну клетку вперёд.

Массовое число ((40)) и заряд ((19)) распадающегося ядра атома калия равны, соответственно, сумме массовых чисел ((40+0=40)) и сумме зарядов ((20+(-1)=19)) ядра атома кальция и электрона.

Как решать задачи по физике на радиоактивный распад?

Недавно проводил очередные занятия по физике со своими учениками и заметил некоторые трудности в решении задач на радиоактивный распад. По моим наблюдениям в школе и в интернете разбираются самые тривиальные задачи на распад. Задачи из ЕГЭ бывают немного сложнее. Но для интереса я добавил в статью разборы еще 6 задач, которые смело можно назвать задачами «со звёздочкой*», то есть повышенной сложности. На написание теории и подробные решения было потрачено много времени, поэтому, если Вам понравится статья, поддержите своей активностью.

💡 Крупные статьи я выкладываю в pdf в своём канале в telegram Репетитор IT mentor. Подписывайтесь, там публикуется контент, которого на Дзен не будет.

Прежде всего хотелось бы сделать замечание. Для успешного решения задач по физике (в целом, любых задач) Вам понадобятся:
◼ 1. Уверенные знания в математике на уровне физ-мат лицея (это минимум)
◼ 2. Базовые знания по дифференциальному и интегральному исчислению, а также умение применять начальные условия (НУ) и граничные условия (ГУ).
◼ 3. Понимание ограничений и сути процесса ( у вас не должны получаться отрицательная масса или отрицательное время, дробное количество, околосветовые скорости макроскопических объектов )
◼ 4. Хорошее воображение, 3D-видение эксперимента у себя в голове, а также возможность представить как выглядит график функции, описываемой в определенном законе (например: закон радиоактивного распада).
◼ 5. Умение разбивать большую задачу на малые подзадачи (например: определить амплитуду колебаний изображения математического маятника — у вас две задачи: механическая и оптическая — решайте их отдельно, потом сшивайте).
◼ 6. Чувствуйте абстракции. Вы никогда не решите задачу, если попытаетесь учесть всё. Пример: определите траекторию полёта камня, брошенного под углом к горизонту с учётом… эффекта Магнуса, динамического сопротивления ветра, фазы Луны, функции плотности воздуха, динамики вихрей потоков воздуха, распада вещества, из которого состоит камень, термодинамического расширения камня. Сложно? Вот поэтому чувствуйте абстракции.
◼ 7. Программирование. Да… внезапно. Для физики полезно знать какой-нибудь язык программирования. Попробуйте решенную задачу замоделировать и закодить в виде графической анимации. Так ваши решения станут куда более интересными и наглядными. А меняя входные параметры, вы станете лучше понимать поведение физических систем.

Основные определения

Радиоактивность – свойство некоторых нуклидов подвергаться радиоактивному распаду.

Радиоактивность – превращение одних атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. На латыни radio – излучаю, activus – действенный.

Радиоактивность – самопроизвольное превращение неустойчивых изотопов одного химического элемента в изотоп другого элемента, сопровождающееся испусканием элементарных частиц, ядер и жесткого электромагнитного излучения.

Нуклид – разновидность атома, характеризуемая числом протонов и нейтронов, а в некоторых случаях энергетическим состоянием ядра.

Радионуклид – нуклид, испускающий ионизирующее излучение.

Радиация или ионизирующее излучение – это частицы или гамма-кванты, энергия которых достаточна велика, чтобы при воздействии на вещество создавать ионы и катионы (т.е. ионизировать молекулы на своём пути).

Ионизирующее излучение – поток заряженных или нейтральных частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению атомов или молекул среды. По своей природе делится на фотонное (гамма-излучение, тормозное излучение, рентгеновское излучение) и корпускулярное (альфа-излучение, электронное, протонное, нейтронное, мезонное).

