Как найти заряд плоского воздушного конденсатора

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,655
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,944
  • разное
    16,904

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Наряду с резисторами одними из наиболее часто используемых электронных компонентов являются конденсаторы. И в этой статье мы разберемся, из чего они состоят, как работают и для чего применяются 👍 В первую очередь, рассмотрим устройство и принцип работы, а затем плавно перейдем к основным свойствам и характеристикам – заряду, энергии и, конечно же, емкости конденсатора.

Плоский конденсатор.

Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика. Причем расстояние между пластинами должно быть намного меньше, чем, собственно, размеры пластин:

Схема плоского конденсатора

Такое устройство называется плоским конденсатором, а пластины – обкладками конденсатора. Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).

А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния. Очень часто его влиянием в задачах пренебрегают, но забывать о нем не стоит.

Для определения величины этого поля рассмотрим еще одно схематическое изображение плоского конденсатора:

Электрическое поле конденсатора

Каждая из обкладок конденсатора в отдельности создает электрическое поле:

  • положительно заряженная пластина (+q) создает поле, напряженность которого равна E_{+}
  • отрицательно заряженная пластина (-q) создает поле, напряженность которого равна E_{-}

Выражение для напряженности поля равномерно заряженной пластины выглядит следующим образом:

E_{пл} = frac{sigma}{2varepsilon_0thinspacevarepsilon}

Здесь sigma– это поверхностная плотность заряда: sigma = frac{q}{S}, а varepsilon – диэлектрическая проницаемость диэлектрика, расположенного между обкладками конденсатора. Поскольку площадь пластин конденсатора у нас одинаковая, как и величина заряда, то и модули напряженности электрического поля, равны между собой:

E_+ = E_- = frac{q}{2varepsilon_0thinspacevarepsilon S}

Но направления векторов разные – внутри конденсатора вектора направлены в одну сторону, а вне – в противоположные. Таким образом, внутри обкладок результирующее поле определяется следующим образом:

E = E_+ + E_- = frac{q}{2varepsilon_0thinspacevarepsilon S} + frac{q}{2varepsilon_0thinspacevarepsilon S} = frac{q}{varepsilon_0thinspacevarepsilon S}

Соответственно, вне конденсатора (слева и справа от обкладок) поля пластин компенсируют друг друга и результирующая напряженность равна 0.

Процессы зарядки и разрядки конденсаторов.

С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

Схема зарядки конденсатора

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что будет происходить?

Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника. Из-за этого на обкладке возникнет недостаток отрицательно заряженных частиц, и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора. В результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной.

Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную разность потенциалов. Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока. После этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:

Схема разрядки конденстора

В данном случае по цепи начнет протекать ток разряда конденсатора, а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Именно так происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию. Как видите, здесь нет ничего сложного.

Емкость и энергия конденсатора.

Важнейшей характеристикой является электрическая емкость конденсатора. Это физическая величина, которая определяется как отношение заряда q одного из проводников к разности потенциалов между проводниками:

C = frac{q}{Deltavarphi} = frac{q}{U}

Емкость конденсатора изменяется в Фарадах, но величина 1 Ф является неимоверно большой, поэтому чаще всего используются микрофарады (мкФ), нанофарады (нФ) и пикофарады (пФ). А поскольку мы уже вывели формулу для расчета напряженности, то давайте выразим напряжение на конденсаторе следующим образом:

U = Ed = frac{qd}{varepsilon_0thinspacevarepsilon S}

Здесь у нас d – это расстояние между пластинами конденсатора, а q – заряд конденсатора. Подставим эту формулу в выражение для емкости:

C = frac{qvarepsilon_0thinspacevarepsilon S}{qd} = frac{varepsilon_0thinspacevarepsilon S}{d}

Если в качестве диэлектрика выступает воздух, то во всех формулах можно подставить varepsilon = 1. Для запасенной же энергии конденсатора справедливы следующие выражения:

W = frac{CU^2}{2} = frac{qU}{2} = frac{q^2}{2C}

Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом. Собственно, характеристикой, которая часто используется при работе с конденсаторами является не напряжение пробоя, а рабочее напряжение. Это такая величина напряжения, при которой конденсатор может работать неограниченно долгое время, и пробоя не произойдет.

Итак, резюмируем – сегодня рассмотрели основные свойства конденсаторов, их устройство и характеристики, так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений и маркировку.

