Как найти заряд через плотность заряда

Сосредоточенные и распределенные заряды

Заряды можно распределять по какой-либо области тел, тогда их называют распределенными. Когда же заряд целиком собран в одну точку, его называют точечным. Большинство школьных задач физики связано с точечными зарядами.

Сосредоточенный заряд

Электрический заряд, сосредоточенный в какой-либо точке пространства, называют точечным.

Заряд точечный, когда он находится в одной точке

Рис. 1. Точечный заряд

Силу взаимодействия точечных зарядов можно вычислить, используя закон Кулона.

Распределенные заряды

Электрический заряд, так же, можно распределять по объему, площади, или длине. Такие заряды называют распределенными. Чтобы описать эти заряды, используют понятие плотности заряда.

Если заряд распределен по:
— объему, говорят о объемной плотности заряда;
— площади, употребляют поверхностную плотность;
— длине, используют линейную плотность.

Примечание: Плотности отрицательных зарядов записывают со знаком «минус».

Формула линейной плотности заряда

Заряд распределен по длине

Рис. 2. Заряд распределен по длинному тонкому телу

[ large boxed {tau = frac{q}{L} } ]

( large q left(text{Кл} right) ) – заряд;

( large L left(text{м} right) ) – длина, по которой распределен заряд;

( large tau left(frac{text{Кл}}{text{м}} right) ) – линейная плотность заряда;

Формула поверхностной плотности заряда

Любая поверхность обладает площадью, распределяя по ней заряд, получим поверхностную его плотность.

Этот термин используют, например, для вычисления электрического поля заряженной плоскости, или плоского конденсатора (двух параллельных плоскостей).

Заряд распределен по площади

Рис. 3. Заряд распределен по плоской поверхности

[ large boxed {sigma = frac{q}{S} } ]

( large S left(text{м}^{2} right) ) – площадь, по которой распределен заряд;

( large sigma left(frac{text{Кл}}{text{м}^{2}} right) ) – поверхностная плотность заряда;

Формула объемной плотности заряда

Функция, описывающая плотность распределения заряда в трехмерном пространстве, входит в одно из уравнений Максвелла.

Заряд распределен по объему

Рис. 4. Заряд распределен по объему тела

[ large boxed {rho = frac{q}{V} } ]

( large V left(text{м}^{3} right) ) – объем, по которому распределен заряд;

( large rho left(frac{text{Кл}}{text{м}^{3}} right) ) – объемная плотность заряда;

Примечание:

Джеймс Клерк Максвелл (1831 — 1879) – талантливый шотландский математик и физик. Популяризатор науки, экспериментатор и конструктор научных приборов.

Описал электромагнитное взаимодействие с помощью своих уравнений (уравнения Максвелла). Система этих уравнений лежит в основе современной электродинамики.

Предсказал электромагнитные волны, обнаружил, что свет имеет электромагнитную природу и может создавать давление.

Занимался исследованиями в области молекулярной физики и термодинамики. Использовал математический аппарат статистики, получил температурное распределение скоростей молекул.

Проводил исследования в области астрономии и оптики, для планеты Сатурн провел анализ устойчивости колец.

Именно Максвелл заложил трехцветный принцип, который используется в цветной фотографии и телевидении.

Оценка статьи:

Загрузка…

Для упрощения
математических расчетов электростатических
полей часто пренебрегают дискретной
структурой зарядов. Считают, что заряд
распределен непрерывно и вводят понятие
о плотности заряда.

Рассмотрим различные
случаи распределения зарядов.

1.Заряд
распределен вдоль линии.

Пусть на бесконечно малом участке
находится заряд.
Введем величину

.
(1.5)

Величина
называется линейной плотностью заряда.
Ее физический смысл – заряд, приходящийся
на единицу длины.

2.Заряд
распределен по поверхности.

Введем поверхностную плотность заряда:

.
(1.6)

Её физический
смысл – заряд, приходящийся на единицу
площади.

3.Заряд
распределен по объёму.

Введем объёмную плотность заряда:

.
(1.7)

Её физический
смысл – заряд, сосредоточенный в единице
объёма.

Заряд,
сосредоточенный на бесконечно малом
участке линии, поверхности или в
бесконечно малом объёме можно считать
точечным. Напряжённость поля, создаваемого
им, определится формулой:

.
(1.8)

Для нахождения
напряжённости поля, создаваемого всем
заряженным телом, нужно применить
принцип суперпозиции полей:

.
(1.9)

В этом случае, как
правило, задача сводится к вычислению
интеграла.