Теория для решения задач

Закон радиоактивного распада – закон, который описывается зависимость интенсивности радиоактивного распада от времени и от количества радиоактивных атомов в образце. Закон был открыт Фредериком Содди и Эрнестом Резерфордом. Оба получили Нобелевскую премию. Они обнаружили закон экспериментальным путем. Ещё в далеком 1903 году в работах «Сравнительное изучение радиоактивности радия и тория» этот закон формулировался:

Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.

То есть скорость превращения всё время пропорционально количеству элементов, ещё не подвергнувшихся превращению.

Данную формулировку можно записать в виде дифференциального уравнения: dN/dt = – λ·N, где dN – изменение количества ядер за время dt.

Это изменение отрицательно, потому что при распаде уменьшается количество оставшихся элементов. Опытным путем было установлено, что эта скорость распада dN/dt пропорционально количеству оставшихся ядер N и некоторой постоянной λ, которая называется постоянной распада и характеризует вероятность радиоактивного распада за единицу времени (имеет размерность 1/c). Данное уравнение является дифференциальным уравнением первого порядка с разделяющимися переменными. Решение подобных уравнений можно найти в любом учебнике по высшей математике.

Как решать задачи по физике на радиоактивный распад?

В итоге решение будет иметь вид N = N₀ · exp(- λ·t) :

Как решать задачи по физике на радиоактивный распад?

Отсюда видно, что число радиоактивных атомов какого-либо вещества уменьшается со временем по экспоненциальному (показательному) закону. Помимо постоянной распада λ используются другие характеристики.

Среднее время жизни

Зная закон распада, можно посчитать среднее время жизни радиоактивного атома. Вспоминаем, что dN обозначает количество атомов, которое распадется за время от t до t + dt. Тогда среднее время можно будет найти подобно тому, как мы ищем среднее или математическое ожидание случайной непрерывной величины:

Как решать задачи по физике на радиоактивный распад?

В вычислениях была использована формула для интегрирования по частям. Теория интегрирования также описана в любой книге с конспектами по высшей математике (или математическому анализу, или интегральному исчислению).

Подставим результат для тау (время жизни τ) в экспоненциальную зависимость в формуле распада:

Как решать задачи по физике на радиоактивный распад?

Отсюда видно, что за среднее время жизни τ число радиоактивных атомов образца ( а также его активность – количество распадов в секунду) уменьшается в e ≈ 2.718 раз.

Период полураспада

И всё же большей популярностью пользуется другая характеристика для радиоактивных элементов. Называется она периодом полураспада T. Если немного подумать, то из названия понятно, что это время, в течение которого количество радиоактивных атомов исходного элемента уменьшается в 2 раза. Выведем связь этой величины с постоянной распада:

Как решать задачи по физике на радиоактивный распад?
Как решать задачи по физике на радиоактивный распад?

A – массовое число (число нуклонов в составе ядра атома)
Z – атомный номер в таблице Менделеева (число протонов в ядре)
Для нейтрального атома:

Как решать задачи по физике на радиоактивный распад?

Законы сохранения в распадах

При радиоактивном распаде сохраняются следующие параметры:

1. Заряд. Электрический заряд не может создаваться или исчезать. Общий заряд до и после реакции должен сохраняться, хотя может по-разному распределяться среди различных ядер и частиц. Единичный положительный и отрицательный заряды нейтрализуют друг друга. Аналогично, возможно для нейтральной частицы (типа нейтрона) произвести один заряд каждого знака.
2. Массовое число или число нуклонов. Число нуклонов после реакции должно быть равно числу нуклонов до реакции.
3. Общая энергия. Кулоновская энергия и энергия эквивалентных масс должна сохраняться во всех реакциях и распадах.
4. Импульс и угловой момент. Сохранение линейного импульса ответственно за распределение кулоновской энергии среди ядер, частиц и/или электромагнитного излучения. Угловой момент относится к спину частиц.

Потенциальная энергия взаимодействия α-частицы и остаточного ядра с зарядом Z·e

Как решать задачи по физике на радиоактивный распад?

