Как найти зависимость перемещения от времени

Графическое представление
равномерного прямолинейного движения

Механическое движение представляют графическим
способом. Зависимость физических величин выражают при помощи функций.
Обозначают:

V(t) – изменение
скорости со временем

S(t) –
изменение перемещения (пути) со временем

a(t) –
изменение ускорения со временем

  

Зависимость ускорения от времени.
Так как при равномерном движении ускорение равно нулю, то зависимость a(t) –
прямая линия, которая лежит на оси времени.

Зависимость скорости от времени.
Так как тело движется прямолинейно и равномерно (v = const), т.е. скорость со временем не изменяется,
то график с зависимостью скорости от времени v(t) – прямая линия, параллельная
оси времени.

Проекция перемещения тела
численно равна площади прямоугольника АОВС под графиком, так как величина
вектора перемещения равна произведению вектора скорости на время, за которое
было совершено перемещение.

Правило определения пути по графику v(t):
при прямолинейном равномерном движении модуль вектора перемещения равен площади
прямоугольника под графиком скорости.

Зависимость перемещения от
времени.
График s(t) – наклонная линия:

Из графика видно, что
проекция скорости равна:

Рассмотрев эту формулу, мы
можем сказать, чем больше угол, тем быстрей движется тело и оно проходит
больший путь за меньшее время.

Правило
определения скорости по графику s(t):
Тангенс угла наклона графика к оси
времени равен скорости движения.

Неравномерное
прямолинейное движение.

Равномерное
движение это движение с постоянной скоростью. Если скорость тела меняется,
говорят, что оно движется неравномерно.

Движение, при
котором тело за равные промежутки времени совершает неодинаковые перемещения,
называют неравномерным или переменным движением.

Для
характеристики неравномерного движения вводится понятие средней скорости.

Средняя
скорость движения
равна отношению всего пути, пройденного материальной
точкой  к промежутку времени, за который этот путь пройден.

В физике наибольший интерес представляет не
средняя, а мгновенная скорость, которая определяется как
предел, к которому стремится средняя скорость за бесконечно малый промежуток
времени Δt:

Мгновенной скоростью переменного
движения называют скорость тела в данный момент времени или в данной точке
траектории
.

Мгновенная скорость тела в любой точке
криволинейной траектории направлена по касательной к траектории в этой точке.

Различие между средней и мгновенной скоростями
показано на рисунке.

Движение тела, при котором его скорость за
любые равные промежутки времени изменяется одинаково, называют
равноускоренным
или равнопеременным движением.

Ускорение — это
векторная физическая величина, характеризующая быстроту изменения скорости,
численно равная отношению изменения скорости к промежутку времени, в течение
которого это изменение произошло.

Если скорость изменяется
одинаково в течение всего времени движения, то ускорение можно рассчитать по
формуле:

Обозначения:

Vx — Скорость
тела при равноускоренном движении по прямой

Vx o — Начальная скорость тела

ax — Ускорение тела

t — Время движения тела

Ускорение показывает, как
быстро изменяетcя скорость тела. Если ускорение положительно, значит скорость
тела увеличивается, движение ускоренное. Если ускорение отрицательно, значит
скорость уменьшается, движение замедленное.

Единица измерения ускорения в
СИ [м/с2].

Ускорение измеряют акселерометром

Уравнение скорости для
равноускоренного движения:  vx  = vxo + axt

Уравнение равноускоренного прямолинейного
движения
(перемещение при равноускоренном движении):

 Обозначения:

Sx
Перемещение тела при равноускоренном движении по прямой

Vx o
Начальная скорость тела

Vx — Скорость тела при равноускоренном
движении по прямой

ax — Ускорение тела

t— Время
движения тела

Еще формулы, для нахождения перемещения при
равноускоренном прямолинейном движении, которые можно использовать при решении
задач:


если известны начальная, конечная скорости движения и ускорение.


если известны начальная, конечная скорости движения и время всего движения

Графическое представление неравномерного
прямолинейного движения

Механическое
движение представляют графическим способом. Зависимость физических величин
выражают при помощи функций. Обозначают:

V(t) – изменение
скорости со временем

S(t) –
изменение перемещения (пути) со временем

a(t) –
изменение ускорения со временем

Зависимость ускорения от времени.
Ускорение со временем не изменяется, имеет постоянное значение, график a(t) –
прямая линия, параллельная оси времени.

Зависимость скорости от времени. При
равномерном движении скорость изменяется, согласно линейной зависимости   vx  = vxo + axt .
Графиком является наклонная линия.

Правило определения пути по графику v(t):
Путь тела – это площадь треугольника (или трапеции) под графиком скорости.

Правило определения ускорения по графику v(t):
Ускорение тела – это тангенс угла наклона графика к оси времени. Если тело
замедляет движение, ускорение отрицательное, угол графика тупой, поэтому
находим тангенс смежного угла.

Зависимость пути от времени. При
равноускоренном движении путь изменяется, согласно квадратной зависимости:

.

В координатах зависимость имеет
вид: 

Графиком является ветка параболы.



Содержание:

Равномерное прямолинейное движение:

Вы изучали равномерное прямолинейное движение, познакомились с понятием «скорость». Скалярной или векторной величиной является скорость? Каковы закономерности равномерного прямолинейного движения?

Вы знаете, что движение, при котором за любые равные промежутки времени тело проходит одинаковые пути, называется равномерным. В каком случае одинаковыми будут не только пути, но и перемещения?

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Проделаем опыт. Проследим за падением металлического шарика в вертикальной трубке, заполненной вязкой жидкостью (например, густым сахарным сиропом) (рис. 43). Будем отмечать положение шарика через равные промежутки времени. Опыт показывает, что за равные промежутки времени, например за Равномерное прямолинейное движение в физике - формулы и определения с примерами

Сделаем вывод. При равномерном прямолинейном движении тело за любые равные промежутки времени совершает одинаковые перемещения и проходит одинаковые пути.

В 7-м классе вы находили скорость равномерного движения тела как отношение пути к промежутку времени, за который путь пройден: Равномерное прямолинейное движение в физике - формулы и определения с примерами Это отношение показывает, как быстро движется тело, но ничего не говорит о направлении движения. Чтобы скорость характеризовала и быстроту движения, и его направление, ее определяют через перемещение.

