Как найти заряд по графику силы тока

Задания

Версия для печати и копирования в MS Word

Тип 12 № 29033

На графике представлена зависимость силы тока I в проводнике от времени t. Определите заряд, прошедший через этот проводник за первые 20 с.

Ответ дайте в Кл.

Спрятать решение

Решение.

Заряд, прошедший через проводник, можно найти как площадь фигуры под графиком, которая состоит из прямоугольного треугольника, прямоугольной трапеции и прямоугольника. Тогда

q=S_1 плюс S_2 плюс S_3= дробь: числитель: 2 умножить на 5, знаменатель: 2 конец дроби плюс дробь: числитель: 2 плюс 1, знаменатель: 2 конец дроби умножить на 5 плюс 10 умножить на 1=22,5Кл.

Ответ: 22,5.

Аналоги к заданию № 29033: 29083 Все

Спрятать решение

·

Помощь

помогите с задачей по физике!

СерыЙ



Ученик

(172),
закрыт



5 лет назад

по графику зависимости силы тока, текущего по проводнику, от времени (см. рис.) определите, какаой заряд пройдет через сечение проводника за 2 мин.

Лучший ответ

Георгий Никулин

Мыслитель

(5008)


13 лет назад

Это площадь фигуры под графиком = трапеции! q = (1,5+3)*60/2 * 3 = 405 Кл. На 60 умножаем, чтобы перевести минуты в секунды!

Остальные ответы

OM

Мыслитель

(5973)


13 лет назад

Заряд равен ток * время. Считай интеграл, тоесть площадь под линией графика в интервале 0-2 минуты

moon

Знаток

(311)


13 лет назад

2 ампера

Min Naing

Ученик

(105)


6 лет назад

на рисунке показана зависимость силы тока в проводнике от проводнике от времени. какой заряд прошел по проводу за 8с?

В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания.

Электромагнитными колебаниями называют периодические взаимосвязанные изменения заряда, силы тока и напряжения.

Свободными колебаниями называют такие, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Вынужденными называются колебания в цепи под действием внешней периодической электродвижущей силы

Свободные электромагнитные колебания – это периодически повторяющиеся изменения электромагнитных величин (q – электрический заряд, I – сила тока, U – разность потенциалов), происходящие без потребления энергии от внешних источников. 

Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур или колебательный контур.

Колебательный контур – это система, состоящая из последовательно соединенных конденсатора емкости C, катушки индуктивности L и проводника с сопротивлением R 

Рассмотрим закрытый колебательный контур, состоящий из индуктивности L и емкости С.

 

Чтобы возбудить колебания в этом контуре, необходимо сообщить конденсатору некоторый заряд от источника ε. Когда ключ K находится в положении 1, конденсатор заряжается до напряжения . После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. При определенных условиях этот процесс может иметь колебательный характер

 

Свободные электромагнитные колебания можно наблюдать на экране осциллографа.

Как видно из графика колебаний, полученного на осцилографе, свободные электромагнитные колебания являются затухающими, т.е.их амплитуда уменьшается с течением времени. Это происходит потому, что часть электрической энергии на активном сопротивлении R превращается во внутреннюю энерги. проводника (проводник нагревается при прохождении по нему электрического тока).

Рассмотрим, как происходят колебания в колебательном контуре и какие изменения энергии при этом происходят. Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0).

Если зарядить конденсатор до напряжения U0 то в начальный момент времени t1=0 на обкладках конденсатора установятся амплитудные значения напряжения U0 и заряда q0 = CU0.

Полная энергия W системы равна энергии электрического поля Wэл:

Если цепь замыкают, то начинает течь ток. В контуре возникает э.д.с. самоиндукции

Вследствие самоиндукции в катушке конденсатор разряжается не мгновенно, а постепенно (так как, согламно правилу Ленца, возникающий индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Т.е. магнитное поле индукционного тока не дает мгновенно увеличиться магнитному потоку тока в контуре). При этом ток увеличивается постепенно, достигая своего максимального значения I0 в момент времени t2=T/4, а заряд на конденсаторе становится равным нулю.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля. Полная энергия контура после разрядки конденсатора равна энергии магнитного поля Wм:

В следующий момент времени ток течет в том же направлении, уменьшаясь до нуля, что вызывает перезарядку конденсатора. Ток не прекращается мгновенно после разрядки конденсатора вследствии самоиндукции (теперь магнитное поле индукционного тока не дает магнитному потоку тока в контуре мгновенно уменьшиться). В момент времени t3=T/2 заряд конденсатора опять максимален и равен первоначальному заряду q = q0, напряжение тоже равно первоначальному U = U0, а ток в контуре равен нулю I = 0.

