Как найти задерживающее напряжение для красного

Физика, 11 класс

Урок 22. Фотоэффект

Перечень вопросов, рассматриваемых на уроке:

  • предмет и задачи квантовой физики;
  • гипотеза М. Планка о квантах;
  • опыты А.Г. Столетова;
  • определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
  • уравнение Эйнштейна для фотоэффекта;
  • законы фотоэффекта.

Глоссарий по теме:

Квантовая физика – раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант – (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения – некоторое предельное значение силы фототока.

Задерживающее напряжение – минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

h = 6,63 ∙ 10-34 Дж∙с.

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика – раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.

Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения – максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, – прямо пропорционален интенсивности падающего излучения.

Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

min = Aв

где Ав – работа выхода электронов;

h – постоянная Планка;

νmin – частота излучения, соответствующая красной границе фотоэффекта;

с – скорость света;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, “затрудняющее” вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение – минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Задерживающее напряжение

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где – максимальная кинетическая энергия электронов;

Е – заряд электрона;

– задерживающее напряжение.

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны – фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Работа выхода

Запирающее напряжение

Решение:

Работа выхода – это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение – это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

Ответ:

Работа выхода

Запирающее напряжение

не изменится

увеличится

2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Решение.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

Подставляя численные значения, получаем: λ ≈ 215 нм.

Ответ: λ ≈ 215 нм.

Начало теории электромагнитной природы света заложил Максвелл, который заметил сходство в скоростях распространения электромагнитных и световых волн. Но согласно электродинамической теории Максвелла любое тело, излучающее электромагнитные волны, должно в итоге остынуть до абсолютного нуля. В действительности этого не происходит. Противоречия между теорией и опытными наблюдениями были разрешены в начале XX века, вскоре после того, как был открыт фотоэффект.

Что такое фотоэффект

Фотоэффект — испускание электронов из вещества под действием падающего на него света.

Александр Столетов

Александр Столетов

Явление фотоэффекта было открыто в 1887 году Генрихом Герцем. Фотоэффект также был подробно изучен русским физиком Александром Столетовым в период с 1888 до 1890 годы. Этому явлению он посвятил 6 научных работ.

Для наблюдения фотоэффекта нужно провести опыт. Для этого понадобится электрометр и подсоединенная к нему пластинка из цинка (см. рисунок ниже). Если дать пластинке положительный заряд, то при ее освещении электрической дугой скорость разрядки электрометра не изменится. Но если цинковую пластинку зарядить отрицательно, то свет от дуги заставить электрометр разрядиться очень быстро.

Наблюдаемое во время этого эксперимента явление имеет простое объяснение. Свет вырывает электроны с поверхности цинковой пластинки. Если она имеет отрицательный заряд, электроны отталкиваются от нее, что приводит к полному разряжению электрометра. Причем при повышении интенсивности освещения скорость разрядки увеличивается, ровно, как и наоборот: при уменьшении интенсивности освещения электрометр разряжается медленно. Если же зарядить пластинку положительно, то электроны, которые вырываются светом, притягиваются к ней. Поэтому они оседают на ней, не изменяя заряд электрометра.

Если между световым пучком и отрицательно заряженной пластиной поставить лист стекла, пластинка перестанет терять электроны независимо от интенсивности излучения. Это связано с тем, что стекло задерживает ультрафиолетовое излучение. Отсюда можно сделать следующий вывод:

Явление фотоэффекта может вызвать только ультрафиолетовый участок спектра.

Волновая теория света не может объяснить, почему электроны могут вырываться только под действием ультрафиолета. Ведь даже при большой амплитуде и силе волн электроны остаются на месте, когда, казалось бы, они должны непременно быть вырванными.

Законы фотоэффекта

Чтобы получить более полное представление о фотоэффекте, выясним, от чего зависит количество электронов, вырванных светом с поверхности вещества, а также, от чего зависит их скорость, или кинетическая энергия. Выяснить все это нам помогут эксперименты.