Определение

Конденсатор служит для накопления электрического заряда. Он представляет собой два проводника, разделенных слоем диэлектрика.

Плоский конденсатор — система двух разноименно заряженных пластин.

Разность потенциалов U (В) между обкладками конденсатора (напряжение между пластинами), определяется произведением напряженности создаваемого ими электрического поля на расстояние между ними:

U=Ed

Электроемкость конденсатора

Определение

Электрическая емкость — характеристика проводника, мера его способности накапливать электрический заряд.

Электроемкость обозначается как C. Единица измерения электрической емкости — Фарад (Ф).

Электроемкость конденсатора определяется формулой:

C=ε0εSd

  • ε0 — диэлектрическая постоянная, равная 8,85∙10–12 Кл2/(Н∙м2);
  • ε — диэлектрическая проницаемость среды;
  • S2) — площадь каждой пластины.

Внимание! У воздушного конденсатора диэлектрическая проницаемость среды равна 1.

Связь между электроемкостью конденсатора, зарядом и напряжением определяется формулами:

C=QU=qU

Важно! Электроемкость конденсатора зависит только от площади его пластин, расстояния между ними и диэлектрической проницаемости среды. От заряда и напряжения эта величина не зависит.

Энергия конденсатора

Формула энергии конденсатора

Энергия конденсатора связана с его электроемкостью и вычисляется по следующим формулам:

Wэ=q22C=CU22

Подсказки к задачам

Конденсатор отключен от источника q = q′
Конденсатор подключен к источнику U = U′
Количество теплоты и энергия конденсатора Q = ∆Wэ

Пример №1. Вычислить электроемкость плоского воздушного конденсатора с квадратными пластинами со стороной 10 см, расположенными на расстоянии 1 мм друг от друга. Ответ округлить до десятых.

10 см = 0,1 м

1 мм = 0,001 м

Так как между обкладками конденсатора находится воздух, примем диэлектрическую проницаемость среды за единицу.

Площадь квадратной пластины равна квадрату ее стороны:

S = a2

Соединения конденсаторов

Последовательное соединение Параллельное соединение
Схема
Напряжение

U=U1+U2

U=U1=U2

Заряд

q=q1=q2

q=q1+q2

Электроемкость

1C=1C1+1C2

C=C1+C2

Подсказки к задачам

Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов одноименными полюсами. Схема соединения конденсаторов одноименными полюсами:

Заряд системы после соединения:

q
=C1U1+C2U2

Электрическая емкость системы:

C
=C1+C2

Напряжение:

U
=qC=C1U1+C2U2C1+C2

Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов разноименными полюсами.

Схема соединения конденсаторов разноименными полюсами:

Заряд системы после соединения:

q
=C1U1C2U2

Электрическая емкость системы:

C
=C1+C2

Напряжение:

U
=qC=C1U1C2U2C1+C2

Пример №2. К конденсатору, электрическая емкость которого C = 16 пФ, подключают два одинаковых конденсатора емкостью X: один параллельно, а второй — последовательно (см. рисунок). Емкость образовавшейся батареи конденсаторов равна емкости C. Какова емкость X? Ответ округлите до десятых.

Электрическая емкость параллельного соединения равна:

Cпарал=X+C

Электроемкость последовательного соединения:

1Cпослед=1Cпарал+1X=1X+C+1X

Учтем, что суммарная электроемкость равна C:

1C=1X+C+1X

Преобразуем, умножим выражение на CX(X+C):

X(X+C)=CX+C(X+C)

Раскроем скобки:

X2+XC=CX+CX+C2

X2CXC2=0

Решив уравнение, получим: X = 25,9 пФ.

Разбор задач на тему «Заряженная частица в поле конденсатора»

Шарик, находящийся в масле плотностью ρ, «висит» в поле плоского конденсатора. Плотность вещества шарика ρш > ρ, его радиус r, расстояние между обкладками конденсатора d. Каков заряд шарика, если электрическое поле направлено вверх, а разность потенциалов между обкладками U? Условие равновесия исходит из второго закона Ньютона:

Fтяж+FK+FA=0

ρш > ρ, поэтому Fтяж> FA. В этом случае сила Кулона направлена вверх, а заряд шарика положительный. Схематически это можно отобразить так:

Проекция второго закона Ньютона на ось ОУ:

FK+FA=Fтяж

Сила тяжести равна произведению объема на плотность шарика и на ускорение свободного падения:

Fтяж=ρш43πr3g

Архимедова сила равна произведению объема шарика на плотность масла и на ускорение свободного падения:

FА=ρ43πr3g

Сила Кулона:

FK=qUd

qUd+ρ43πr3g=ρш43πr3g

q=(ρш43πr3gρ43πr3g)dU=4πr3gd(ρшρ)3U

Маленький шарик с зарядом q и массой m, подвешенный на невесомой нити с коэффициентом упругости k, находится между вертикальными пластинами воздушного конденсатора. Расстояние между обкладками конденсатора d. Какова разность потенциалов между обкладками конденсатора U, если удлинение нити ∆l?