Вид волновой функции можно получить из решения уравнения Шредингера для взаимодействия ядра атома и α-частицы. Способы решения можно почитать в книгах по физике вузовского уровня или в книгах по ММФ (методы математической физики). В целом, для понимания вам будет полезна теория решения дифференциальных уравнений из конспектов лекций по высшей математике или конкретно по теме – дифференциальное и интегральное исчисление.

По причинам исторического характера ядро He называют альфа-частицей. Установлено, что многие тяжелые ядра с зарядовым числом Z > 82 (Z = 82 имеет свинец) испытывают радиоактивный распад с испусканием альфа-частицы. В альфа-частице удельная энергия связи больше, чем в тяжелых ядрах, поэтому альфа-распад возможен энергетически. К примеру, образце урана U-238 испускает альфа-частицы с периодом полураспада 4.5 млрд. лет. Самопроизвольно происходит реакция:

Как решать задачи по физике на радиоактивный распад?

Спустя 4.5 млрд. лет половина ядер урана U-238 распадается. Разность масс U-238 и продуктов распада равна энергии 4.2 МэВ. Рисунок выше позволяет получить представление о том, почему происходит альфа-распад. Ea – кинетическая энергия вылетающей альфа-частицы. Первоначально альфа-частицы находится в области I и может быть описана стоячей волной с амплитудой Ψвнутр (волновая функция в данной области пространства). Однако, возможно проникновение сквозь барьер, потому что в области вдали от ядра имеется небольшой «хвост» волновой функции Ψвнеш. Вероятность вылета альфа-частицы в момент её соударения с барьером можно оценить выражением: |Ψвнеш|²/|Ψвнутр|².

Число таких столкновений в 1 секунду приблизительно v/2R, где v – скорость альфа-частицы в области I. Таким образом, вероятность испускания альфа-частицы в единицу времени можно записать так:

Как решать задачи по физике на радиоактивный распад?
Как решать задачи по физике на радиоактивный распад?

В образце, содержащем n ядер, число распадов в секунду (скорость уменьшения n) равна

Как решать задачи по физике на радиоактивный распад?

Отсюда с помощью интегрирования и подстановки начальных условий можно снова получить закон радиоактивного распада:

Как решать задачи по физике на радиоактивный распад?

Можно получить ещё одну формулу для оценки периода полураспада:

Как решать задачи по физике на радиоактивный распад?

Формула иллюстрирует применение квантовой механики для объяснения радиоактивности. Квантовая механика дает исчерпывающее объяснение альфа-распада и других радиоактивных превращений. Природа вероятности интересна тем, что если в силу редкой случайности текущее ядро уцелело на протяжении большого числа периодов полураспада, то эта предыстория абсолютно не влияет на вероятность распада в будущем. Этот же эффект имеет место при бросании монеты. Если у вас пять раз выпал орёл, вероятность шестой раз выпасть орлу остаётся по-прежнему равной 0.5.

Вероятность распада ядер одного вещества всегда одна и та же, независимо от их возраста. Допустим, половина ядер какого-либо изотопа распадается за один год. Какое-то ядро, избежавшее распада в первый год, по-прежнему будет иметь вероятность ½ распасться на протяжении второго года. Если сохранится на протяжении двух лет, то вероятность распада на третий год снова будет ½.

💡 Теперь перейдем к практике и поучимся решать основные задачи. Здесь имеются две задачи из ЕГЭ по физике, но также я добавил более сложные задачи, которые не встречались мне в ЕГЭ, однако встречались в вузовской программе для физиков.

Практика решения задач

Задача 1. Какая доля радиоактивных ядер распадается через интервал времени, равный половине периода полураспада? Ответ приведите в процентах и округлите до целых.