Первый закон фотоэффекта

Возьмем стеклянный баллон и выкачаем из него воздух (смотрите рисунок выше). Затем поместим в него два электрода. На электроды подадим напряжение и будем регулировать его с помощью потенциометра и измерять при помощи вольтметра.

В верхней части нашего баллона есть небольшое кварцевое окошко, которое пропускает весь свет, в том числе ультрафиолетовый. Через него падает свет на один из электродов (в нашем случае на левый электрод, к которому присоединен отрицательный полюс батареи). Мы увидим, что под действием света этот электрод начнет испускать электроны, которые при движении в электрическом поле будут создавать электрический ток. Вырванные электроны будут направляться ко второму электроду. Но если напряжение небольшое, второго электрода достигнут не все электроны. Если интенсивность излучения сохранить, но увеличить между электродами разность потенциалов, то сила тока будет увеличиваться. Но как только она достигнет некоторого максимального значения, рост силы тока при дальнейшем увеличении напряжения прекратится. Максимальное значение силы тока будем называть током насыщения.

Ток насыщения — максимальное значение силы тока, также называемое предельным значением силы фототока.

Ток насыщения обозначается как Iн. Единица измерения — А (Кл/с). Численно величина равна отношению суммарному заряду вырванных электронов в единицу времени:

Iн=qt

Если же мы начнем изменять интенсивность излучения, то сможем заметить, что фототок насыщения также начинается меняться. Если интенсивность излучения ослабить, максимальное значение силы тока уменьшится. Если интенсивность светового потока увеличить, ток насыщения примет большее значение. Отсюда можно сделать вывод, который называют первым законом фотоэффекта.

Первый закон фотоэффекта:

Число электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Иными словами, фототок насыщения прямо пропорционален падающему световому потоку Ф.

Второй закон фотоэффекта

Теперь произведем измерения кинетической энергии, то есть, скорости вырывания электронов. Взгляните на график, представленный ниже. Видно, что сила фототока выше нуля даже при нулевом напряжении. Это говорит о том, что даже при нулевой разности потенциалов часть электронов достигает второго электрода.

Если мы поменяем полярность батареи, то будем наблюдать уменьшение силы тока. Если подать на электроды некоторое значение напряжения, равное Uз, сила тока станет равно нулю. Это значит, что электрическое поле тормозит вырванные электроны, останавливает их, а затем возвращает на тот же электрод.

Напряжение, равное Uз, называют задерживающим напряжением. Оно зависит зависит от максимальной кинетической энергии электронов, которые вырываются под действием света. Измеряя задерживающее напряжение и применяя теорему о кинетической, можно найти максимальное значение кинетической энергии электронов. Оно будет равно:

mv22=eUз

Опыт показывает, что при изменении интенсивности света (плотности потока излучения) задерживающее напряжение не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. Но экспериментальным путем мы обнаруживаем, что кинетическая энергия вырываемых светом электронов зависит только от частоты света. Отсюда мы можем сделать вывод, являющийся вторым законом фотоэффекта.

Второй закон фотоэффекта:

Максимальная кинетическая энергия фотоэлектронов линейно растет с частотой света и не зависит от его интенсивности.

Причем, если частота света меньше определенной для данного вещества минимальной частоты νmin, фотоэффект наблюдаться не будет.

Теория фотоэффекта

Все попытки объяснить явление фотоэффекта электродинамической теорией Максвелла, согласно которой свет — это электромагнитная волна, непрерывно распределенная в пространстве, оказались тщетными. Нельзя было понять, почему энергия фотоэлектронов определяется только частотой света и почему свет способен вырывать электроны лишь при достаточно малой длине волны.