Затем конденсатор снова разряжается, ток через индуктивность течёт в обратном направлении. Через промежуток времени Т система приходит в исходное состояние. Завершается полное колебание, процесс повторяется.

График изменения заряда и силы тока при свободных электромагнитных колебаниях в контуре показывает, что колебания силы тока отстают от колебаний заряда на π/2.

В любой момент времени полная энергия:

При свободных колебаниях происходит периодическое превращение электрической энергии Wэ, запасенной в конденсаторе, в магнитную энергию Wм катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается постоянной.

Свободные электрические колебания аналогичны механическим колебаниям. На рисунке приведены графики изменения заряда q(t) конденсатора и смещения x(t) груза от положения равновесия, а также графики тока I(t) и скорости груза υ(t) за один период колебаний.

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону

q(t) = q0cos(ωt + φ0)

Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний  и период колебаний  – формула Томпсона

Амплитуда q0 и начальная фаза φ0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия.

Для колебаний заряда, напряжения и силы тока получаются формулы:

Для конденсатора:

q(t) = q0cosω0t

U(t) = U0cosω0t

Для катушки индуктивности:

i(t) = I0cos(ω0t + π/2)

U(t) = U0cos(ω0t + π)

Вспомомним основные характеристики колебательного движения:

q0, U0, I0амплитуда – модуль наибольшего значения колеблющейся величины

Т период – минимальный промежуток времени через который процесс полностью повторяется

ν  Частота – число колебаний в единицу времени

ω – Циклическая частота – число колебаний за 2п секунд

φ – фаза колебаний – величина стоящая под знаком косинуса (синуса) и характеризующая состояние системы в любой момент времени.

Определение

Электрический ток — направленное движение заряженных частиц под действием внешнего электрического поля.

Условия существования электрического тока:

  • наличие заряженных частиц;
  • наличие электрического поля, которое создается источниками тока.

Носители электрического тока в различных средах

Среда Носители электрического тока
Металлы Свободные электроны
Электролиты (вещества, проводящие ток вследствие диссоциации на ионы) Положительные и отрицательные ионы
Газы Ионы и электроны
Полупроводники Электроны и дырки (атом, лишенный одного электрона)
Вакуум Электроны

Электрическая цепь и ее схематическое изображение

Определение

Электрическая цепь — это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Основные элементы электрической цепи:

  • Источник тока (генератор, гальванический элемент, батарея, аккумулятор).
  • Потребители тока (лампы, нагревательные элементы и прочие электроприборы).
  • Проводники — части цепи, обладающие достаточным запасом свободных электронов, способных перемещаться под действием внешнего электрического поля. Проводники соединяют источники и потребители тока в единую цепь.
  • Ключ (переключатель, выключатель) для замыкания и размыкания цепи.

Электрическая цепь также может содержать:

  • резистор — элемент электрической цепи, обладающий некоторым сопротивлением;
  • реостат — устройство для регулировки силы тока и напряжения в электрической цепи путём получения требуемой величины сопротивления;
  • конденсатор — устройство, способное накапливать электрический заряд и передавать его другим элементам цепи;
  • измерительные приборы — устройства, предназначенные для измерения параметров электрической цепи.

Определение

Электрическая схема — графическое изображение электрической цепи, в котором реальные элементы представлены в виде условных обозначений.

Условные обозначения некоторых элементов электрической цепи

Простейшая электрическая цепь содержит в себе источник и потребитель тока, проводники, ключ. Схематически ее можно отобразить так:

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Основные параметры постоянного тока

Определение

Постоянный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Основными параметрами электрического тока являются:

  • Сила тока. Обозначается как I. Единица измерения — А (Ампер).
  • Напряжение. Обозначается как U. Единица измерения — В (Вольт).
  • Сопротивление. Обозначается как R. Единица измерения — Ом.

Сила тока

Сила тока показывает, какой заряд q проходит через поперечное сечение проводника за 1 секунду:

I=qt=ΔqΔt=Nqet

N — количество электронов, qe=1,6·1019 Кл — заряд электрона, t — время (с).