Скорость равномерного прямолинейного движения — это величина, равная отношению перемещения к промежутку времени, за который оно совершено:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из равенства (1) следует, что скорость Равномерное прямолинейное движение в физике - формулы и определения с примерамивекторная физическая величина. Ее модуль численно равен модулю перемещения за единицу времени, а направление совпадает с направлением перемещения (т. к. Равномерное прямолинейное движение в физике - формулы и определения с примерами).

Отношение Равномерное прямолинейное движение в физике - формулы и определения с примерами для всех участков движения на рисунке 43 одинаково: Равномерное прямолинейное движение в физике - формулы и определения с примерами  Значит, скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.

Из формулы (1) легко найти перемещение:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

и путь Равномерное прямолинейное движение в физике - формулы и определения с примерами (равный модулю перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

А как определить положение равномерно и прямолинейно движущегося тела в любой момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Рассмотрим пример. Автомобиль движется с постоянной скоростью по прямолинейному участку шоссе (рис. 44).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Автомобиль рассматриваем как материальную точку. Из формулы (2) находим проекцию перемещения автомобиля на ось Ох:

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Согласно рисунку 44 за время Равномерное прямолинейное движение в физике - формулы и определения с примерами автомобиль совершил перемещение Равномерное прямолинейное движение в физике - формулы и определения с примерами Подставляя Равномерное прямолинейное движение в физике - формулы и определения с примерами в равенство (4), получим:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Приняв Равномерное прямолинейное движение в физике - формулы и определения с примерами запишем формулу для координаты автомобиля:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Зависимость координаты движущегося тела от времени называется кинематическим законом движения. Формула (5) выражает кинематический закон равномерного прямолинейного движения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для измерения скорости используются специальные приборы. В автомобилях имеется спидометр (рис. 45), на самолетах — указатель скорости. Эхолокаторы измеряют скорость тел, движущихся под водой, а радиолокаторы (радары) — в воздухе и по земле. Сотрудники службы дорожного движения с помощью портативного радара с видеокамерой (рис. 46) регистрируют скорость транспортных средств.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для любознательных:

Скорости движения могут сильно отличаться. За одну секунду черепаха может преодолеть несколько сантиметров, человек — до 10 м, гепард — до 30 м, гоночный автомобиль — около 100 м.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Около 8 км за секунду пролетает по орбите спутник Земли (рис. 47). Но даже скорости космических кораблей «черепашьи» по сравнению со скоростью микрочастиц в ускорителях. В современном ускорителе (рис. 48) электрон за одну секунду пролетает почти 300 000 км!

Главные выводы:

  1. При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
  2. Скорость равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.
  3. При равномерном прямолинейном движении тела модуль перемещения равен пути, пройденному за тот же промежуток времени.
  4. Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Пример решения задачи:

Кинематический закон прямолинейного движения лодки но озеру вдоль оси Ох задан уравнением Равномерное прямолинейное движение в физике - формулы и определения с примерами где Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Определите: 1) проекцию скорости лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами 2) координату лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами в момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами 3) проекцию перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами лодки на ось Ох и путь, пройденный лодкой за время от момента Равномерное прямолинейное движение в физике - формулы и определения с примерами до момента Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение

Сделаем рисунок к задаче.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

По условию задачи координата лодки линейно зависит от времени. Значит, лодка движется равномерно. Сравнив Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами получимРавномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерами

Найдем Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из рисунка 49: проекция перемещенияРавномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Ответ: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графическое представление равномерного прямолинейного движения

Зависимости между различными величинами можно наглядно изобразить с помощью графиков. Использование графиков облегчает решение научных, практических задач и даже бытовых проблем.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Например, по графику зависимости температуры пациента от времени (рис. 50) видно, что на 5-е сутки температура достигла своего максимума, затем резко упала, а еще через сутки стала приближаться к норме. График дал наглядное представление о течении болезни.

В физике роль графиков чрезвычайно велика. Умение строить и читать графики помогает быстрее и глубже понять физические явления.

Рассмотрим простой пример из кинематики. Леша и Таня идут навстречу друг другу (рис. 51). Они движутся равномерно и прямолинейно. Модуль скорости Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами Как представить графически характеристики их движения?

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Выберем координатную ось Ох и зададим начальные положения участников движения (см. рис. 51). Пусть при Равномерное прямолинейное движение в физике - формулы и определения с примерами координата Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами

Построим графики зависимости проекции скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами проекции перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами пути S и координаты X от времени t.

График проекции скорости

Согласно условию и рисунку 52 для проекций скорости движения Тани и Леши на ось Ох получим: Равномерное прямолинейное движение в физике - формулы и определения с примерами Так как проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами постоянны, то графики их зависимости от времени t — прямые, параллельные оси времени (прямые I и II на рисунке 52).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики показывают: проекция скорости при равномерном прямолинейном движении с течением времени не изменяется.

График проекции перемещения

Проекция перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами совершенного за время t, определяется формулой Равномерное прямолинейное движение в физике - формулы и определения с примерами (см. § 6).

Зависимость проекции перемещения от времени для Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами График Равномерное прямолинейное движение в физике - формулы и определения с примерами — наклонная прямая I (рис. 53).

Для Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами График Равномерное прямолинейное движение в физике - формулы и определения с примерами — наклонная прямая II, изображенная на рисунке 53.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из графиков и формул следует, что при равномерном прямолинейном движении проекция перемещения прямо пропорциональна времени.

График пути

Путь — величина положительная при любом движении тела. При равномерном прямолинейном движении путь равен модулю перемещения: Равномерное прямолинейное движение в физике - формулы и определения с примерами Поэтому при Равномерное прямолинейное движение в физике - формулы и определения с примерами график пути совпадает с графиком проекции перемещения (прямая I), а при Равномерное прямолинейное движение в физике - формулы и определения с примерами график пути (прямая III) является «зеркальным отражением» графика II (проекции перемещения) от оси времени.

Графики пути показывают: при равномерном прямолинейном движении пройденный путь прямо пропорционален времени.

График координаты

Его называют также графиком движения.