Условие равновесия исходит из второго закона Ньютона:

Fтяж+FK+Fупр=0

Проекции на оси ОХ и ОУ соответственно:

FупрsinαFK=0

Fупрcosαmg=0

Отсюда:

kΔlsinα=qUd

kΔlcosα=mg

Чтобы избавиться от угла α, возведем уравнения в квадрат и сложим их:

(kΔl)2sin2α+(kΔl)2cos2α=(qUd)2+(mg)2

(kΔl)2(sin2α+cos2α)=(qUd)2+(mg)2

sin2α+cos2α=1

(kΔl)2=(qUd)2+(mg)2

U=dq(kΔl)2(mg)2

Пластины плоского конденсатора расположены горизонтально на расстоянии d друг от друга. Напряжение на пластинах конденсатора U. В пространстве между пластинами падает капля жидкости. Масса капли m, ее заряд q. Определите расстояние между пластинами. Влиянием воздуха на движение капли пренебречь. Второй закон Ньютона в векторной форме:

Fтяж+FK=0

Проекция на вертикальную ось:

FтяжFK=0

Fтяж=mg

FK=qUd

mg=qUd

d=qUmg

Между двумя параллельными горизонтально расположенными диэлектрическими пластинами создано однородное электрическое поле с напряженностью E, направленное вертикально вниз. Между пластинами помещен шарик на расстоянии d от верхней пластины и b от нижней. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Через какой промежуток времени t шарик ударится об одну из пластин, если система находится в поле силы тяжести Земли? Второй закон Ньютона в векторной форме:

Fтяж+FK=ma

Согласно условию данной задачи, сила тяжести противоположно направлена силе Кулона. Построим рисунок:

Если Fтяж > FK, то шарик движется с ускорением вниз. Ускорение и перемещение в этом случае равны:

a=mgqEm

s=b

Если Fтяж < FK, то шарик движется с ускорением верх. Ускорение и перемещение в этом случае равны:

a=qEmgm

s=d

Начальная скорость шарика равна нулю. Поэтому перемещение также равно:

s=at22

Сделаем вычисления для случая Fтяж > FK:

at22=b

mgqEmt22=b

t=2bmmgqE

Выполняя вычисления для случая Сделаем вычисления для случая Fтяж < FK, получим:

t=2bmqEmg

Между двумя параллельными, вертикально расположенными диэлектрическими пластинами создано однородное электрическое поле, напряженность которого E и направлена слева направо. Между пластинами помещен шарик на расстоянии b от левой пластины и d от правой. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Найдите смещение шарика по вертикали ∆h до удара об одну из пластин. Пластины имеют достаточно большой размер. Второй закон Ньютона в векторной форме:

Fтяж+FK=ma

Если сила Кулона направлена вправо, то sx = d.

Если сила Кулона направлена вправо, то sx = b.

Учитывая, что заряд меньше нуля, а вектор напряженности направлен вправо, делаем вывод, что кулоновская сила направлена влево.

Из проекций второго закона Ньютона выразим проекции ускорения на оси ОХ и ОУ соответственно:

ax=qEm

ay=g

Проекции перемещений на эти же оси:

sx=axt22

sx=Δh=gt22

axt22=b

Или:

qEmt22=b

Так как время движения шарика по вертикали и горизонтали одинаково:

t2=2Δhg=2mbqE

Δh=mbgqE

Задание EF17979

Введите ответ в поле ввода
Плоский конденсатор подключён к гальваническому элементу. Как изменятся при уменьшении зазора между обкладками конденсатора три величины: ёмкость конденсатора, величина заряда на его обкладках, разность потенциалов между ними?

Для каждой величины определите соответствующий характер изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Определить, от чего зависит емкость конденсатора, и как она изменится при уменьшении зазора между его обкладками.