Заряд, проходящий по проводнику за время t при силе тока, равной I:

q=It

Пример №1. Источник тока присоединили к двум пластинам, опущенным в раствор поваренной соли. Сила тока в цепи 0,2 А. Какой заряд проходит между пластинами в ванне за 2 минуты?

2 минуты = 120 секунд

q=It=0,2·120=24 (Кл)

Заряд, проходящий за время ∆t при равномерном изменении силы тока от I1 до I2:

Δq=I1+I22Δt

Сила тока и скорость движения электронов:

I=nqeSv

n — (м–3) — концентрация, S2) — площадь сечения проводника, v — скорость электронов.

Внимание!

Электроны движутся по проводам со скоростью, равной долям мм/с. Но электрическое поле распространяется со скоростью света: c = 3∙108 м/с.

Сопротивление

Сопротивление металлов характеризует тормозящее действие положительных ионов кристаллической решетки на движение свободных электронов:

R=ρlS

ρ — удельное сопротивление, показывающее, какое сопротивление имеет проводник длиной 1 м и площадью поперечного сечения 1 м2, изготовленный из определенного материала. l — длина проводника (м), S — площадь его поперечного сечения.

Пример №2. Медная проволока имеет электрическое сопротивление 6 Ом. Какое электрическое сопротивление имеет медная проволока, у которой в 2 раза больше длина и в 3 раза больше площадь поперечного сечения?

Сопротивление первого и второго проводника соответственно:

R1=ρlS

R2=ρ2l3S

Поделим электрическое сопротивление второго проводника на сопротивление первого:

R2R1=ρ2l3S÷ρlS=ρ2l3S·Sρl=23

Отсюда сопротивление второго проводника равно:

R2=23R1

Напряжение

Напряжение характеризует работу электрического поля по перемещению положительного заряда:

U=Aq

Пример №3. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работу 40 Дж. Определить отношение U1/U2 напряжений на концах первого и второго проводников.

U1U2=A1q÷A2q=A1q·qA2=A1A2=2040=12

Закон Ома для участка цепи

Определение

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

I=UR

Иллюстрация закона Ома.

Сила тока направлена в сторону движения заряженных частиц (электронов). Силе тока противостоит сопротивление: чем оно больше, тем меньше сила тока (тем меньше проходит электронов через проводник в единицу времени). Но росту силы тока способствует напряжение, которое словно толкает заряженные частицы, заставляя их упорядоченно перемещаться.

Закон Ома для участка цепи с учетом формулы для расчета сопротивления:

I=USρl

Для сравнения и расчета сопротивления часто используют вольтамперную характеристику. Так называют графическое представление зависимости силы тока от напряжения. Пример вольтамперной характеристики:

Чем круче график, тем меньше сопротивление проводника. При расчете сопротивления важно учитывать единицы измерения величин, указанных на осях.

Пример №4. На рисунке изображен график зависимости силы тока от напряжения на одной секции телевизора. Каково сопротивление этой секции:

Точке графика, соответствующей 5 кВ, соответствует сила тока, равна 20 мА.

Сначала переведем единицы измерения величин в СИ:

5 кВ = 5000 В

20 мА = 0,02 А

R=UI=50000,02=250000 (Ом)=250 (кОм)

Задание EF17572

При определении сопротивления резистора ученик измерил напряжение на нём: U = (4,6 ± 0,2) В. Сила тока через резистор измерялась настолько точно, что погрешностью можно пренебречь: I = 0,500 А. По результатам этих измерений можно сделать вывод, что сопротивление резистора, скорее всего,

Ответ:

а) R = 9,2 Ом

б) R > 9,6 Ом

в) R < 8,8 Ом

г) 8,8 Ом ≤ R≤ 9,6 Ом


Алгоритм решения

1.Записать исходные данные.

2.Записать закон Ома для участка цепи.

3.Определить вероятное сопротивление резистора.

Решение

Запишем исходные данные:

 Напряжение на резисторе: U = 4,6 ± 0,2 В.

 Сила тока в цепи: I = 0,5 А.