По формуле Равномерное прямолинейное движение в физике - формулы и определения с примерами, используя данные из условия задачи и рисунок 51, находим зависимости координаты Равномерное прямолинейное движение в физике - формулы и определения с примерами Леши и Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани от времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами Графики этих зависимостей — прямые I и II на рисунке 54. Они параллельны соответствующим графикам проекций перемещения на рисунке 53.

Графики движения показывают: при равномерном прямолинейном движении координата тела линейно зависит от времени.

По точке пересечения графиков I и II (точке А) (рис. 54) легко найти момент и координату места встречи Леши и Тани. Определите их самостоятельно.

Что еще можно определить по графикам?

По графику проекции скорости можно найти проекцию перемещения и пройденный путь

Рассмотрим прямоугольник ABCD на рисунке 52. Его высота численно равна Равномерное прямолинейное движение в физике - формулы и определения с примерами а основание — времени t. Значит, площадь прямоугольника равна Равномерное прямолинейное движение в физике - формулы и определения с примерами Таким образом, проекция перемещения численно равна площади прямоугольника между графиком проекции скорости и осью времени. При Равномерное прямолинейное движение в физике - формулы и определения с примерами проекция перемещения отрицательна, и площадь надо брать со знаком «минус».

Докажите самостоятельно, что площадь между графиком проекции скорости и осью времени численно равна пройденному пути.

По углу наклона графика проекции перемещения можно оценить скорость движения

Рассмотрим треугольник АВС на рисунке 53. Чем больше угол наклона а графика проекции перемещения, тем больше скорость тела. Объясните это самостоятельно.

Главные выводы:

Для равномерного прямолинейного движения:

  1. График проекции скорости — прямая, параллельная оси времени.
  2. Графики проекции перемещения и координаты — прямые, наклон которых к оси времени определяется скоростью движения.
  3. Площадь фигуры между графиком проекции скорости и осью времени определяет проекцию перемещения.

Пример №1

Мотоциклист едет из города по прямолинейному участку шоссе с постоянной скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами Через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после проезда перекрестка он встречает едущего в город велосипедиста, движущегося равномерно со скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами Определите расстояние между участниками движения через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после их встречи, если Равномерное прямолинейное движение в физике - формулы и определения с примерами Запишите кинематические законы движения мотоциклиста и велосипедиста, постройте графики проекции и модуля скорости, проекции перемещения, координаты и пути для обоих участников движения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение

Изобразим координатную ось Ох, вдоль которой идет движение (рис. 55). Начало системы координат О свяжем с перекрестком.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

В начальный момент времени мотоциклист находился на перекрестке, а велосипедист в точке В. Значит, кинематический закон движения мотоциклиста имеет вид:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Найдем координату Равномерное прямолинейное движение в физике - формулы и определения с примерами велосипедиста в начальный момент времени. Пусть точка С на оси Ох — место встречи участников движения (рис. 56).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Тогда

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Кинематический закон движения велосипедиста имеет вид:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Расстояние между мотоциклистом и велосипедистом через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после их встречи равно сумме путей, которые они проделают за это время. Значит,

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Пример №2

Построим графики проекций и модулей скорости. Для мотоциклиста графики проекции скорости 1 и модуля скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами совпадают (рис. 56). Для велосипедиста график проекции скорости — прямая 2, а модуля скорости — прямая Равномерное прямолинейное движение в физике - формулы и определения с примерами Объясните причину несовпадения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графиками пути s, проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами и модуля перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами (рис. 57) будут прямые, выражающие прямую пропорциональную зависимость от времени t.

Для мотоциклиста:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики пути, модуля и проекции перемещения мотоциклиста совпадают (прямая 1).

Для велосипедиста:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Прямая 2 является графиком пути и модуля перемещения велосипедиста.  Прямая Равномерное прямолинейное движение в физике - формулы и определения с примерами — графиком проекции его перемещения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики координат представлены на рисунке 58. Они выражают зависимости Равномерное прямолинейное движение в физике - формулы и определения с примерами (прямая 1) и Равномерное прямолинейное движение в физике - формулы и определения с примерами (прямая 2). Точка А определяет время встречи и координату места встречи.

Ответ: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Прямолинейное равномерное движение и скорость

Из курса Физики VII класса вам известно, что равномерное прямолинейное движение является самым простым видом механического движения.

Прямолинейное равномерное движение — это движение по прямой линии, при котором материальная точка за равные промежутки времени совершает одинаковые перемещения.

При прямолинейном равномерном движении модуль и направление скорости с течением времени не изменяются:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость при прямолинейном равномерном движении является постоянной физической величиной, равной отношению перемещения материальной точки ко времени, за которое это перемещение было совершено: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как отношение Равномерное прямолинейное движение в физике - формулы и определения с примерами в формуле является положительной скалярной величиной, то направление вектора скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами совпадает с направлением вектора перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами Единица измерения скорости в СИ – метр в секунду:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами  известна, то можно определить перемещение s материальной точки за промежуток времени Равномерное прямолинейное движение в физике - формулы и определения с примерами при прямолинейном равномерном движении:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При прямолинейном равномерном движении пройденный телом путь равен модулю перемещения: 

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как уравнение в векторном виде можно заменить алгебраическими уравнениями в проекциях векторов, то для вычисления перемещения используют не формулу, выраженную через векторы, а формулу, содержащую в себе проекции векторов на координатные оси. При прямолинейном движении положение материальной точки определяется одной координатой X, определяются проекции векторов скорости и перемещения материальной точки на эту ось и уравнение решается в этих проекциях. Поэтому выражение (1.2) можно записать в проекциях перемещения и скорости на ось ОХ:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Можно получить формулу для вычисления координаты точки Равномерное прямолинейное движение в физике - формулы и определения с примерами в произвольный момент времени (см.: тема 1.2):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Выражение (1.5) является уравнением прямолинейного равномерного движения тела. Если материальная точка движется по направлению выбранной координатной оси ОХ, то проекция скорости считается положительной (b), если же движется против направления координатной оси, то проекция скорости считается отрицательной (с).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из формулы (1.5) определяется выражение для проекции скорости: 

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из формулы (1.6) становится ясным физический смысл скорости: проекция скорости на ось равна изменению проекции соответствующей координаты за единицу времени.