В попытках объяснить это явление физик Макс Планк предложил, что атомы испускают электромагнитную энергию отдельными порциями — квантами, или фотонами. И энергия каждой порции прямо пропорциональна частоте излучения:

E=hν

h — коэффициент пропорциональности, который получил название постоянной Планка. Она равна 6,63∙10–34 Дж∙с.

Пример №1. Определите энергию фотона, соответствующую длине волны λ = 5∙10–7 м.

Энергия фотона равна:

E=hν

Выразим частоту фотона через скорость света:

ν=cλ

Следовательно:

Идею Планка продолжил развивать Эйнштейн, которому удалось дать объяснение фотоэффекту в 1905 году. В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Причем энергия Е каждой порции излучения, по его расчетам, полностью соответствовала гипотезе Планка.

Из того, что свет излучается порциями, еще не вытекает вывода о прерывистости структуры самого света. Ведь и воду продают в бутылках, но отсюда не следует, что вода состоит из неделимых частиц. Лишь фотоэффект позволил доказать прерывистую структуру света: излученная порция световой энергии Е = hν сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.

Кинетическую энергию фотоэлектрона можно найти, используя закон сохранения энергии. Энергия порции света идет на совершение работы выхода А и на сообщение электрону кинетической энергии. Отсюда:

hν=A+mv22

Работа выхода — минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Полученное выражение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии в пучке света и поэтому определяет количество вырванных электронов. Скорость же электронов согласно зависит только от частоты света и работы выхода, которая определяется типом металла и состоянием его поверхности. От интенсивности освещения кинетическая энергия фотоэлектронов не зависит.

Для каждого вещества фотоэффект наблюдается лишь при освещении его светом с минимальной частотой волны νmin. Это объясняется тем, что для вырывания электрона без сообщения ему скорости нужно выполнять как минимум работу выхода. Поэтому энергия кванта должна быть больше этой работы:

hν>A

Предельную частоту νmin называют красной границей фотоэффекта. При этой частоте фотоэффект уже наблюдается.

Красная граница фотоэффекта равна:

νmin=Ah

Минимальной частоте, при которой возможен фотоэффект для данного вещества, соответствует максимальная длина волны, которая также носит название красной границы фотоэффекта. Это такая длина волны, при которой фотоэффект еще наблюдается. Обозначается она как λmах или λкр.

Максимальная длина волны, при которой еще наблюдается фотоэффект, равна:

λmax=hcA

Работа выхода А определяется родом вещества. Поэтому и предельная частота vmin фотоэффекта (красная граница) для разных веществ различна. Отсюда вытекает еще один закон фотоэффекта.

Третий закон фотоэффекта:

Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах волн фотоэффекта нет.

Вспомните опыт, который мы описали в самом начале. Когда между цинковой пластинкой и световым пучком мы поставили зеркало, фотоэффект был прекращен. Это связано с тем, что красная граница для цинка определяется величиной λmах = 3,7 ∙ 10-7 м. Эта длина волны соответствует ультрафиолетовому излучению, которое не пропускало стекло.

Пример №2. Чему равна красная граница фотоэффекта νmin, если работа выхода электрона из металла равна A = 3,3∙10–19 Дж?

Применим формулу для вычисления красной границы фотоэффекта:

Задание EF15717

При увеличении в 2 раза частоты света, падающего на поверхность металла, задерживающее напряжение для фотоэлектронов увеличилось в 3 раза. Первоначальная частота падающего света была равна 0,75 ⋅1015 Гц. Какова длина волны, соответствующая «красной границе» фотоэффекта для этого металла? Ответ записать в нм.


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу закона сохранения энергии применительно к фотоэффекту.

3.Переписать формулу закона сохранения энергии применительно к опытам 1 и 2.

4.Используя формула, связывающую задерживающее напряжение и кинетическую энергию фотона, определить работу выхода.

5.Записать формулу для красной границы фотоэффекта.

6.Выполнить решение в общем виде.

7.Подставить известные данные и найти искомую величину.