2.Определить, от чего зависит величина заряда конденсатора, и как она изменится после уменьшения зазора между его обкладками.

3.Определить, от чего зависит разность потенциалов между обкладками конденсатора, и как она изменится при уменьшении зазора.

Решение

Емкость конденсатора определяется формулой:

C=ε0εSd

Следовательно, емкость имеет обратно пропорциональную зависимость от расстояния между обкладками. Если расстояние уменьшить, то емкость увеличится.

Вот как взаимосвязана электроемкость и заряд конденсатора:

C=qU

Мы выяснили, что электроемкость увеличивается. Следовательно, увеличится и заряд, так как они имеют прямо пропорциональную зависимость.

С учетом того, что плоский конденсатор подключен к гальваническому элементу, разность потенциалов никак не зависит от расстояния между обкладками. Поэтому величина U остается неизменной.

Ответ: 113

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18574

Воспользовавшись оборудованием, представленным на рис. 1, учитель собрал модель плоского конденсатора (рис. 2), зарядил нижнюю пластину положительным зарядом, а корпус электрометра заземлил. Соединённая с корпусом электрометра верхняя пластина конденсатора приобрела отрицательный заряд, равный по модулю заряду нижней пластины. После этого учитель сместил одну пластину относительно другой не изменяя расстояния между ними (рис. 3). Как изменились при этом показания электрометра (увеличились, уменьшились, остались прежними)? Ответ поясните, указав, какие явления и закономерности Вы использовали для объяснения. Показания электрометра в данном опыте прямо пропорциональны разности потенциалов между пластинами конденсатора.


Алгоритм решения

1.Проанализировать каждый этап эксперимента.

2.Установить, от чего зависит угол отклонения стрелки электрометра.

3.Выяснить, что поменяется при смещении одной пластины конденсатора относительно другой, и что при этом произойдет со стрелкой электрометра.

Решение

На первом рисунке стрелка и стержень электрометра, соединённые с нижней пластиной, но изолированные от корпуса, заряжаются положительно. Поэтому стрелка отклоняется на некоторый угол. В верхней пластине и металлическом корпусе электрометра происходит перераспределение свободных электронов таким образом, что верхняя пластина заряжается отрицательно.

На втором рисунке заряды пластин одинаковы по модулю и противоположны по знаку, пластины образуют конденсатор с ёмкостью:

C=ε0εSd

S — площадь перекрытия пластин, d — расстояние между ними, ε — диэлектрическая проницаемость диэлектрика между пластинами.

Характер изменения угла отклонения стрелки совпадает с изменением разности потенциалов между пластинами: при увеличении разности потенциалов увеличивается угол отклонения, при уменьшении разности потенциалов угол уменьшается.

На рисунке 3 площадь перекрытия пластин уменьшилась. Следовательно, уменьшилась электроемкость, которая имеет обратно пропорциональную зависимость от разности потенциалов:

C=qU

Заряд остается постоянным, поскольку система изолированная — заряду просто некуда деться. Поэтому с уменьшением электроемкость растет разность потенциалов. Поэтому показания электрометра увеличатся.

Ответ: Увеличатся

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18695

Ученик изучает свойства плоского конденсатора. Какую пару конденсаторов (см. рисунок) он должен выбрать, чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками?


Алгоритм решения

  1. Установить, какие величины в данном эксперименте должны быть переменными, а какие — постоянными.
  2. Найти рисунок с парой конденсаторов, удовлетворяющий требованиям, выявленным в шаге 1.

Решение

Чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками, нужно сохранить все величины постоянными, кроме самого расстояния. Поэтому площади обкладок должны быть одинаковыми, но расстояние между ними разными, как на рисунке 1.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18703

Протон влетает в электрическое поле конденсатора параллельно его пластинам в точке, находящейся посередине между пластинами (см. рисунок). Найдите минимальную скорость υ, с которой протон должен влететь в конденсатор, чтобы затем вылететь из него. Длина пластин конденсатора 5 см, расстояние между пластинами 1 см, напряжённость электрического поля конденсатора 5000 В/м. Поле внутри конденсатора считать однородным, силой тяжести пренебречь.

Ответ записать в км/с, округлив до десятков.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Выполнить рисунок. Указать направление движения протона и силы, действующие на него.

3.Выяснить, при каком условии протон успеет вылететь из конденсатора.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса протона: m = 1,67∙10–27 кг.