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 2. После крупной радиационной аварии, произошедшей в 1986 году на Чернобыльской атомной электростанции, некоторые участки местности оказались сильно загрязнены радиоактивным изотопом цезия-137 с периодом полураспада 30 лет. На некоторых участках норма максимально допустимого содержания цезия-137 была превышена в 1000 раз. Через сколько периодов полураспада после загрязнения такие участки местности вновь можно считать удовлетворяющими норме? Ответ округлите до целого числа.

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 3. Период полураспада элемента 1 в три раза больше периода полураспада элемента 2. За некоторое время число атомов элемента 1 уменьшилось в 8 раз. Во сколько раз за это же время уменьшилось число атомов элемента 2?

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 4*. Вычислить постоянную распада λ для изотопов радия:
а) ²¹⁹Ra; б) ²²⁶Ra; в) ²³⁰Ra. Чему равна вероятность распада изотопов радия за время t = 1 час ?

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 5*. При определении периода полураспада короткоживущего радиоактивного изотопа использовался счётчик импульсов. За минуту в начале наблюдения было насчитано Δn₀ = 250 импульсов, а через время τ = 1 час было зарегистрировано Δn = 92 импульса. Чему равен период полураспада данного изотопа?

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 6*. Известно, что из радиоактивного полония ²¹⁰Po массой m = 2.5 грамм за время t = 32 дня в результате его распада образуется гелий объемом V = 40 см³ при нормальных условиях: p₀ = 10⁵ Па и τ₀ = 273 К. Определить по этим данным период полураспада данного изотопа полония.

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 7*.Оценить количество тепла, которое выделяет полоний ²¹⁰Po массой m = 1 мг за время, равное периоду полураспада этих ядер, если испускаемые α-частицы имеют кинетическую энергию Wα = 5.3 МэВ.

Решение:

Как решать задачи по физике на радиоактивный распад?

Задача 8*. Пусть в ядре урана ²³⁸U альфа-частица сталкивается с потенциальным барьером 5·10²⁰ раз в секунду и Ψвнеш/Ψвнутр = 10⁻¹⁹.
а) Какова вероятность распада этого ядра в 1 сек ?
б) Каково среднее время жизни этого ядра?

Решение:

Как решать задачи по физике на радиоактивный распад?

Понравилась статья? Поставьте лайк, подпишитесь на канал! Вам не сложно, а мне очень приятно 🙂

Если Вам нужен репетитор по физике, математике или информатике/программированию, Вы можете написать мне или в мою группу Репетитор IT mentor в VK
Библиотека с книгами для физиков, математиков и программистов
Репетитор IT mentor в telegram

Атомная физика на ОГЭ. Вся теория и разбор заданий от преподавателя MAXIMUM

06.02.2021
19173

Атомная физика — один из труднейших разделов экзамена, а задания по этой теме кочуют из варианта в вариант каждый год. Не пугаемся! Для решения заданий ОГЭ на радиоактивность, распады и ядерные реакции нужно знать лишь самые базовые понятия. Из этой статьи вы узнаете все необходимое — атомная физика на ОГЭ обязательно вам покорится!

В этой статье:

Какие частицы необходимо помнить для сдачи ОГЭКакие ядерные распады нужно знатьАльфа-распадИзотопыБета-распад
Гамма-распадЯдерные реакцииАтомная физика на ОГЭ: что нужно запомнить

атомная физика огэ

Какие частицы необходимо помнить для сдачи ОГЭ

Чтобы перейти к практике и научиться решать хитрые задания, сначала нужно вспомнить теорию, связанную с ними.

Таблица основных частиц, которые встречаются в каждом варианте ОГЭ

Вспомним, что химические элементы обозначаются в виде ,  где

  • X – название химического элемента
  • А – массовое число, равное сумме протонов и нейтронов
  • Z – зарядовое число, равное числу протонов в ядре

Давайте раз и навсегда узнаем, что скрывается за числами рядом с названием каждого элемента. Рассмотрим пример углерода:

  • 6 — это порядковый номер и зарядовое число Z. Таким образом, в ядре атома углерода 6 протонов. Z=6.
  • 12,011 — это атомная масса. Мы будем его округлять до 12 и называть массовым числом A, то есть суммой протонов и нейтронов. A=12.
  • Получается, в ядре атома углерода 6 протонов и 6 нейтронов.