Решение

Запишем исходные данные:

 Частота света в опыте 1: ν1 = ν = 0,75∙1015 Гц.

 Частота света в опыте 2: ν2 = 2ν1 = 2ν Гц.

 Задерживающее напряжение в опыте 1: U1 = U В.

 Задерживающее напряжение в опыте 2: U2 = 3U1 = 3U В.

Запишем формулу закона сохранения энергии:

hν=A+mv22

Применим ее к 1 и 2 опыту, составив систему из двух уравнений:

hν1=A+mv212hν2=A+mv222


Преобразуем:

hν=A+mv2122hν=A+mv222


Формула, связывающая задерживающее напряжение и кинетическую энергию фотона:

mv22=eUз

Известно, что при увеличении частоты в 2 раза задерживающее напряжение увеличилось в 3 раза. Так как задерживающее напряжение прямо пропорционально кинетической энергии фотона, то она (кинетическая энергия), также увеличивается в 3 раза. Следовательно:

mv222=3mv212

Тогда:

hν=A+mv2122hν=A+3mv212

Умножим первое уравнение системы на «–3» и сложим оба уравнения:

3hν=3A3mv2122hν=A+3mv212

hν=2A

Отсюда работа выхода равна:

A=hν2

Формула для нахождения красной границы фотоэффекта:

νmin=Ah

Формула длины волны:

λ=cν

Следовательно, длина волны для красной границы фотоэффекта:

λmin=cνmin=chA=2chhν=2cν

Ответ: 800

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17645

При исследовании зависимости кинетической энергии фотоэлектронов от частоты падающего света фотоэлемент освещался через светофильтры. В первой серии опытов использовался красный светофильтр, а во второй – жёлтый. В каждом опыте измеряли напряжение запирания.

Как изменяются длина световой волны, напряжение запирания и кинетическая энергия фотоэлектронов? Для каждой величины определите соответствующий характер её изменения:

1) увеличится
2) уменьшится
3) не изменится

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.


Алгоритм решения

1.Определить, от чего зависит и как меняется длина световой волны.

2.Записать закон сохранения энергии, формулу зависимости кинетической энергии от напряжения запирания.

3.Используя формулы, становить, как меняется напряжение запирания и кинетическая энергия.

Решение

Длина световой волны определяется ее цветом. Красный свет имеет большую длину волны. Следовательно, во втором опыте длина световой волны уменьшится.

Закон сохранения энергии для фотоэффекта:

hν=A+mv22

Формула зависимости кинетической энергии от напряжения запирания:

mv22=eUз

Следовательно:

hν=A+eUз

Работы выхода — величина постоянная для данного вещества. Следовательно, напряжение запирания зависит только от частоты световой волны. Частота — величина обратная длине волны. Так как длина волны уменьшилась, частота увеличилась. Следовательно, увеличилось и напряжение запирания.

Поскольку напряжение запирания прямо пропорционально кинетической энергии фотонов, то эта энергия также увеличивается.

Ответ: 211

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17973

На металлическую пластинку падает монохроматическая электромагнитная волна, выбивающая электроны из пластинки. Максимальная кинетическая энергия фотоэлектронов, вылетевших из пластинки в результате фотоэффекта, составляет 3 эВ, а работа выхода из металла в 2 раза больше этой энергии. Чему равна энергия фотонов в падающей волне?

Ответ:

а) 9 эВ

б) 2 эВ

в) 3 эВ

г) 6 эВ


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу закона сохранения энергии применительно к фотоэффекту.

3.Выполнить решение в общем виде.

4.Подставить известные данные и найти искомую величину.

Решение

Запишем исходные данные:

 Максимальная кинетическая энергия выбитых электронов: Emax = 3 эВ.

 Работа выхода из металла: A = 2 Emax.