Запишем закон Ома:

I=UR

Отсюда сопротивление равно:

R=UI

Так как точное значение напряжения неизвестно, мы можем вычислить только вероятный диапазон сопротивлений резистора. Минимальное и максимальное значения сопротивления соответственно равны:

Rmin=4,60,20,5=8,8 (Ом)

Rmax=4,6+0,20,5=9,6 (Ом)

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18445

Для проведения лабораторной работы по обнаружению зависимости сопротивления проводника от его диаметра ученику выдали медный проводник длиной 10 м и диаметром 1,0 мм. Какой ещё проводник из предложенных ниже необходимо взять ученику, чтобы провести данное исследование?

Ответ:

а) проводник  1

б) проводник  2

в) проводник  3

г) проводник  4


Алгоритм решения

  1. Определить задачу лабораторных испытаний.
  2. Определить, какие величины в эксперименте должны оставаться постоянными, а какие переменными.
  3. Выбрать подходящий проводник.

Решение

Учение проводит лабораторную работу по обнаружению зависимости  сопротивления проводника от его диаметра. Следовательно, материал проводника и его длина должны оставаться постоянными. Меняться должен только его диаметр. Поскольку в первом опыте берется медный длиной 10 м, диаметром 1,0 мм, то в следующем опыте он тоже должен быть медным, и длина его должна составлять 10 м, но диаметр должен быть другим. Этому условия удовлетворяет второй проводник.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18283

По проводнику течёт постоянный электрический ток. Величина заряда, проходящего через проводник, возрастает с течением времени согласно графику. Сила тока в проводнике равна

Ответ:

а) 24 А

б) 12 А

в) 6 А

г) 1,5 А


Алгоритм решения

1.Записать формулу для вычисления силы тока.

2.Выбрать любую точку графика.

3.Определить количество заряда и время, соответствующие этой точке.

Решение

Запишем формулу для вычисления силы тока:

I=qt

Выберем точку графика, соответствующую 2 секундам. Количество заряда при этом равно 3 Кл. Следовательно, сила тока равна:

I=32=1,5 (А)

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 10.4k

  • ЕГЭ по физике

  • Форум

  • Задачи

  • По номерам

  • 12 Электрическое поле. Ток

  • Постоянный ток

  • ЕГЭ 2022. Анализ ошибок. Пример 8

Объявляем запись учеников на новый учебный год:
✅подготовка к ЕГЭ по физике 2024 и 2025 года
✅повышение успеваемости по физике 8-10 класс и др.
Первое пробное занятие бесплатно.
Занятия могут быть в группах или индивидуально.
Подробнее

Пример 8. На графике показана зависимость силы тока в проводнике от времени. Определите заряд, прошедший через поперечное сечение проводника за Δt = 30 с.
Ответ: ____ Кл.

Средний процент выполнения задания — 33.
В экзаменационных вариантах предлагались задания с кратким ответом, в которых необходимо было вычислить физическую величину как площадь под данным графиком. Следует отметить, что нельзя говорить об освоении этого умения в целом, поскольку результаты выполнения таких групп заданий очень сильно зависят от тематического раздела. Так, с определением пути по графику зависимости скорости от времени успешно справилось почти 80% выпускников; с определением работы по графику зависимости давления газа от его объема — около 60%, а с определением заряда, прошедшего через поперечное сечение проводника, по графику зависимости силы тока от времени — лишь около 30% участников экзамена.

Источник. Демидова М.Ю. Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2022 года по физике. — Москва, 2022.


Решение. Так как сила тока i изменяется, то уравнения
[I=frac{q}{Delta t}, q=I cdot Delta t]
применять нельзя. Воспользуемся в этом случае графическим способом: заряд равен площади фигуры, ограниченную графиком, перпендикулярами и осью t (см. рисунок). Получили фигуру ABСDME, которую можно разбить на три части: прямоугольник ABKE и две трапеции BCLK и CDML. Тогда
[q=S=S_1+S_2+S_3=EK cdot KB+frac{KB+LC}{2} cdot KL+ frac{LC+MD}{2} cdot LM,]
где EK = 5 c, KL = 15 c, LM = 10 c, KB = 2 A, LC = 8 A, MD = 4 A.
После подстановки чисел получаем

q = 145 Кл.

Ответ: 145 Кл.


  • ЕГЭ по физике

  • Форум

  • Задачи

  • По номерам

  • 12 Электрическое поле. Ток

  • Постоянный ток

  • ЕГЭ 2022. Анализ ошибок. Пример 8

Добавить комментарий