1.3.Применение принципа суперпозиции к расчету электростатических полей. Электростатическое поле на оси заряженного кольца

Постановка
задачи
.
Пусть имеется тонкое кольцо радиуса R,
заряженное с линейной плотностью заряда
τ.
Необходимо рассчитать напряжённость
электрического поля в произвольной
точке А,
расположенной на оси заряженного кольца
на расстоянии x
от плоскости кольца (рис. ).

Выберем
бесконечно малый элемент длины кольца
dl;
заряд dq,
находящийся на этом элементе равен dq=
τ·
dl.
Этот заряд создает в точке А
электрическое поле напряжённостью
.
Модуль вектора напряжённости равен:

.
(1.10)

По
принципу суперпозиции полей напряжённость
электрического поля, создаваемого всем
заряженным телом, равна векторной сумме
всех векторов
:

.
(1.11)

Разложим
вектора
на составляющие: перпендикулярные оси
кольца ()
и параллельные оси кольца ().

.
(1.12)

Векторная
сумма перпендикулярных составляющих
равна нулю:
,
тогда.
Заменяя сумму интегралом, получим:

.
(1.13)

Из
треугольника (рис.1.2) следует:

=.
(1.14)

Подставим выражение (1.14) в формулу (1.13) и вынесем за знак интеграла постоянные величины, получим:

.
(1.15)

Так
как
,
то

.
(1.16)

С
учетом того, что
,
формулу (1.16) можно представить в виде:

.
(1.17)

1.4.Геометрическое описание электрического поля. Поток вектора напряжённости

Для
математического описания электрического
поля нужно указать в каждой точке
величину и направление вектора

,
то есть задать векторную функцию.

Существует
наглядный (геометрический) способ
описания поля с помощью линий вектора
(силовых линий) (рис.13.).

Линии напряжённости
проводят следующим образом:

  • касательная
    к линии в каждой точке должна совпадать
    с направлением поля;

  • число
    линий пересекающих единичную площадку,
    перпендикулярную к ним, должно быть
    равно численному значению вектора
    .

Существует
правило:

линии вектора напряжённости электрических
полей, создаваемых системой неподвижных
зарядов, могут начинаться или заканчиваться
лишь на зарядах либо уходить в
бесконечность.

На
рисунке 1.4 показано изображение
электростатического поля точечного
заряда с помощью линий вектора
,
а на рисунке 1.5 – изображение
электростатического поля диполя.

1.5.
Поток
вектора напряжённости электростатического
поля

Поместим
в электрическое поле бесконечно малую
площадку dS (рис.1,6).
Здесь

– единичный вектор нормали к площадке.
Вектор напряжённости электрического
поля

образует с нормалью

некоторый угол α.
Проекция вектора

на направление нормали равна En=E·cos
α .

Потоком вектора
через бесконечно малую площадку
называется скалярное произведение

,
(1.18)

или

.
(1.19)

Поток вектора
напряжённости электрического поля
является алгебраической величиной; его
знак зависит то взаимной ориентации
векторов
и
.

Поток
вектора
через произвольную поверхностьSконечной величины определится интегралом:

.
(1.20)

Если
поверхность замкнутая, интеграл отмечают
кружочком:

.
(1.21)

Для замкнутых
поверхностей нормаль берется наружу
(рис.1.7).

Поток
вектора напряжённости имеет наглядный
геометрический смысл: он численно равен
числу линий вектора
,
проходящих через поверхностьS.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2016 года; проверки требуют 15 правок.

Плотность заряда
(линейная, поверхностная, объемная)
{displaystyle {frac {dq}{dl}},{frac {dq}{dS}},{frac {dq}{dV}}}
Размерность L−1TI, L−2TI, L−3TI
Единицы измерения
СИ Кл/м, Кл/м2, Кл/м3
Примечания
скалярная величина

Пло́тность заря́да — количество электрического заряда, приходящееся на единицу длины, площади или объёма. Таким образом определяются линейная, поверхностная и объёмная плотности заряда, которые в системе СИ измеряются в кулонах на метр (Кл/м), в кулонах на квадратный метр (Кл/м²) и в кулонах на кубический метр (Кл/м³), соответственно. В отличие от плотности вещества, плотность заряда может принимать не только положительные, но и отрицательные значения, поскольку существуют заряды обоих знаков.

