Как найти зависимость проекции скорости от времени

Рассмотрим движение тела из точки (A) в точку (B) (рис. (1)). Траектория (AB) является криволинейной.

Введём понятие «средняя скорость».

На рисунке (1) показаны вектора перемещений тела (Delta{vec{r_3}}), (Delta{vec{r_2}}) и (Delta{vec{r_1}}) за различные сокращающиеся промежутки времени (Delta{t_3}), (Delta{t_2}) и (Delta{t_1}).

криволинейноекоп.png

Рис. (1). Перемещения тела при криволинейном движении

Средняя скорость  равна отношению перемещения за конечный промежуток времени:

 Средняя скорость является векторной величиной:

  • направление средней скорости υ ср→↑↑Δr→ находится согласно математической формуле определения данной физической величины (сравни математическое выражение (vec{a}) (=) (frac{vec{b}}{2}) и формулу средней скорости);
  • числовое значение средней скорости (модуль, проекции на координатные оси) определяется согласно геометрическим правилам работы с векторами;
  • физические понятия отличаются от математических понятий наличием единиц измерения ([(v_{ср})] (=) [(frac{м}{с})]).

Участки траектории (AB), (AD) и (AE) (рис. (1)) характеризуются, соответственно, средними скоростями:

(vec{v_{ср3}}), (vec{v_{ср2}}), (vec{v_{ср1}}).

(vec{v_{ср3}}) = (frac{Delta{vec{r_3}}}{Delta{t_3}}) (vec{v_{ср2}}) = (frac{Delta{vec{r_2}}}{Delta{t_2}}) (vec{v_{ср1}}) = (frac{Delta{vec{r_1}}}{Delta{t_1}})

Если уменьшать неограниченно промежуток времени (Delta{t}), то быстрота движения тела характеризуется понятием «мгновенная скорость» (или «скорость»).

Математическая запись уменьшения промежутка времени:

Δt→0

 (в математике существует понятие «предел», символ данного понятия — «lim»).

Физический смысл принципа уменьшения промежутка времени: на определённом этапе данной процедуры значения средней скорости будут приблизительно одинаковыми и определение физического понятия «средняя скорость» изменится на физическое понятие «мгновенная скорость»

υ→=limΔt→0υ ср→=limΔt→0Δr→Δt

.

Мгновенная скорость является векторной величиной:

  • вектор мгновенной скорости (далее — скорости) направлен по касательной к траектории в исследуемой точке (проверь, как на рисунке (1) «хорды — перемещения (Delta{vec{r_3}}), (Delta{vec{r_2}}) и (Delta{vec{r_1}})» при уменьшении промежутков времени (Delta{t_3}), (Delta{t_2}) и (Delta{t_1}) изображаются касательными, которые соответствуют векторам скоростей (vec{v_3}), (vec{v_2}), (vec{v_1})).

На рисунке (1) тело движется из точки (E) в точку (D), изменяя скорость от (v_2) до (v_3). Параллельным переносом перенесём вектор (vec{v_{3}}) к (vec{v_{2}}), тогда изменение скорости за промежуток времени (Delta{t}) равно разности векторов

((vec{v_{3}})(-)(vec{v_{2}})), что на рисунке (1) соответствует вектору ускорения (vec{a_{2}}).

 Среднее ускорение равно отношению изменения скорости к промежутку времени:

Примечание:

1) в физических задачах при написании символа aср → индекс «ср», как правило, не прописывается;

2)  в ситуации прямолинейного неравномерного движения используется термин «ускорение».

Характеристики физического понятия «среднее ускорение»:

  • направление вектора среднего ускорения определяется согласно правилу aср→↑↑Δυ→;
  • числовое значение ускорения (модуль, проекции на координатные оси) определяется согласно геометрическим правилам работы с векторами;
  • единица измерения ([(a_{ср})] (=) [(frac{м}{с^2})]).

Участки траектории (AB), (AD) и (AE) (рис. (1)) характеризуются, соответственно, средними ускорениями (vec{a_{3}}), (vec{a_{2}}), (vec{a_{1}}).

(vec{a_{3}}) (=) (frac{Delta{vec{v_3}}}{Delta{t_3}}) (vec{a_{2}}) (=) (frac{Delta{vec{v_2}}}{Delta{t_2}}) (vec{a_{1}}) (=) (frac{Delta{vec{v_1}}}{Delta{t_1}})

Если уменьшать неограниченно промежуток времени (Delta{t}), то изменение скорости движения тела в конкретный момент времени характеризуется физическим понятием «мгновенное ускорение».

Вектор мгновенного ускорения при движении тела по криволинейной траектории представляет векторную сумму компонентов данного вектора, которые направлены по касательной и нормали (перпендикуляр к касательной).

Векторное и скалярное уравнения скорости материальной точки

1)  Общий вид:

  • векторное уравнение — (vec{v}) (=) (vec{v}(t));
  • числовые (скалярные) уравнения — (v_x)  (=)  (v_x(t)), (v_y)  (=)  (v_y(t)), (v_z)  (=)  (v_z(t)).