Закона сохранения энергии для фотоэффекта:

hν=A+mv22

Или:

E=A+Emax=2Emax+Emax=3Emax=3·3=9 (эВ)

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 5.4k

Что такое задерживающая разность потенциалов

Содержание

  • 1 Фотоэффект
  • 2 Задерживающая разность потенциалов — определение и используемые формулы
  • 3 Пример задачи
  • 4 Заключение
  • 5 Видео по теме

Внешние воздействия на проводник вызывают возникновение в нем различных реакций, которые оказывают влияние на его проводимость, а также способствуют появлению совершенного иного вида энергии. Статья расскажет о том, что такое задерживающая разность потенциалов, приведет пример возникновения этого эффекта и используемые формулы для его расчетов.

Фотоэллектрический эффект

Фотоэффект

Фотоэффект называется способность металла испускать часть своих электронов под воздействием света. Если проводник или металл находятся в состоянии покоя, то в их структуре происходит свободное перемещение электронов. Причем эти частицы все время пытаются сместиться к поверхности тела и покинуть его пределы. Препятствием для свободного покидания электронами данного тела служат положительно заряженные ионы. Ведь именно этими положительными зарядами и удерживаются электроны. Открыл фотоэффект в 1887 г. немецкий ученый Генрих Р. Герц. Кроме того над изучением фотоэффекта довольно долго работали такие ученые — А.Г. Столетов и Ф. Леонард.

Установка для определения закономерностей фотоэффекта

Задерживающая разность потенциалов — определение и используемые формулы

Величину фототока насыщения Iнас определяет количество электронов, которые испускаются катодом под воздействием света за единицу времени.

Зависимость величины фототока от приложенного напряжения

В таком случае количество фотоэлектронов n, которые покидают катод в течение 1 секунды, получится вычислить с помощью такого выражения:

Формула для расчета количества электронов покидающих катод

В данном выражении е является абсолютной величиной заряда электрона.

Фотоэлектроны, которые испускают катод, будут иметь разные начальные скорости. При этом кинетические энергии их будут также различными. Когда U равняется 0, определенная часть фотоэлектронов с достаточной кинетической энергией, чтобы достигнуть анода будут преодолевать поле, создаваемое облаком фотоэлектронов на поверхности катода. За счет этого будет создаваться небольшой по величине фототок. Если напряжение будет уменьшаться от ноля до –U0, фототок плавно уменьшается, а для случая U = –U0 он прекращается. В данном случае напряжение U0 и будет задерживающим напряжением.

Задерживающая разность потенциалов или задерживающее напряжение — это величина отрицательного напряжения U0, при котором фототок будет иметь силу I равную 0. За счет работы сил тормозящего электрополя, происходит уменьшение кинетической энергии фотоэлектронов. Чтобы удержать все электроны, имеющих наибольшую кинетическую энергию, электрическое поле должно будет совершать работу e×U0. В данном случае будет верным следующее выражение:

Выражение для задерживающей разности потенциалов

Экспериментальным путем на данный момент определены 3 закона внешнего фотоэффекта:

  1. Если спектральный состав света, попадающего на катод неизменный, то в данном случае световой поток будет пропорционален фототоку насыщения Iнас~Ф.
  2. Величина максимальной кинетической энергии фотоэлектронов для этого вещества будет иметь прямую зависимость от частоты падающего света, а от интенсивности эта энергия зависеть не будет.
  3. У всех веществ имеется красная граница внешнего фотоэффекта, то есть наименьшая частота света νкр (наибольшая длина волны λкр). Только при таком условии фотоэффект будет еще возможен.

Альбертом Эйнштейном в 1905 г. было доказано, что задерживающая разность потенциалов прямопропорциональна величине частоты падающего на поверхность металла света. Нобелевской премией за объяснение фотоэффекта ученый был награжден в 1921 г.