 Заряд протона: q = 1,6∙10–19 Кл.

 Расстояние между обкладками конденсатора: d = 1 см.

 Длина пластин конденсатора: l = 5 см.

 Напряженность однородного поля внутри конденсатора: E = 5000 В/м.

1 см = 0,01 м

5 см = 0,05 м

Сделаем рисунок:

Изначально протон обладает только горизонтальной скоростью v, равной vx. Влетев в однородное электростатическое поле внутри конденсатора, протон обретает вертикальную компоненту скорости, которая растет за счет ускорения, придаваемого кулоновскими силами. Положительно заряженный протон притягивается нижней отрицательно зараженной пластиной конденсатора.

Чтобы протон вылетел из конденсатора, его горизонтальная компонента скорости должна быть достаточной для того, чтобы частица не притянулась к нижней пластине раньше. Время, которое понадобится протону для преодоления длины пластин конденсатора со скоростью vx:

t=lvx=lv

Протон влетел в пространство между обкладками конденсатора на одинаковом расстоянии от них. Следовательно, прежде чем он упадет на нижнюю пластину, по оси OY он переместится на расстояние, равное 0,5d. Так как начальная компонента скорости равна нулю (мы пренебрегаем силой тяжести):

0,5d=at22

Протон вылетит из конденсатора, а не упадет на его пластину, если время горизонтального перемещения до конца пластин будет как минимум равно времени падения. Выразим время падения:

t=da

Приравняем правые части уравнений времени и получим:

lv=da

Отсюда скорость равна:

v=al2d

Ускорение выразим из второго закона Ньютона:

FK=ma=qUd

a=qUmd

Но известно, что:

U=Ed

Поэтому:

a=qEdmd=qEm

Отсюда:

Минимальная скорость, с которой протон должен влететь в конденсатор, составляет 346∙103 м/с. Округлим до десятков и переведем в км/с. Получим 350 км/с.

Ответ: 350

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 6k

Автор статьи

Демьян Бондарь

Эксперт по предмету «Электроника, электротехника, радиотехника»

преподавательский стаж — 5 лет

Задать вопрос автору статьи

Плоский конденсатор

Определение 1

Плоский конденсатор – это самый простой конденсатор, который представляет собой две плоские проводящие пластины, называемые обкладками, расположенные параллельно друг другу, разделенные диэлектриком, причем расстояние между пластинами должно быть намного меньше, чем размеры пластин.

Конденсаторы наравне с резисторами являются наиболее используемыми электронными компонентами. Самым интересным случаем является тот, когда заряды пластин плоского конденсатора противоположны по знаку и одинаковы по модулю, как представлено на рисунке ниже.

Конденсатор. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Конденсатор. Автор24 — интернет-биржа студенческих работ

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

На пластинах сосредоточен заряд – между ними возникает электрическое поле. У плоского конденсатора электрическое поле в основном сосредоточено между его обкладками, но в окружающем пространстве также имеет место быть электрическое поле, которое называется полем рассеяния. При решении задач им, в большинстве случаев, пренебрегают. Чтобы определить величины данного поля, необходимо рассмотреть схематическое изображение плоского конденсатора, которое представлено на рисунке ниже.

Плоский конденсатор. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Плоский конденсатор. Автор24 — интернет-биржа студенческих работ

Каждой пластиной конденсатора создается электрическое поле:

  1. положительно заряженная частица +q создающая электрическое поле напряженностью Е+;
  2. отрицательно заряженная частица -q создающая электрическое поле напряженностью Е-.

«Плоский конденсатор: примеры решения задач» 👇

Формула для расчета напряженности поля для равномерно заряженной пластины выглядит следующим образом:

$Епл = j / (2*e¬_0*e)$

где: j – поверхностная плотность заряда; е – диэлектрическая проницаемость диэлектрического слоя между обкладками конденсатора.

Определение 2

Плотность заряда – это величина электрического заряда, который приходится на одну единицу объема, площади или длины, измеряющаяся в кулонах на метр.

Так как площадь пластин у рассматриваемого конденсатора одинакова, то модули напряженности равны между собой:

$Е+ = Е- = q / (2*e_0*e*S)$

где S – площадь пластин.