Какие ядерные распады нужно знать

На ОГЭ часто встречаются три типа распадов: альфа, бета и гамма.

Альфа-распад

α-распад — испускание ядром альфа-частицы. Что это такое? Все просто — так называют ядро атома гелия, то есть частицу из двух протонов и двух нейтронов.

  • У нас был элемент X с массовым числом A и с зарядовым числом Z
  • Атом испускает альфа-частицу с массовым числом=4 и зарядовым числом=2
  • Мы получаем новый элемент с массовым числом=A-4 и зарядовым числом=Z-2

В α-распаде заряд уменьшается на 2, а масса уменьшается на 4.

Самостоятельно подготовиться к ОГЭ непросто. На то, чтобы разобраться со всеми темами, понадобится много времени. Но и это не решит проблему! Например, если вы запомнили какое-то решение из интернета, а оно оказалось неправильным, можно на пустом месте потерять баллы. Если хотите научиться решать все задания ОГЭ по физике, обратите внимание на онлайн-курсы MAXIMUM! Наши специалисты уже проанализировали сотни вариантов ОГЭ и подготовили для вас вас максимально полезные занятия.

Приходите к нам на пробный урок! Вы узнаете всю структуру ОГЭ-2021, разберете сложные задания из первой части, получите полезные рекомендации и узнаете, как устроена подготовка к экзаменам в MAXIMUM. Все это абсолютно бесплатно!

Задача 1

Используя фрагмент Периодической системы элементов Д.И. Менделеева, представленный на рисунке, определите, какое ядро образуется в результате α-распада ядра нептуния-237. 

Разбор

  • Как мы говорили чуть выше, порядковый номер элемента — это, по совместительству, зарядовое число. То есть, количество протонов. Получается, в Нептунии 93 протона.
  • У α-частицы количество протонов = 2.
  • Посчитаем, чему равно зарядовое число нашего нового элемента: зарядовое число = 93-2 = 91. Взглянув на табличку, находим элемент под номером 91 — Протактиний.

Ответ: 1) Ядро протактиния

Изотопы

Теперь давай обратим внимание на массовые числа нептуния и протактиния. Отличаются ли они на массовое число альфа-частицы — на 4?

237-231=6

Время бить тревогу! Неужели мы что-то напутали и решили задачу неверно? Но нет, оказывается, мы все сделали правильно — ведь у протактиния более 15 изотопов.

Изотопы — это разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковое зарядовое число, но разные массовые числа. 

Например, изотопы азота:

и

Задача 2

Ядро тория   превратилось в ядро радия . Какую частицу испустило при этом ядро тория?

  1. нейтрон
  2. протон
  3. альфа-частицу
  4. бета-частицу

Разбор

  • Сверху находится массовое число — масса частицы. Вычтем из массы Тория массу Радия: 230-226=4. Получили массу неизвестной частицы.
  • Снизу находится зарядовое число — это заряд не­из­вест­ной частицы. Вычтем из заряда Тория заряд Радия: 90-88=2. Получили заряд неизвестной частицы.
  • Итого: массовое число = 4. Зарядовое число = 2
  • Взглянем на табличку самых распространенных частиц. 

Вуаля! Наша незнакомка — это альфа-частица — частица с двумя протонами и двумя нейтронами.

Ответ: 3) альфа-частица

https://blog.maximumtest.ru/post/oge-po-fizike-2021-struktura-i-izmeneniya.html

Бета-распад

β-распад — испускание ядром бета-частицы. Бета-частицей называют электрон. Посмотрим в списке основных частиц наверху, чему равны массовое и зарядовое число бета-частицы (электрона).