Альберт Эйнштейн

Он вывел свою формулу для фотоэффекта, которую можно увидеть ниже

Формула Эйнштейна для фотоэффекта

Пример задачи

Приведем только для ознакомительных целей решение следующей задачи. Необходимо найти задерживающую разность потенциалов U, если освещаемый металл катода это литий. При этом А=2.3 эВ, а длина световой волны λ равняется 200 нм.

Решение данной задачи можно увидеть на рисунке, который приведен ниже.

Пример решения задачи на определение задерживающей разности потенциалов

Таким образом согласно приведенного выше решения получается, что задерживающая разность потенциалов лития при таких условиях будет составлять 3.92 вольт. При увеличении этого значения, фотоэлектрон сможет покинуть поверхность металла.

Заключение

Фотоэффект и задерживающая разность потенциалов нашли очень широкое применение в различных сферах. Их в наше время используют во многих областях науки и техники. В астрономии, ядерной физике, фототелеграфии и телевидении устройства на основе фотоэффекта (ФЭУ) используются, чтобы измерить малые световые потоки или сделать спектральный анализ какого-то вещества. А в медицине на данном эффекте работают различные электронно-оптические преобразователи (ЭОП), которые используются, например, для усиления яркости рентгеновского изображения. За счет этого снимки становятся более яркими и четкими, а сама доза облучения человека при этом довольно сильно уменьшается.

Видео по теме

Кинетическая энергия, скорость и импульс в формуле Эйнштейна являются максимальными, т. е. электрон имеет их сразу же после отрыва от атома. «Пробираясь к выходу» из вещества за счет взаимодействия с другими частицами, он может потерять энергию, поэтому вылетевшие электроны имеют различные скорости (вплоть до 0).

Uзадерж

задерживающее напряжение (потенциал) [viii]– это обратное напряжение, которое нужно приложить между катодом и анодом фотоэлемента, чтобы прекратился фототок (см. рис. ниже)

Рассмотрим вакуумный фотоэлемент и его характеристики. 1)Вольтамперная характеристика.

На рисунке показана схема, используемая для изучения фотоэффекта. Внутри стеклянного баллона, из которого откачен воздух, имеются два электрода: катод (К) и анод (А). Такое устройство называется вакуумным фотоэлементом. При освещении катода светом, из него будут вылетать электроны, образуя электронное облако. Часть электронов по инерции достигнут анода. Если катод и анод замкнуть вне баллона и подсоединить микроамперметр, то прибор покажет ток.

Этот очень небольшой ток называется инерционным (Iин).

Если к электродам подсоединить батарею и увеличивать напряжение между катодом и анодом, ток в цепи будет увеличиваться. Зависимость фототока от напряжения называется вольтамперной характеристикой фотоэлемента ( см. рис.). Начиная с некоторых напряжений, ток перестает увеличиваться, если при этом световой поток

Ф остается постоянным. Максимальный ток называется током насыщения (Iнас). Существование тока насыщения объясняется следующим образом. Один фотон выбивает только один электрон, но не каждый фотон выбивает по электрону. Отношение числа выбитых электронов Nэл к числу падающих фотонов Nфот в единицу времени называется квантовым выходом. Квантовый выход a зависит от природы вещества и частоты фотонов.

2) Световая характеристика.

Световой характеристикой фотоэлемента называется зависимость фототока насыщения от падающего светового потока ( см. рис.). Квантовый подход приводит к прямой пропорциональности тока насыщения световому потоку

Iнасыщ ~ Ф. Действительно:

ток насыщения,

е – заряд электрона, t— время.

световой поток

квантовый выход

А/Вт

чувствительность фотоэлемента

Iнасыщ = g Ф

Отсюда для n = const следует, что сила тока насыщения прямо пропорциональна световому потоку.[ix] Коэффициент пропорциональности g называется чувствительностью фотоэлемента – она показывает, на сколько изменяется сила тока насыщения при изменении светового потока на единицу

3) Задерживающий потенциал.