Однако направление векторов разные, то есть внутри конденсатора векторы направлены в одну сторону, а вне его в противоположные. Поэтому внутри пластин результирующее поле определяется следующим образом:

$Е = Е+ + Е- = (q / (2*e_0*e*S)) + (q / (2*e_0*e*S)) = q / (e_0*e*S)$

Таким образом вне плоского конденсатора электрические поля обкладок компенсируют друг друга – результирующая напряженность равна 0.

Примеры решения задач

Предположим, что необходимо рассчитать расстояние между пластинами плоского конденсатора при следующих условиях: разность потенциалов равняется 150 вольт, заряд на обкладке конденсатора равняется $10^{-8}$ кулон, площадь пластин 10^{-2}$ метра диэлектрический слой сделан из слюд, диэлектрическая проницаемость которой равняется 7. метра диэлектрический слой сделан из слюд, диэлектрическая проницаемость которой равняется 7.

Емкость конденсатора рассчитывается по следующей формуле:

$С = (е*е_0*S) / d$

где: е – диэлектрическая проницаемость слюды; е0 – диэлектрическая проницаемость вакуума; S – площадь пластин; d – расстояние между пластинами.

Определение 3

Диэлектрическая проницаемость – это коэффициент, который входит в математическую запись закона Кулона для силы взаимодействия между точечными зарядами, находящимися в однородной диэлектрической (изолирующей) среде на определенном расстоянии друг от друга.

Из представленной выше формулы можно вывести формулу для расчета расстояния между пластинами:

$d = (е*е_0*S) / С$

Емкость любого конденсатора может быть рассчитана по формуле:

$С = q/U$

где q – заряд на обкладке конденсатора; U – разность потенциалов.

Таким образом получается следующая формула для расчета расстояния между пластинами:

$d = (U*e*e_0*S) / q = (150*7*8.85*10^{-12}*10^{-2}) / 10^{-8} = 9.3 * 10^{-3}$

Предположим, что необходимо рассчитать первоначальную энергию плоского воздушного конденсатора и его энергию, если пластины раздвинуть до расстояния $1,5*10^{-2}$ при следующих исходных данных: первоначальная разность потенциалов 500 вольт, площадь пластин $2*10^{-2}$ метра, первоначальное расстояние между обкладками конденсатора $1,5-10^{-3}$, а источник напряжения в случае раздвижения пластин не отключается.

Энергия электрического поля конденсатора можно рассчитать по следующей формуле:

$W = (C*U^2) / 2$

где С – электрическая емкость конденсатора; U – разность потенциалов.

Электрическая емкость плоского конденсатора рассчитывается по формуле:

$С = (е*е_0*S) / d$

Если учесть, что рассматриваемый конденсатор воздушный, то первоначальная емкость может быть рассчитана – электрическая проницаемость воздуха равняется 1, по формуле:

$С_1 = (е_0*S) / d_1$

где, $d_1$ – первоначальная емкость конденсатора.

В таком случае первоначальная энергия конденсатора рассчитывается по формуле:

$W_1 = ((е_0*S) / d_1) * ((C*U^2) / 2) = (8.85 * 10 ^{-12}*2*10^{-2}*500^2) / (2*1.5*10^{-3}) = 14.8 * 10^{-6}$

При изменении расстоянии между обкладками конденсатора и не выключенном источнике напряжения разность потенциалов не меняется и, следовательно, формула для расчета энергии конденсатора при именном расстоянии между пластинами имеет следующий вид:

$W_2 = ((е_0*S)/d_2) * (U^2/2) = W_1*(d_1/d_2) = 14.8*10^{-6} * (1.5*10^{-3} / 1.5*10^{-2}) = 1.5 * 10^{-6}$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Конденсатором называется система, состоящая из двух проводников, расположенных достаточно близко друг от друга. Проводники называют обкладками конденсатора. Если на обкладки конденсатора поместить равные по модулю и противоположные по знаку заряды, то разность потенциалов (напряжение) между обкладками будет пропорциональна заряду обкладок, т. е. отношение заряда к напряжению не будет зависеть от заряда. На основании этого утверждения, которое приводим без доказательства, вводится понятие электроёмкости (ёмкости конденсатора).

Ёмкостью конденсатора называется отношение заряда $$ Q$$ одной из обкладок к разности потенциалов $$ U$$ между этой обкладкой и соседней:

$$ C={displaystyle frac{Q}{U}}$$. (10.1)

Если взят заряд на положительно заряженной обкладке, то $$ Q>0, U>0$$ и получится $$ C>0$$. Если заряд взят на отрицательной обкладке, то Q<0, U<0Q<0,;U<0 и опять будет $$ C>0$$. Итак, из определения ёмкости следует, что ёмкость величина положительная. В системе СИ ёмкость измеряется в фарадах: `1″Ф”=1` Кл/В.