Плотность заряда в классической физике[править | править код]

Линейная, поверхностная и объёмная плотности электрического заряда обычно задаются функциями {displaystyle lambda ({vec {r}})}, {displaystyle sigma ({vec {r}})} и rho ({vec  r}), соответственно, где {displaystyle {vec {r}}} — радиус-вектор. Зная эти функции, можно определить полный заряд:

{displaystyle Q=int limits _{L}lambda ({vec {r}})operatorname {d} r},
{displaystyle Q=int limits _{S}sigma ({vec {r}})operatorname {d} S},
{displaystyle Q=int limits _{V}rho ({vec {r}})operatorname {d} V}.

Плотность заряда в квантовой механике[править | править код]

В квантовой механике плотность заряда, например электрона в атоме, связана с волновой функцией {displaystyle psi ({vec {r}})} через соотношение

{displaystyle rho ({vec {r}})=q|psi ({vec {r}})|^{2}},

где q — заряд электрона. При этом волновая функция должна иметь нормировку:

{displaystyle int |psi ({vec {r}})|^{2}operatorname {d} V=1}.

Определение плотности заряда через δ-функцию[править | править код]

Иногда требуется записать объёмную плотность заряда для системы из точечных зарядов q_{a} ({displaystyle a=1,2,ldots }). Это может быть сделано с использованием δ-функции:

{displaystyle rho ({vec {r}})=sum _{a}q_{a}delta ({vec {r}}-{vec {r}}_{a})},

где сумма берётся по всем имеющимся зарядам, а {displaystyle {vec {r}}_{a}} — радиус-вектор заряда q_{a}.[1]
Полный заряд, находящийся во всём пространстве, равен интегралу {displaystyle int rho dV} по всему пространству. Можно написать этот интеграл в четырёхмерном виде:

{displaystyle Q=int rho dV={frac {1}{c}}int j^{0}dV={frac {1}{c}}int j^{i}ds_{i}},

где интегрирование производится по всей четырёхмерной гиперплоскости, перпендикулярной к оси x0 (очевидно, что это и означает интегрирование по всему трёхмерному пространству). {displaystyle j^{i}} — 4-вектор плотности тока.

Плотность заряда в формулах электродинамики[править | править код]

Объёмная плотность заряда в явном виде фигурирует в одном из уравнений Максвелла: ({displaystyle operatorname {div} {vec {D}}=rho }). Кроме того, она входит в уравнение непрерывности {displaystyle operatorname {div} {vec {j}}+partial rho /partial t=0}.

Поверхностная плотность заряда входит в граничные условия для нормальных компонент электрической индукции на стыке двух сред: {displaystyle D_{2n}-D_{1n}=sigma }.

Плотность заряда в любом варианте (объёмная, поверхностная, линейная) может использоваться при вычислении напряжённости электрического поля или потенциала путём интегрирования закона Кулона

{displaystyle {vec {E}}({vec {r}})={frac {1}{4pi varepsilon _{0}}}int {frac {({vec {r}}-{vec {hat {r}}}),dQ({vec {hat {r}}})}{|{vec {r}}-{vec {hat {r}}}|^{3}}},qquad varphi ({vec {r}})={frac {1}{4pi varepsilon _{0}}}int {frac {dQ({vec {hat {r}}})}{|{vec {r}}-{vec {hat {r}}}|}}},

где элемент заряда dQ записывается как rho dV, {displaystyle sigma dS} или {displaystyle lambda dl} в зависимости от конкретной задачи.

См. также[править | править код]

  • Плотность тока

Примечания[править | править код]

  1. Ландау Л.Д., Лифшиц Е.М. Теория Поля, Том 2 из 10.. — 8 издание. — ФИЗМАТЛИТ, 2003. — С. 104. — 531 с. — ISBN 5-9221-0056-4.

Литература[править | править код]

  • Сивухин Д. В. Общий курс физики. — Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — 656 с. — ISBN 5-9221-0227-3; ISBN 5-89155-086-5..
  • САВЕЛЬЕВ И. В. Основы теоретической физики: Учеб. руководство: Для вузов. В 2 т. Т. 1. Механика и электродинамика.— 2-е изд., испр. — М.: Наука. Гл. ред. физ.-мат. лит., 1991.— 496 с. ISBN 5-02-014455-X (Т. 1)

Поверхностная плотность заряда

Напряженность электрического поля зависит от величины заряда и конфигурации заряженного тела.

Поверхностная плотность заряда — есть отношение заряда к площади заряженной поверхности.