Уравнение Эйнштейна можно записать в виде: и выразить задерживающий потенциал:

На рисунке показан график зависимости задерживающего потенциала от частоты падающего света. По графику можно найти работу выхода А, красную границу nгр , а по наклону прямой можно определить величину постоянной Планка h.

Фотоэлементы широко используются в физике и технике. Вакуумные фотоэлементы довольно громоздки и дают небольшие токи, но вследствие своей безинерционности и линейной световой характеристики они незаменимы в тех случаях, когда необходимо превратить световые сигналы в электрические без каких-либо искажений. Существование тока насыщения в фотоэлементах позволят использовать их в стабилизаторах (напряжение изменяется, а ток остается постоянным). Фотоэлементы очень часто применяют в турникетах, для подсчета движущихся изделий на конвейерах и т. п.

ЭФФЕКТ КОМПТОНА

Эффектом Комптона называется рассеяние веществом электромагнитного излучения, при котором частота рассеянного излучения уменьшается по сравнению с первоначальной, и одновременно наблюдается вылет быстрых электронов (электроны отдачи). Изменение частоты оказывается различной в зависимости от угла наблюдения. Американский ученый Комптон, открывший это явление (1923 г) разработал теорию явления. Он предложил рассматривать наблюдаемое взаимодействие света с веществом как упругое столкновение

частиц — фотона и электрона. Используя законы сохранения импульса и энергии, Комптон получил формулу для изменения длины волны в зависимости от угла рассеяния..

Мы не будем приводить полный вывод формулы для изменения длины волны, а запишем только законы сохранения и окончательную формулу. Так как эффект Комптона наблюдается только для фотонов с большой энергией (рентгеновские и гамма-лучи), то при вычислениях необходимо использовать формулы СТО, и вывод становится громоздким. [x]

На рис. показано столкновение первоначального фотона с энергией hnо с электроном в веществе (на рис. не показан). Импульс и энергия электрона до столкновения пренебрежимо малы по сравнению с импульсом и энергией фотона, т. е. электрон можно считать свободным. (Обычно употребляется выражение «рассеяние фотона на свободном электроне»). После столкновения фотон отклоняется от первоначального направления под углом q , а его энергия уменьшается и становится равной hn. Электрон получает импульс и кинетическую энергию и летит под углом j. (электрон отдачи, угол отдачи).

закон сохранения импульса в векторном и скалярном виде (теорема косинусов).

— импульс падающего фотона,

— импульс рассеянного фотона,

— импульс электрона.

q — угол рассеяния

закон сохранения энергии

— энергия падающего фотона,

— энергия рассеянного фотона,

— кинетическая энергия электрона отдачи

(электрон релятивистский).

Подставив в эти законы выражения для указанных величин, приведенные ниже, после преобразований получим:

Фотоэффект: красная граница и задерживающее напряжение

В этой статье будем рассчитывать красную границу фотоэффекта, скорости электронов и задерживающее напряжение.

Задача 1.

С какой скоростью вылетают электроны с поверхности цезия при освещении желтым светом с длиной волны Фотоэффект: красная граница и задерживающее напряжение нм?
Скорость фотоэлектрона равна

Фотоэффект: красная граница и задерживающее напряжение

Красная граница фотоэффекта для цезия равна Фотоэффект: красная граница и задерживающее напряжение нм.

Подставим числа:

Фотоэффект: красная граница и задерживающее напряжение

Ответ: Фотоэффект: красная граница и задерживающее напряжение м/с.

Задача 2.

Цезиевый катод фотоэлемента освещают светом натриевой лампы с длиной волны Фотоэффект: красная граница и задерживающее напряжение нм. Определить скорость вырываемых из катода фотоэлектронов, если красная граница фотоэффекта для цезия Фотоэффект: красная граница и задерживающее напряжение нм.

Из предыдущей задачи скорость равна

Фотоэффект: красная граница и задерживающее напряжение

Ответ: Фотоэффект: красная граница и задерживающее напряжение м/с.