Пройденный путь и координата материальной точки при прямолинейном равномерном движении являются линейной функцией от времени (d). Скорость же является постоянной величиной, поэтому график скорость – время будет представлять собой линию, параллельную оси времени — скорость такого движения не зависит от времени (е):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

График координата-время при равномерном движении образует определенный угол с осью времени. Тангенс этого угла равен проекции (модулю) скорости по оси ох (f): Равномерное прямолинейное движение в физике - формулы и определения с примерами

Пример №3

Два велосипедиста одновременно начали движение навстречу друг другу вдоль прямой линии из пунктов А и В, расстояние между которыми 90 км. Скорость первого велосипедиста Равномерное прямолинейное движение в физике - формулы и определения с примерами скорость второго велосипедиста Равномерное прямолинейное движение в физике - формулы и определения с примерами (g)?

Определите: а) координату и время Равномерное прямолинейное движение в физике - формулы и определения с примерами встречи велосипедистов; b) пройденные велосипедистами пути и совершенные ими перемещения к моменту встречи; с) время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее с начала движения до момента, когда расстояние между ними стало 10 км.

Дано:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение:

a) При решении задачи соблюдается следующая последовательность действий: 

I действие. Выбирается система координат ОХ с началом координат в точке А и рисуется схема (h).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

II действие. Уравнение движения записывается в общем виде: Равномерное прямолинейное движение в физике - формулы и определения с примерами

III действие. На основании условия задачи уравнения движения велосипедистов записываются в общем виде: Равномерное прямолинейное движение в физике - формулы и определения с примерами

IV действие. Координаты велосипедистов при встрече равны: Равномерное прямолинейное движение в физике - формулы и определения с примерами Это равенство решается для Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

V действие. Для определения координат Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами встречи велосипедистов необходимо решить уравнения их движения для времени Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как Равномерное прямолинейное движение в физике - формулы и определения с примерами то Равномерное прямолинейное движение в физике - формулы и определения с примерами

b) Так как по условию задачи велосипедисты движутся прямолинейно и без изменения направления движения, то пройденный путь равен проекции (модулю) перемещения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

c) Время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее с начала движения до момента, когда между ними осталось 10 км, вычисляется по нижеприведенному равенству:

Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость при равнопеременном прямолинейном движении

Из формулы (1.14) видно, что если известны ускорение Равномерное прямолинейное движение в физике - формулы и определения с примерами и начальная скорость тела Равномерное прямолинейное движение в физике - формулы и определения с примерами то можно определить его скорость в любой момент времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

или ее проекцию на ось Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если начальная скорость равна нулю Равномерное прямолинейное движение в физике - формулы и определения с примерами то:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из этих выражений видно, что скорость при равнопеременном движении является линейной функцией от времени. График зависимости скорости от времени – прямая линия, проходящая через начало координат (или через Равномерное прямолинейное движение в физике - формулы и определения с примерами Эта линия, в соответствии с увеличением или уменьшением скорости, направлена вверх или вниз (с).

Перемещение при равнопеременном прямолинейном движении

Формулу для определения перемещения при равнопеременном движении можно вывести на основе графика скорость-время. Проекция перемещения равна площади фигуры между графиком Равномерное прямолинейное движение в физике - формулы и определения с примерами и осью времени.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

На приведенных графиках — это заштрихованная фигура трапеции (см: с):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

или в векторной форме:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если в последнюю формулу вместо Равномерное прямолинейное движение в физике - формулы и определения с примерами подставить выражение (1.18), то получим

обобщенную формулу перемещения для равнопеременного движения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Таким образом, формула проекции перемещения (например, на ось Равномерное прямолинейное движение в физике - формулы и определения с примерами при равнопеременном прямолинейном движении будет:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

а формула координаты:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

(1.23) является формулой перемещения при равнопеременном движении в векторной форме, а (1.24) и (1.25) обобщенными формулами координаты и проекции перемещения, соответственно. Если материальная точка начинает движение из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Как видно из формулы, проекция перемещения при прямолинейном равнопеременном движении пропорциональна квадрату времени Равномерное прямолинейное движение в физике - формулы и определения с примерами и его график представляет собой параболу, проходящую через начало координат (d).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

В некоторых случаях возникает необходимость определить перемещение материальной точки, не зная время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее от начала движения. Такую задачу можно решить тогда, когда известны ускорение, начальное и конечное значения скорости. Для получения этой формулы из выражения (1.19) получаем Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Это выражение подставляется в формулу (1.21):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

После простых преобразований получаем:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для проекции конечной скорости получаем: Равномерное прямолинейное движение в физике - формулы и определения с примерами Если движение начинается из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то проекции перемещения и скорости будут равны:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равноускоренное и равнозамедленное движения

Равнопеременное движение по характеру может быть или равноускоренным, или же равнозамедленным.

При равноускоренном движении векторы Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют одинаковые направления. В этом случае знаки у обеих проекций Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами или положительные, или же отрицательные. Если материальная точка начнет движение из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то независимо от направления движения, оно во всех случаях будет равноускоренным.

При равнозамедленном движении векторы Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют противоположные направления. В этом случае проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют противоположные знаки, если один из них отрицательный, то другой – положительный.

В таблице 1.3 даны формулы и соответствующие графики равноускоренного и равнозамедленного прямолинейного движения.

Таблица 1.3.

Прямолинейное равноускоренное движение
Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Примечание: так как Равномерное прямолинейное движение в физике - формулы и определения с примерами то отношение проекций перемещения равно отношению квадратов соответствующих промежутков времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Это соотношение иногда называется “правило путей”.

Прямолинейное равнозамедленное движение
Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Кинематика прямолинейного движения

Физические величины бывают скалярные и векторные. Скалярные физические величины характеризуются только численным значением, тогда как векторные определяются и числом (модулем), и направлением. Скалярными физическими величинами являются время, температура, масса, векторными — скорость, ускорение, сила.
Мир вокруг нас непрерывно изменяется, или движется, т. е. можно сказать, что движение (изменение) есть способ существования материи.

Простейшая форма движения материи — механическое движение — заключается в изменении взаимного расположения тел или их частей в пространстве с течением времени. Наука, изучающая механическое движение, называется механикой (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамиподъемная машина).