Требование близости обкладок друг к другу связано с тем, что для независимости $$ C$$ от $$ Q$$ в (10.1) нужно, чтобы поле от зарядов на обкладках было сосредоточено практически полностью между обкладками, т. е. все силовые линии, начинающиеся на одной обкладке, заканчивались только на другой и не уходили на окружающие тела. В этом случае окружающие тела не будут влиять на ёмкость конденсатора.
Можно вывести, что ёмкость плоского конденсатора

$$ C={displaystyle frac{varepsilon {varepsilon }_{0}S}{d}}$$. (10.2)

Здесь $$ S$$ – площадь обкладок, $$ d$$ – расстояние между ними, $$ varepsilon $$ – диэлектрическая проницаемость диэлектрика между обкладками.
При последовательном соединении изначально не заряженных конденсаторов с ёмкостями $$ {C}_{1}, {C}_{2}, …$$, общий заряд равен заряду каждого конденсатора, общее напряжение равно сумме напряжений на отдельных конденсаторах, общая ёмкость определяется из формулы: $$ {displaystyle frac{1}{C}}={displaystyle frac{1}{{C}_{1}}}+{displaystyle frac{1}{{C}_{2}}}+…$$

Полезно помнить формулу для частного случая последовательного соединения двух конденсаторов: $$ C={displaystyle frac{{C}_{1}{C}_{2}}{{C}_{1}+{C}_{2}}}$$.

Для последовательно соединённых n одинаковых конденсаторов ёмкостью $$ {C}_{1}$$ каждый $$ C={C}_{1}/n.$$

Если последовательно соединены предварительно заряженные конденсаторы, то применение перечисленных выше свойств и формул может привести к неправильному результату!
При параллельном соединении конденсаторов с емкостями $$ {C}_{1,} {C}_{2}, …$$ общий заряд равен сумме зарядов отдельных конденсаторов, общее напряжение равно напряжению на каждом, общая ёмкость равна сумме ёмкостей:

$$ C={C}_{1}+{C}_{2}+…$$

Рис. 10.1

В плоский конденсатор параллельно его обкладкам вставлена пластина из диэлектрика с диэлектрической проницаемостью $$ varepsilon $$ (рис. 10.1). Площадь обкладок конденсатора и пластины $$ S$$, толщина пластины $$ d$$, расстояние между обкладками $$ 3d$$. Найти ёмкость такого конденсатора.

Пусть расстояние от пластины до левой обкладки конденсатора $$ x$$. Наклеим мысленно на обе стороны пластины тонкую проводящую и незаряженную фольгу. От этого ничего не изменится. Обе фольги можно рассматривать как своеобразные провода, соединяющие три последовательно соединённых конденсатора с расстояниями $$ x$$, $$ d$$ и $$ 2d-x$$. Для общей ёмкости $$ C$$:

$$ {displaystyle frac{1}{C}}={displaystyle frac{x}{{varepsilon }_{0}S}}+{displaystyle frac{d}{varepsilon {varepsilon }_{0}S}}+{displaystyle frac{2d-x}{{varepsilon }_{0}S}}$$.

Окончательно $$ C={displaystyle frac{varepsilon {varepsilon }_{0}S}{d(2varepsilon +1)}}.$$ Заметим, что не заданная в условии величина $$ x$$ «исчезла» в процессе решения.

Рис. 10.2

В плоский конденсатор ёмкостью $$ C$$ вставлена параллельно обкладкам плоская проводящая пластина с зарядом $$ Q$$ (рис. 10.2). Конденсатор подсоединён к источнику с ЭДС $$ mathcal{E}$$. Площади пластины и обкладок конденсатора равны. Толщина пластины равна расстоянию от неё до правой обкладки и составляет четверть от расстояния между обкладками. Найти заряд конденсатора.

Пусть $$ d$$ – расстояние между обкладками, $$ S$$ – их площадь. Пусть $$ q$$ заряд правой обкладки. Тогда заряд левой будет $$ -q$$, т. к. заряд в значительных количествах не может накапливаться на соединительных проводах и в источнике. Направим ось $$ x$$ влево (рис. 10.3).