  • У нас был элемент X с массовым числом A и с зарядовым числом Z
  • Атом испускает бета-частицу с массовым числом=0 и зарядовым числом=-1
  • Мы получаем новый элемент с прежним массовым числом=A и зарядовым числом=Z+1

В β-распаде заряд увеличивается на 1, а масса не меняется.

Задача 3

Изо­топ крип­то­на в ре­зуль­та­те серии рас­па­дов пре­вра­тил­ся изо­топ мо­либ­де­на . Сколь­ко β-частиц было ис­пу­ще­но в этой серии рас­па­дов?

Разбор

  • Обозначим количество испущенных β-частиц за N
  • Зарядовое число криптона до серии β-распадов равнялось 36
  • Зарядовое число молибдена после серии β-распадов 42
  • Тогда 42-36=6 β распадов

Ответ: было испущено 6 β распадов

Задача 4

Радиоактивный атом превратился в атом в результате цепочки альфа- и бета-распадов. Чему было равно число альфа- и бета-распадов?

Разбор

Эта задача требует максимальной концентрации — многие школьники ее решают неверно. Давайте разберем правильный подход к этой задаче.

  • Для начала рассмотрим альфа-распады 

  • Добьемся, чтобы массовое число изменилось с 232 до 208. Для этого производим альфа-распады, вычитая 4 из массового числа и 2 из зарядового числа.

  • Получили элемент с массовым числом=208 и зарядовым числом=78. Для этого мы произвели 6 альфа распадов.
  • Теперь перейдем к бета-распадам. Бета-распады влияют только на зарядовое число.

  • Добьемся того, чтобы зарядовое число изменилось с 78 до 82.

  • Получили элемент с массовым числом = 208 и зарядовым числом = 82. Для этого мы произвели 4 бета распада.

Ответ: 6 альфа распадов и 4 бета распада.

Гамма-распад

γ-частицы — это излучение, а γ-распад — испускание ядром гамма-излучения. Пожалуй, это самый простой распад, потому что он ничего не меняет.

Элемент X до распада и элемент Y после распада — это одно и то же.

На ОГЭ ученики часто попадают в ловушки экзамена, считая, что γ-излучение меняет элемент. Но это совсем не так! Какой элемент был до гамма-распада, такой и останется.

При γ-распаде заряд и масса не меняются.

Ядерные реакции

Атомная физика на ОГЭ включает в себя не только распады, но и ядерные реакции. Ядерные реакции происходят при столкновении ядер или элементарных частиц с другими ядрами. В результате изменяется массовое и зарядовое число элементов, появляются новые частицы.

Во всех ядерных реакциях работает очень простой лайфхак: при протекании ядерной реакции сохраняется суммарное массовое число  и суммарный заряд.

Сумма масс слева равна сумме масс справа: A1+A2=A3+A4.

Сумма зарядов слева равна сумме зарядов справа: Z1+Z2=Z3+Z4.

Сразу же закрепим эти правила на практике.

Задача 5

В результате столкновения ядра урана с частицей X произошло деление урана, описываемое реакцией:

Определите зарядовое и массовое числа частицы X, с которой столкнулось ядро урана.

Разбор

  • Сначала разберемся с массовым числом. Используем лайфхак: то, что слева, равно тому, что справа.
  • Также заметим, что у нас 3 нейтрона. Получается, нам нужно умножить массовое число нейтрона на 3.
  • С гамма-частицей разобраться легко — как мы показали ранее, она ни на что не влияет.

A+235 = 133+139+3*1

Отсюда A=133+139+3-235=40

  • Теперь настал черед зарядового числа.

Z+92 = 36+56+3*0

Отсюда Z=36+56+0-92=0

Ответ: получили элемент X c массовым числом 40 и зарядовым числом 0.