Даже самое простое движение тела оказывается достаточно сложным для изучения и исследования. Соответственно, для того чтобы в сложном явлении «увидеть» главное, в физике строится его адекватная упрощенная модель.

В механике широко используется простейшая модель реального тела, называемая материальной точкой (МТ). Под материальной точкой понимают тело, размерами и формой которого можно пренебречь при описании данного движения. Хотя МТ представляет собой абстрактное понятие, упрощающее изучение многих физических явлений, она, подобно реальному телу, «имеет» массу, энергию и т. д.

Кроме материальной точки, в механике используется модель абсолютно твердого тела. Под абсолютно твердым телом понимают модель реального тела, в которой расстояние между его любыми двумя точками остается постоянным. Это означает, что размеры и форма абсолютно твердого тела не изменяются в процессе его движения. В противном случае говорят о модели деформируемого тела.

В классической (ньютоновской) механике рассматривается движение тел со скоростями, намного меньшими скорости света в вакуумеРавномерное прямолинейное движение в физике - формулы и определения с примерами
Классическая механика состоит из трех основных разделов: кинематики, динамики и статики. В кинематике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамидвижение) изучается механическое движение тел без учета их масс и действующих на них сил. В динамике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамисила) рассматривается влияние взаимодействия между телами на их движение. В статике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерами — искусство взвешивать) исследуются законы сложения сил и условия равновесия твердых, жидких и газообразных тел.

Всякое движение тела можно представить в виде двух основных видов движения — поступательного и вращательного.

Поступательным называется движение тела, при котором прямая, соединяющая в этом теле любые две точки, при перемещении остается параллельной самой себе (рис. 1).

Вращательным называется движение абсолютно твердого тела вокруг неподвижной прямой, называемой осью вращения, при котором все точки тела движутся по окружностям, центры которых лежат на этой оси (рис. 2).

Основными задачами кинематики являются:

описание совершаемого телом движения с помощью математических формул, графиков или таблиц;

определение кинематических характеристик движения (перемещения, скорости, ускорения).

Движение тела можно описать только относительно какого-либо другого тела. Тело, относительно которого рассматривается исследуемое движение, называют телом отсчета (ТО). Для описания движения используются формулы, графики и таблицы, выражающие зависимость координат, скоростей и ускорений от времени.

Основным свойством механического движения является его относительность: характер движения тела зависит от выбора системы отсчета (СО).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Систему отсчета, выбираемую для описания того или иного движения, образуют: тело отсчета, связанные с ним система координат (СК) и прибор для измерения времени (часы) (рис. 3).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Система координат и часы необходимы для того, чтобы знать, как с течением времени изменяется положение тела относительно выбранного тела отсчета.

Для описания движения материальной точки в пространстве вводятся такие понятия, как траектория, перемещение, путь.

Линию, которую описывает материальная точка в процессе движения по отношению к выбранной СО, называют траекторией (от латинского слова trajectorus относящийся к перемещению). Если траектория является прямой линией, то движение называется прямолинейным, в противном случае — криволинейным.

Длина участка траектории, пройденного МТ в процессе движения, называется путем (s).

Термин «скаляр», происходящий от латинского слова scalarus — ступенчатый, введен У. Гамильтоном в 1843 г.

Термин «вектор» произошел от латинского слова vector — несущий и введен У. Гамильтоном в 1845 г.
Перемещением называют вектор Равномерное прямолинейное движение в физике - формулы и определения с примерами направленный из точки, заданной радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами где МТ находилась в начальный момент времени, в точку, заданную радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами где МТ находится в рассматриваемый момент времени (рис. 4):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для количественного описания механического движения тел (МТ) вводятся физические величины, характеризующие пространство и время: длина l, время t.

Длина l определяется как расстояние между двумя точками в пространстве. Основной единицей длины в Международной системе единиц (СИ) является метр (1м).

Время t между двумя событиями в данной точке пространства определяется как разность показаний прибора для измерения времени, например часов. В основе работы прибора для измерения времени лежит строго периодический физический процесс. В СИ за основную единицу времени принята секунда (1с).
В зависимости от вида движения могут выбираться следующие системы координат: одномерная (на прямой линии) (рис. 5), двухмерная (на плоскости) (рис. 6), трехмерная (в пространстве) (рис. 7).

Равномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерами

Произвольное движение материальной точки может быть задано одним из трех способов: векторным, координатным, траекторным (естественным).

При векторном способе описания положение движущейся МТ по отношению к выбранной системе отсчета определяется ее радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами

Радиус-вектор Равномерное прямолинейное движение в физике - формулы и определения с примерами всегда проводится из начала координат О в текущее положение материальной точки (рис. 8). При движении положение МТ изменяется. Закон движения в этом случае задается векторным уравнением Равномерное прямолинейное движение в физике - формулы и определения с примерами
Равномерное прямолинейное движение в физике - формулы и определения с примерами
При координатном способе описания положение точки относительно СО определяется координатами х, у, z, а закон движения — уравнениями х = х(t), у = y(t), z = z(t) (см. рис. 8). Исключив из этих уравнений время /, можно найти уравнение траектории движения точки.

Траекторный (естественный) способ описания движения применяется, когда известна траектория движения материальной точки по отношению к выбранной СО (рис. 9).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Текущее положение материальной точки в данном случае определяется расстоянием s, измеренным вдоль траектории от выбранного на ней начала отсчета (точка О на рисунке 9). Кинематический закон движения МТ при этом задается уравнением s = s(t).

Если положить в основу классификации движений характер изменения скорости, то получим равномерные и неравномерные движения, а если вид траектории, то — прямолинейные и криволинейные.

Для того чтобы описать быстроту изменения положения тела (МТ) и направление движения относительно данной СО, используют векторную физическую величину, называемую скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами

Чтобы охарактеризовать неравномерное движение тела (МТ), вводят понятие средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами движения как отношение перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами тела к промежутку времени Равномерное прямолинейное движение в физике - формулы и определения с примерами за который это перемещение произошло (рис. 10):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами
 

Средней путевой скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами называется отношение длины отрезка пути As (см. рис. 9) к промежутку времени Равномерное прямолинейное движение в физике - формулы и определения с примерами его прохождения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Средняя путевая скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами в отличие от средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами является скалярной величиной.