Рис. 10.3

Заметим, что поле внутри пластины отсутствует и разность потенциалов $$ {varphi }_{N}-{varphi }_{F}$$ между точками $$ N$$ и $$ F$$ равна нулю. Кроме того, заряды на поверхностях пластины создают вне пластины такое же поле, как и заряд $$ Q$$, если бы его расположить на любой из двух поверхностей пластины. Это легко показать отдельно.

Разность потенциалов $$ {varphi }_{M}-{varphi }_{P}$$ между точками $$ M$$ и $$ P$$ равна $$ mathcal{E}$$. Поэтому

$$ ({varphi }_{M}-{varphi }_{N})+({varphi }_{N}-{varphi }_{F})+({varphi }_{F}-{varphi }_{P})=mathcal{E}$$.

У нас $$ {varphi }_{M}-{varphi }_{N}={E}_{A}{displaystyle frac{d}{4}}, {varphi }_{N}-{varphi }_{F}=0, {varphi }_{F}-{varphi }_{P}={E}_{K}{displaystyle frac{d}{2}}$$.

Здесь – $$ {E}_{A}$$ и $$ {E}_{K}$$ – проекции напряжённости результирующего поля на ось `x`. По принципу суперпозиции полей

$$ {E}_{A}={displaystyle frac{q}{2{varepsilon }_{0}S}}-{displaystyle frac{Q}{2{varepsilon }_{0}S}}-{displaystyle frac{-q}{2{varepsilon }_{0}S}}={displaystyle frac{1}{2{varepsilon }_{0}S}}left(2q-Qright)$$,

$$ {E}_{K}={displaystyle frac{q}{2{varepsilon }_{0}S}}+{displaystyle frac{Q}{2{varepsilon }_{0}S}}-{displaystyle frac{-q}{2{varepsilon }_{0}S}}={displaystyle frac{1}{2{varepsilon }_{0}S}}left(2q+Qright)$$.

Подставляя выражения для $$ {E}_{A}$$, $$ {E}_{K}$$ и разностей потенциалов в первое
уравнение, получим после упрощений $$ 6q+Q=8mathcal{E}{displaystyle frac{{varepsilon }_{0}S}{d}}$$.

Так как $$ {displaystyle frac{{varepsilon }_{0}S}{d}}=C$$, то $$ q=(8Cmathcal{E}-Q)/6$$.

Следует заметить, что знак найденного заряда правой обкладки зависит от соотношения заданных в условии задачи величин.

Рис. 10.4

На схему (рис. 10.4) подано напряжение `U=24` В. Ёмкости конденсаторов `C_1=1` мкФ, $$ {C}_{2}=2$$ мкФ, $$ {C}_{3}=3$$ мкФ. Найти напряжения на конденсаторах.

В задачах, где есть схемы с конденсаторами, обычно предполагается, что схемы собраны из первоначально незаряженных конденсаторов.

Ёмкость между точками $$ B$$ и $$ K$$: 

$$ {C}_{BK}={C}_{2}+{C}_{3}=5$$ мкФ.

Общая емкость: $$ {C}_{AK}={displaystyle frac{{C}_{1}{C}_{BK}}{{C}_{1}+{C}_{BK}}}={displaystyle frac{5}{6}}$$ мкФ.

Общий заряд всей батареи конденсаторов $$ {q}_{AK}={C}_{AK}U=20·{10}^{-6 }mathrm{Кл}.$$

Так как заряд $$ {q}_{1}$$ конденсатора $$ {C}_{1}$$ равен заряду батареи, то напряжение на этом конденсаторе $$ {U}_{1}={q}_{1}/{C}_{1}={q}_{AK}/{C}_{1}=20$$ В. Напряжения на конденсаторах $$ {C}_{2}$$ и $$ {C}_{3}$$ равны напряжению между точками $$ B$$ и $$ K$$ и в сумме с $$ {U}_{1}$$ дают $$ U$$.
Поэтому $$ {U}_{2}={U}_{3}={U}_{BK}=U-{U}_{1}=4$$ В.

Приведённая в задаче схема негромоздкая, и ответ легко получить в общем виде:

$$ {U}_{1}={displaystyle frac{{C}_{2}+{C}_{3}}{{C}_{1}+{C}_{2}+{C}_{3}}}U=20$$ B,

$$ U2=U3={displaystyle frac{{C}_{1}}{{C}_{1}+{C}_{2}+{C}_{3}}}U=4$$ B.

Добавить комментарий