Единица СИ поверхностной плотности заряда:

[ [σ] = frac{кулон}{квадратный enspace метр} = frac{Кл}{м^2} ]

Если

σ поверхностная плотность заряда, Кулон/метр2
Q заряд поверхности проводника, Кулон
S площадь поверхности проводника, метр2

то

[ σ = frac{Q}{S} ]

Вычислить, найти поверхностную плотность заряда по формуле (2)

Наличие зарядов приводит к возникновению сил, которые в свою очередь действуют на заряды, помещенные в электрическое поле. Причина и следствие здесь взаимно переплетаются.

Если

σ поверхностная плотность заряда, Кулон/метр2
E напряженность электрического поля, Вольт/метр
ε0 электрическая постоянная, 8.85·10-12 Кулон/(Вольт · метр)

то

[ σ = ε_0 · E ]

Вычислить, найти поверхностную плотность заряда через напряженность электрического поля по формуле (3)

Поверхностная плотность заряда

стр. 626

Плотность заряда

Материал из Большого Справочника

Плотность заряда
(линейная, поверхностная, объемная)
{displaystyle {frac {dq}{dl}},{frac {dq}{dS}},{frac {dq}{dV}}}
Размерность L−1TI, L−2TI, L−3TI
Единицы измерения
СИ Кл/м, Кл/м2, Кл/м3
Примечания
скалярная величина

Пло́тность заря́да — количество электрического заряда, приходящееся на единицу длины, площади или объёма. Таким образом определяются линейная, поверхностная и объёмная плотности заряда, которые в системе СИ измеряются в кулонах на метр (Кл/м), в кулонах на квадратный метр (Кл/м²) и в кулонах на кубический метр (Кл/м³), соответственно. В отличие от плотности вещества, плотность заряда может принимать не только положительные, но и отрицательные значения, поскольку существуют заряды обоих знаков.

Содержание

  • 1 Плотность заряда в классической физике
  • 2 Плотность заряда в квантовой механике
  • 3 Определение плотности заряда через δ-функцию
  • 4 Применение
  • 5 См. также
  • 6 Примечания
  • 7 Литература

Плотность заряда в классической физике

Линейная, поверхностная и объёмная плотности электрического заряда обычно задаются функциями {displaystyle lambda ({vec {r}})}, {displaystyle sigma ({vec {r}})} и rho ({vec  r}), соответственно, где {displaystyle {vec {r}}} — радиус-вектор. Зная эти функции, можно определить полный заряд:

{displaystyle Q=int limits _{L}lambda ({vec {r}})operatorname {d} r},
{displaystyle Q=int limits _{S}sigma ({vec {r}})operatorname {d} S},
{displaystyle Q=int limits _{V}rho ({vec {r}})operatorname {d} V}.

Плотность заряда в квантовой механике

В квантовой механике плотность заряда, например электрона в атоме, связана с волновой функцией {displaystyle psi ({vec {r}})} через соотношение

{displaystyle rho ({vec {r}})=Q|psi ({vec {r}})|^{2}},

причём волновая функция должна иметь нормировку:

{displaystyle int |psi ({vec {r}})|^{2}operatorname {d} V=1}.

Определение плотности заряда через δ-функцию

Иногда требуется записать объёмную плотность заряда для системы из точечных зарядов. Это может быть сделано с использованием δ-функции:

{displaystyle rho ({overrightarrow {r}})=sum _{a}e_{a}delta ({overrightarrow {r}}-{overrightarrow {r_{a}}})}

где сумма берётся по всем имеющимся зарядам, а {displaystyle {overrightarrow {r_{a}}}} — радиус-вектор заряда {displaystyle e_{a}}.[1]
Полный заряд, находящийся во всём пространстве, равен интегралу {displaystyle int rho dV} по всему пространству. Можно написать этот интеграл в четырёхмерном виде:

{displaystyle Q=int rho dV={frac {1}{c}}int j^{0}dV={frac {1}{c}}int j^{i}ds_{i}}

где интегрирование производится по всей четырёхмерной гиперплоскости, перпендикулярной к оси x0 (очевидно, что это и означает интегрирование по всему трёхмерному пространству). {displaystyle j^{i}} — 4-вектор плотности тока.

Применение

Функция распределения плотности заряда фигурирует в уравнениях Максвелла ({displaystyle nabla cdot {bf {D}}=rho }).

См. также

  • Плотность тока

Примечания

  1. Ландау Л.Д., Лифшиц Е.М. Теория Поля, Том 2 из 10.. — 8 издание. — ФИЗМАТЛИТ, 2003. — С. 104. — 531 с. — ISBN 5-9221-0056-4.

Литература

  • Сивухин Д. В. Общий курс физики. — Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — 656 с. — ISBN 5-9221-0227-3; ISBN 5-89155-086-5..

Добавить комментарий