Однако средняя скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами характеризует движение тела (МТ) на определенном участке траектории, но не дает информации о его движении в определенной точке траектории или в определенный момент времени. Кроме того, средняя скорость дает лишь приближенное понятие о характере движения, так как движение в течение каждого малого промежутка времени заменяется равномерным движением. В рамках этой модели скорость тела (МТ) меняется скачком при переходе от одного промежутка времени к другому.

Для того чтобы отразить характер движения в данной точке траектории или в данный момент времени, вводится понятие мгновенной скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами — это скорость тела (МТ), равная производной перемещения по времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Вектор мгновенной скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами в любой точке траектории направлен по касательной к ней (см. рис. 10).

В СИ основной единицей скорости является метр в секунду Равномерное прямолинейное движение в физике - формулы и определения с примерами

Простейший вид движения — равномерное. Равномерным называется движение МТ, при котором она за любые равные промежутки времени совершает одинаковые перемещения.

При прямолинейном движении в одном направлении модуль перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами равен пройденному пути s. Скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами равномерного движения равна отношению перемещения тела Равномерное прямолинейное движение в физике - формулы и определения с примерами ко времени Равномерное прямолинейное движение в физике - формулы и определения с примерами за которое это перемещение произошло:  

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При равномерном движении скорость постоянна Равномерное прямолинейное движение в физике - формулы и определения с примерами и равна средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами определяемой выражением (2).

Зависимость перемещения от времени имеет вид Равномерное прямолинейное движение в физике - формулы и определения с примерами Вследствие того, что Равномерное прямолинейное движение в физике - формулы и определения с примерами  — радиус-вектор, задающий положение МТ в начальный

момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами получаем кинематическое уравнение движения в векторном виде

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При проецировании радиус-вектора, например, на ось Ох получаем кинематическое уравнение для координаты при равномерном движении:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Здесь Равномерное прямолинейное движение в физике - формулы и определения с примерами — координата тела (МТ) в начальный момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Если начальный момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами уравнение принимает вид

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для наглядности описания механического движения удобно представлять зависимости между различными кинематическими величинами графически.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость МТ при равномерном движении постоянна, поэтому график зависимости проекции скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами от времени представляет собой отрезок прямой линии, параллельной оси времени Ot (рис. 11). Отрезок прямой l на рисунке 11 соответствует движению материальной точки в положительном направлении оси Равномерное прямолинейное движение в физике - формулы и определения с примерами а 2 — в отрицательном Равномерное прямолинейное движение в физике - формулы и определения с примерами Площади Равномерное прямолинейное движение в физике - формулы и определения с примерами закрашенных прямоугольников численно равны модулям перемещений МТ с проекциями скоростей Равномерное прямолинейное движение в физике - формулы и определения с примерами за промежуток времени Равномерное прямолинейное движение в физике - формулы и определения с примерами

График зависимости координаты материальной точки, движущейся равномерно прямолинейно, от времени x(t) — линейная функция (рис. 12).
На рисунке отрезок / прямой соответствует равномерному движению в положительном направлении оси Ох; отрезок 2 прямой — покою материальной точки; отрезок 3 прямой — равномерному движению в отрицательном направлении оси Ох.

Проекция скорости движения численно равна угловому коэффициенту этой прямой линии:  Равномерное прямолинейное движение в физике - формулы и определения с примерами

т. е. тангенсу угла наклона (tga) этой прямой к оси времени.

График зависимости пути (модуля перемещения|Равномерное прямолинейное движение в физике - формулы и определения с примерами от времени s(t) при равномерном движении представляет собой прямую линию, проходящую через начало координат (рис. 13).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Угловой коэффициент (tga) этой прямой численно равен модулю скорости движения v. Поэтому на рисунке большей скорости у, соответствует больший угловой коэффициент (tgРавномерное прямолинейное движение в физике - формулы и определения с примерами).

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Для тел (МТ), участвующих в нескольких движениях одновременно, справедлив принцип независимости движений:

если тело (МТ) участвует в нескольких движениях одновременно, то его результирующее перемещение равно векторной сумме перемещений за то же время в отдельных движениях:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Как следует из принципа независимости движений, конечное перемещение тела не зависит от порядка (последовательности) суммирования перемещений при отдельных движениях.

Пусть, например, при переправе через реку, скорость течения которой Равномерное прямолинейное движение в физике - формулы и определения с примерами мы движемся на лодке со скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами относительно воды. В этом случае результирующее перемещение Равномерное прямолинейное движение в физике - формулы и определения с примерами (рис. 14) лодки относительно берега будет складываться из собственного перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами относительно воды и перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами вместе с водой вследствие течения реки: Равномерное прямолинейное движение в физике - формулы и определения с примерами

  • Заказать решение задач по физике

На основе принципа независимости движений формулируется классический закон сложения скоростей:

результирующая скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами тела (МТ), участвующего в нескольких движениях одновременно, равна векторной сумме скоростей Равномерное прямолинейное движение в физике - формулы и определения с примерами отдельных движений (рис. 15):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Этот закон справедлив только при условии, что скорость каждого отдельного движения мала по сравнению со скоростью света Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так, для рассмотренного примера (см. рис. 14) результирующая скорость лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное движение по прямой линии в повседневной жизни встречается сравнительно редко. Например, различные транспортные средства (автомобиль, автобус, троллейбус и т. д.) равномерно и прямолинейно движутся лишь на небольших участках своего пути, в то время как на остальных участках их скорость изменяется как по величине, так и по направлению.

Для измерения мгновенной скорости движения на транспортных средствах устанавливается прибор — спидометр.

  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Ускорение в физике
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
  • Путь и перемещение

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

vcp = s / t

Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

formula-001

Проекция вектора скорости на ось ОХ:

vx = x’

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

formula-002

formula-003

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

vx = v0x ± axt

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v0
bc = v

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Формула сокращённого умножения разности квадратов поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то уравнение движения тела будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При аx < 0 и х0 = 0 ветви параболы направлены вниз (рис. 1.18).

1. Нахождение пути по графику зависимости скорости от времени

Покажем, как можно найти пройденный телом путь с помощью графика зависимости скорости от времени.

Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.

Путь при равномерном движении

Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении

путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.

Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.

Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.

Путь при неравномерном движении

Разобьем мысленно все время движения на столь малые промежутки, чтобы в течение каждого из них движение тела можно было считать практически равномерным (это разбиение показано штриховыми линиями на рисунке 6.2).

Тогда путь, пройденный за каждый такой промежуток, численно равен площади фигуры под соответствующим ком графика. Поэтому и весь путь равен площади фигур заключенной под всем графиком. (Использованный нами прием лежит в основе интегрального исчисления, основы которого вы будете изучать в курсе «Начала математического анализа».)

2. Путь и перемещение при прямолинейном равноускоренном движении

Применим теперь описанный выше способ нахождения пути к прямолинейному равноускоренному движению.

Начальная скорость тела равна нулю

Направим ось x в сторону ускорения тела. Тогда ax = a, vx = v. Следовательно,

v = at.     (1)

На рисунке 6.3 изображен график зависимости v(t).

График зависимости скорости от времени

? 1. Используя рисунок 6.3, докажите, что при прямолинейном равноускоренном движении без начальной скорости путь l выражается через модуль ускорения a и время движения t формулой

l = at2/2.     (2)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату времени движения.

Этим равноускоренное движение существенно отличается от равномерного.

На рисунке 6.4 приведены графики зависимости пути от времени для двух тел, одно из которых движется равномерно, а другое – равноускоренно без начальной скорости.

Графики зависимости пути от времени для двух тел

? 2. Рассмотрите рисунок 6.4 и ответьте на вопросы.
а) Каким цветом изображен график для тела, движущегося равноускоренно?
б) Чему равно ускорение этого тела?
в) Чему равны скорости тел в тот момент, когда они прошли одинаковый путь?
г) В какой момент времени скорости тел равны?

? 3. Тронувшись с места, автомобиль за первые 4 с проехал расстояние 20 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какое расстояние проедет автомобиль:
а) за 8 с? б) за 16 с? в) за 2 с?

Найдем теперь зависимость проекции перемещения sx от времени. В данном случае проекция ускорения на ось x положительна, поэтому sx = l, ax = a. Таким образом, из формулы (2) следует:

sx = axt2/2.     (3)

Формулы (2) и (3) очень похожи, что приводит порой к ошибкам при решении простых задач. Дело в том, что значение проекции перемещения может быть отрицательным. Так будет, если ось x направлена противоположно перемещению: тогда sx < 0. А путь отрицательным быть не может!

? 4. На рисунке 6.5 изображены графики зависимости от времени пути и проекции перемещения для некоторого тела. Какой цвет у графика проекции перемещения?

Начальная скорость тела не равна нулю

Напомним, что в таком случае зависимость проекции скорости от времени выражается формулой

vx = v0x + axt,     (4)

где v0x – проекция начальной скорости на ось x.

Мы рассмотрим далее случай, когда v0x > 0, ax > 0. В этом случае снова можно воспользоваться тем, что путь численно равен площади фигуры под графиком зависимости скорости от времени. (Другие комбинации знаков проекции начальной скорости и ускорения рассмотрите самостоятельно: в результате получится та же общая формула (5).

На рисунке 6.6 изображен график зависимости vx(t) при v0x > 0, ax > 0.

? 5. Используя рисунок 6.6, докажите, что при прямолинейном равноускоренном движении с начальной скоростью проекция перемещения

sx = v0x + axt2/2.     (5)

Эта формула позволяет найти зависимость координаты x тела от времени. Напомним (см. формулу (6), § 2), что координата x тела связана с проекцией его перемещения sx соотношением

sx = x – x0,

где x0 — начальная координата тела. Следовательно,

x = x0 + sx,     (6)

Из формул (5), (6) получаем:

x = x0 + v0xt + axt2/2.     (7)

6. Зависимость координаты от времени для некоторого тела, движущегося вдоль оси x, выражается в единицах СИ формулой x = 6 – 5t + t2.
а) Чему равна начальная координата тела?
б) Чему равна проекция начальной скорости на ось x?
в) Чему равна проекция ускорения на ось x?
г) Начертите график зависимости координаты x от времени.
д) Начертите график зависимости проекции скорости от времени.
е) В какой момент скорость тела равна нулю?
ж) Вернется ли тело в начальную точку? Если да, то в какой момент (моменты) времени?
з) Пройдет ли тело через начало координат? Если да, то в какой момент (моменты) времени?
и) Начертите график зависимости проекции перемещения от времени.
к) Начертите график зависимости пути от времени.

3. Соотношение между путем и скоростью

При решении задач часто используют соотношения между путем, ускорением и скоростью (начальной v0, конечной v или ими обеими). Выведем эти соотношения. Начнем с движения без начальной скорости. Из формулы (1) получаем для времени движения:

t = v/a.      (8)

Подставим это выражение в формулу (2) для пути:

l = at2/2 = a/2(v/a)2 = v2/2a.     (9)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату конечной скорости.

? 7. Тронувшись с места, автомобиль набрал скорость 10 м/с на пути 40 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какой путь от начала движения проехал автомобиль, когда его скорость была равна: а) 20 м/с? б) 40 м/с? в) 5 м/с?

Соотношение (9) можно получить также, вспомнив, что путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени (рис. 6.7).

Это соображение поможет вам легко справиться со следующим заданием.

? 8. Используя рисунок 6.8, докажите, что при торможении с постоянным ускорением тело проходит до полной остановки путь lт = v02/2a, где v0 – начальная скорость тела, a – модуль ускорения.

В случае торможения транспортного средства (автомобиль, поезд) путь, пройденный до полной остановки, называют тормозным путём. Обратите внимание: тормозной путь при начальной скорости v0 и путь, пройденный при разгоне с места до скорости v0 с тем же по модулю ускорением a, одинаковы.

? 9. При экстренном торможении на сухом асфальте ускорение автомобиля равно по модулю 5 м/с2. Чему равен тормозной путь автомобиля при начальной скорости: а) 60 км/ч (максимальная разрешенная скорость в городе); б) 120 км/ч? Найдите тормозной путь при указанных скоростях во время гололеда, когда модуль ускорения равен 2 м/с2. Сравните найденные вами значения тормозного пути с длиной классной комнаты.