Атомная физика на ОГЭ: что нужно запомнить

  • В α-распаде заряд уменьшается на 2, а масса уменьшается на 4.
  • α-частица — это ядро атома гелия. α-частица состоит из двух протонов и двух нейтронов.
  • В β-распаде заряд увеличивается на 1, а масса не меняется.
  • β-частица — это электрон.
  • В γ-распаде заряд и масса не меняются.
  • γ-частица — это порция электромагнитного излучения.
  • Изотопы — это разновидности атомов (и ядер) какого либо химического элемента, которые имеют одинаковое зарядовое число, но разные массовые числа. 
  • В ядерных реакциях сохраняется суммарное массовое число и суммарный заряд.

Теперь вы знаете, как решать задания на ядерные распады и реакции! Надеюсь, атомная физика на ОГЭ стала для вас намного понятнее. Если хотите разобраться в остальных темах по физике и не только, обратите внимание на наши онлайн-курсы. Уже более 150 тысяч выпускников подготовились с нами к ОГЭ и ЕГЭ. Кстати, у меня на курсах MAXIMUM тоже можно поучиться! Приходите на бесплатный пробный урок, чтобы познакомиться с нашей образовательной системой и узнать массу полезного про ОГЭ.

`

Лайфхаки экзамена

К рубрике

Задачи на Состав атома и ядерные реакции с решениями

Формулы, используемые на уроках «Задачи на Состав атома, ядерные реакции и энергия связи атомного ядра».

Название величины

Обозначение

Единица измерения

Формула

Масса протона mp а.е.м mp = 1,00728
Масса нейтрона mn а.е.м mn = 1,00867
Число протонов Z
Число нейтронов N
Масса ядра Mя а.е.м
Дефект масс Δm а.е.м, кг Δm = (Zmp + Nmn) – Mя
Энергия связи ядра ΔE0 Дж ΔE0 = Δmc2
Скорость света

c

м/с

c = 3•108 

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.
 Определите число электронов, протонов и нейтронов в атоме кислорода 8O17.


Задача № 2.
 В результате α-pacnada ядро некоторого элемента превратилось в ядро радона 86Rn222. Что это был за элемент?


Задача № 3.
 На сколько уменьшилась энергия атома, если при переходе из одного энергетического состояния в другое атом излучил свет длиной волны 6,56 • 10–7 м? 


Задача № 4.
 В какое ядро превращается торий  после трех последовательных α-распадов?

Ответ: 


Задача № 5.
 В какое ядро превращается сурьма  после четырех β-распадов?

Ответ: 


Задача № 6.
Каким образом можно осуществить давнюю мечту алхимиков средневековья — превратить ртуть в золото?


Задача № 7.
 Определите дефект масс и энергию связи ядра атома .

Ответ: 3,18 • 10–27 кг; 28,6 • 10–11 Дж.


Задача № 8.
 Выделяется или поглощается энергия при следующей ядерной реакции:  ?

Ответ: энергия поглощается.


Задача № 9.
 Вычислите энергию связи ядра лития 3Li7. Масса ядра равна 7,01436 а.е.м.


Задача № 10.
Определите неизвестный продукт X каждой из ядерных реакций:

Решение:


Краткая теория для решения Задачи на Состав атома и ядерные реакции.

Алгоритм решения задачи на расчет энергии связи атомного ядра:
1. Определить количество протонов и нейтронов в ядре атома.
2. Вычислить дефект масс в атомных единицах массы.
3. Перевести атомные единицы массы в килограммы: 1 а.е.м. = 1,6605•10-27 кг.
4. Вычислить энергию связи; ответ записать в стандартном виде.

Важные замечания:
1. Вычисления сложные, поэтому лучше их производить с помощью микрокалькулятора.
2. В ходе вычисления дефекта масс нельзя ничего округлять, иначе дефект масс обратится в ноль. Округлить можно только результат.


Это конспект по теме «ЗАДАЧИ на Состав атома и ядерные реакции». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на 
  • Посмотреть конспект по теме ДИНАМИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Добавить комментарий