Задача 3.

Если поочередно освещать поверхность металла излучением с длинами волн Фотоэффект: красная граница и задерживающее напряжение нм и Фотоэффект: красная граница и задерживающее напряжение нм, то максимальные скорости фотоэлектронов будут отличаться в Фотоэффект: красная граница и задерживающее напряжение раза. Определить работу выхода электрона из этого металла.

Из предыдущей задачи:

Фотоэффект: красная граница и задерживающее напряжение
Фотоэффект: красная граница и задерживающее напряжение

Отношение скоростей:

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Возведем в квадрат:

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Работа выхода равна:

Фотоэффект: красная граница и задерживающее напряжение

Чтобы числитель и знаменатель имели положительные знаки, преобразуем еще раз и подставим числа:

Фотоэффект: красная граница и задерживающее напряжение

Или в электронвольтах Фотоэффект: красная граница и задерживающее напряжение

Ответ: Фотоэффект: красная граница и задерживающее напряжение Дж, или 1,88 эВ.

Задача 4.

Для некоторого металла красная граница фотоэффекта в Фотоэффект: красная граница и задерживающее напряжение раза меньше частоты падающего излучения. Определить работу выхода электрона из данного металла, если максимальная скорость фотоэлектронов равна Фотоэффект: красная граница и задерживающее напряжение м /с.

Если частота красной границы фотоэффекта меньше частоты падающего излучения, то длина волны – больше.

Фотоэффект: красная граница и задерживающее напряжение

Или

Фотоэффект: красная граница и задерживающее напряжение

Уравнение фотоэффекта:

Фотоэффект: красная граница и задерживающее напряжение

Подставим Фотоэффект: красная граница и задерживающее напряжение:

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Или в электронвольтах Фотоэффект: красная граница и задерживающее напряжение

Ответ: Фотоэффект: красная граница и задерживающее напряжение Дж, или 5,12 эВ.

Задача 5.

Какую максимальную скорость будут иметь фотоэлектроны при облучении поверхности цинка ультрафиолетовым излучением с энергией квантов в Фотоэффект: красная граница и задерживающее напряжение раза большей работы выхода?

Работа выхода для цинка равна Фотоэффект: красная граница и задерживающее напряжение.

Уравнение фотоэффекта:

Фотоэффект: красная граница и задерживающее напряжение

Или

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение
Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Ответ: Фотоэффект: красная граница и задерживающее напряжение м/с.

Задача 6.

Определить, во сколько раз частота излучения, вызывающего фотоэффект с поверхности некоторого металла, больше красной границы фотоэффекта, если работа выхода электрона из этого металла в Фотоэффект: красная граница и задерживающее напряжение раза больше максимальной кинетической энергии фотоэлектронов.

Уравнение фотоэффекта:

Фотоэффект: красная граница и задерживающее напряжение

Или

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Ответ: Фотоэффект: красная граница и задерживающее напряжение.

Задача 7.

При некотором минимальном значении задерживающей разности потенциалов фототок с поверхности лития, освещаемого светом с длиной волны Фотоэффект: красная граница и задерживающее напряжение, прекращается. Изменив длину волны света в Фотоэффект: красная граница и задерживающее напряжение раза, установили, что для прекращения фототока достаточно увеличить задерживающую разность потенциалов в Фотоэффект: красная граница и задерживающее напряжение раза. Вычислить Фотоэффект: красная граница и задерживающее напряжение.
Фотоэффект: красная граница и задерживающее напряжение

Работа выхода для лития равна Фотоэффект: красная граница и задерживающее напряжение.

А для второй частоты
Фотоэффект: красная граница и задерживающее напряжение

Тогда

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Приравняем:

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Фотоэффект: красная граница и задерживающее напряжение

Ответ: Фотоэффект: красная граница и задерживающее напряжение нм.

Добавить комментарий