? 10. Используя рисунок 6.9 и формулу, выражающую площадь трапеции через ее высоту и полусумму оснований, докажите, что при прямолинейном равноускоренном движении:
а) l = (v2 – v02)/2a, если скорость тела увеличивается;
б) l = (v02 – v2)/2a, если скорость тела уменьшается.

? 11. Докажите, что проекции перемещения, начальной и конечной скорости, а также ускорения связаны соотношением

sx = (vx2 – v0x2)/2ax     (10)

? 12. Автомобиль на пути 200 м разогнался от скорости 10 м/с до 30 м/с.
а) С каким ускорением двигался автомобиль?
б) За какое время автомобиль проехал указанный путь?
в) Чему равна средняя скорость автомобиля?

Лютый опыт

Дополнительные вопросы и задания

13. От движущегося поезда отцепляют последний вагон, после чего поезд движется равномерно, а вагон – с постоянным ускорением до полной остановки.
а) Изобразите на одном чертеже графики зависимости скорости от времени для поезда и вагона.
б) Во сколько раз путь, пройденный вагоном до остановки, меньше пути, пройденного поездом за то же время?

14. Отойдя от станции, электричка какое-то время ехала равноускоренно, затем в течение 1 мин – равномерно со скоростью 60 км/ч, после чего снова равноускоренно до остановки на следующей станции. Модули ускорений при разгоне и торможении были различны. Расстояние между станциями электричка прошла за 2 мин.
а) Начертите схематически график зависимости проекции скорости электрички от времени.
б) Используя этот график, найдите расстояние между станциями.
в) Какое расстояние проехала бы электричка, если бы на первом участке пути она разгонялась, а на втором – тормозила? Какова была бы при этом ее максимальная скорость?

15. Тело движется равноускоренно вдоль оси x. В начальный момент оно находилось в начале координат, а проекция его скорости была равна 8 м/с. Через 2 с координата тела стала равной 12 м.
а) Чему равна проекция ускорения тела?
б) Постройте график зависимости vx(t).
в) Напишите формулу, выражающую в единицах СИ зависимость x(t).
г) Будет ли скорость тела равна нулю? Если да, то в какой момент времени?
д) Побывает ли тело второй раз в точке с координатой 12 м? Если да, то в какой момент времени?
е) Вернется ли тело в начальную точку? Если да, то в какой момент времени, и чему будет равен пройденный при этом путь?

16. После толчка шарик вкатывается вверх по наклонной плоскости, после чего возвращается в начальную точку. На расстоянии b от начальной точки шарик побывал дважды через промежутки времени t1 и t2 после толчка. Вверх и вниз вдоль наклонной плоскости шарик двигался с одинаковым по модулю ускорением.
а) Направьте ось x вверх вдоль наклонной плоскости, выберите начало координат в точке начального положения шарика и напишите формулу, выражающую зависимость x(t), в которую входят модуль начальной скорости шарика v0 и модуль ускорения шарика a.
б) Используя эту формулу и тот факт, что на расстоянии b от начальной точки шарик побывал в моменты времени t1 и t2 составьте систему двух уравнений с двумя неизвестными v0 и a.
в) Решив эту систему уравнений, выразите v0 и a через b, t1 и t2.
г) Выразите весь пройденный шариком путь l через b, t1 и t2.
д) Найдите числовые значения v0, a и l при b = 30 см, t1 = 1с, t2 = 2 с.
е) Постройте графики зависимости vx(t), sx(t), l(t).
ж) С помощью графика зависимости sx(t) определите момент, когда модуль перемещения шарика был максимальным.

Зависимость проекции перемещения от времени при равноускоренном движении имеет вид:

Учитывая, что проекция перемещения движущегося тела равна:

зависимость координаты движущегося тела от времени имеет вид:

Последняя формула выражает кинематический закон равнопеременного движения.

Поскольку при равнопеременном движении зависимости перемещения и координаты тела от времени являются квадратичными функциями, то графиками зависимости данных величин от времени являются участки парабол.

На рисунке (1) представлены графики зависимости скорости движения тела при

ax=a>0

 (прямая (1)), при

ax=a=0

 (прямая (2)) и при

ax=a<0

 (прямая (3)).

пер1.svg

Рис. 1. Изображение графиков зависимостей V(t)

На рисунке (2) представлены графики зависимости проекции перемещения движущегося тела от времени при

ax=a>0

 (кривая (1)), при

ax=a=0

 (прямая (2)) и при

ax=a<0

 (кривая (3)).

пер2.svg

Рис. 2. Изображение графиков зависимостей

Δrx(t)

При

ax=a>0

 проекция перемещения всё время увеличивается (кривая (1)).

А при

ax=a<0

 проекция перемещения увеличивается до момента времени

t=tп

, а затем уменьшается. Это происходит потому, что в момент времени

tn

 скорость тела становится равной нулю, а направление его движения меняется на противоположное, то есть происходит поворот.

Моменту времени

tn

 на кривой (3) рисунка (2) соответствует вершина параболы.

График зависимости пути (s) от времени при движении, при котором направление скорости не изменяется, совпадает с графиком зависимости проекции перемещения от времени (рис. (3), кривые (1) (график проекции перемещения) и (2) (график пути)).

пер3.svg

Рис. 3. Сравнение графиков зависимостей

Δrx(t)

 и (s(t))

Если же направление скорости во время движения изменяется, то есть происходит поворот, то эти графики совпадают только при

0<t<tn

 (рис. (3), кривые (3) (график проекции перемещения) и (4) (график пути)).

После момента поворота

tn

 проекция перемещения начинает уменьшаться, а путь продолжает увеличиваться. При этом путь увеличивается на столько, на сколько за то же время уменьшается проекция перемещения.

График зависимости координаты от времени (рис. (4), кривые (1) и (3)) получается из графика зависимости перемещения от времени (рис. (4), кривая (2)) смещением последнего на величину

x0

 вверх при

x0>0

 (рис. (4), кривая (1)) или вниз при

x0<0

 (рис. (4), кривая (3)), поскольку

x=x0+Δrx

 (рис. (4)).

пер4.svg

Рис. 4. Сравнение графиков зависимостей

Δrx(t)

 и (x(t))

Добавить комментарий