2)  Прямолинейное равноускоренное движение:

  • векторное уравнение — (vec{v}(t))  (=)  (vec{v}{_0})  (+)  (vec{a}(t – t_0)),

где (vec{v}{_0}) — скорость тела в начальный момент времени ({t_0}), (vec{v}(t)) — скорость тела в произвольный момент

времени (t);

  • числовые (скалярные) уравнения  — (v_x(t))  (=)  (v_{0x})  (+)  (a_x(t – t_0)), (v_y(t))  (=)  (v_{0y})  (+)  (a_y(t – t_0)),  

(v_z(t))  (=)  (v_{0z})  (+)  (a_z(t – t_0)).

Графическое изображение зависимости проекции скорости от времени ({v_х}(t))

При движении тела с постоянным ускорением проекция скорости изменяется по линейному закону в зависимости от времени (t): (v_x(t))  (=)  (v_{0x})  (+)  (a_x(t – t_0)) (рис. (2)).

 

скорость равноускореннокоп.png

Рис. (2). График зависимости проекции скорости от времени

Значение проекции ускорения по графику определяется как тангенс угла: (a_x) (=) (tgα) (=) (frac{Delta{v}}{Delta{t}}).

Перемещение

Проекции перемещений при равнопеременном движении в момент времени (t) определяются формулами:

 (s_x(t)=x(t) – x_0), (s_y(t)=y(t) -y_0), (s_z(t)=z(t) – z_0).

перемещениетреугкоп.png

                            (A)

перемещениетрапкоп.png

                            (B)

Рис. (3). Определение модуля и проекций перемещения по графику зависимости проекции скорости от времени

Модуль и проекции перемещения тела определяются графическим способом с 

использованием графика зависимости (v_x(t)).

Рисунок (3) (A) ((v_0) (=) (0))

Рисунок (3) (B) ((v_0) (≠) (0))

Модуль перемещения определяется как площадь прямоугольного треугольника (ABC) с катетами 

(c) и (b), где (b) (=) (t), (c) (=) (at).

Модуль перемещения определяется как площадь трапеции (ABCD) с основаниями (d) (=) (v_0), (b) (=) (v_0+at) и высотой (h) (=) (t).

S=12b+dh⇒S=υ0⋅t+a⋅t22

Проекция перемещения: (s_x)  (=)  (S)

Проекция перемещения: (s_x)  (=)  (S)

Примечание: если график проекции скорости состоит из участков, где площадь трапеции имеет отрицательное значение (например, (s_{x1})  (>)  (0), (s_{x2})  (<)  (0)), то модуль перемещения тела равен:

s=sx1+sx2

.

Источники:

Рис. 1. Перемещения тела при криволинейном движении. © ЯКласс.

Рис. 2. График зависимости проекции скорости от времени. © ЯКласс.

Рис. 3. Определение модуля и проекций перемещения по графику зависимости проекции скорости от времени. © ЯКласс.

В данной статьи изложены мысли, которые возникали при решении задач с сайта “Решу ЕГЭ” в разделе – https://phys-ege.sdamgia.ru/test?theme=204. Рисунки взяты оттуда же.

1. Общий подход

Анализ и использование данного графика базируется на формуле перемещения тела S, м:

Формула 1
Формула 1

Как видно из формулы площадь под графиком равна перемещению тела. Например, тело с 1 по 2 секунду на графике, представленном на рис. 1 прошло S = V * t = 2м/с * (2с – 1с) = 2м/с *1с = 2м

Рис. 1. График зависимости скорости от времени
Рис. 1. График зависимости скорости от времени

2. Чуть посложнее

Если мы захотим найти перемещение тела с начала движения t = 0c до 4-ой секунды движения тела согласно графику на рис. 2, то нам необходимо найти сумму площадей трех геометрических фигур: с 0с по 1с – треугольник, с 1с по 2с прямоугольник, со 2с по 4с – трапеция.

Рис. 2. Находим перемещение как сумму площадей геометрических фигур
Рис. 2. Находим перемещение как сумму площадей геометрических фигур

S треугольника = (1/2) * длину высоты треугольника * длину сторону треугольника, к которой проведена высота =
=(1/2) * 2м/с * (1с – 0с) = 1/2 * 2м/с * 1с =

S прямоугольника мы находили в начале статьи =
S трапеции = (1/2) * сумму оснований трапеции * высоту трапеции =
=(1/2) * (2м/с + 6м/с) * (4с – 2с) = (1/2) * 8м/с * 2с =

Итого
S = 1м + 2м + 8м = 11м

3. А если скорость равна нулю?

Не стоит пугаться нулевых скоростей на каком-либо интервале времени. Например с 3с по 5с на графике, представленном на рис. 3 перемещение тела равно 0м, т. к. площадь фигуры с 3с по 5с равна 0.

Рис. 3. Нулевое перемещение
Рис. 3. Нулевое перемещение

4. А если скорость ушла “в минус”?

Рис. 4. Отрицательная скорость
Рис. 4. Отрицательная скорость

А вот отрицательная скорость может вызвать некоторые затруднения. Здесь надо очень внимательно читать задание и не перепутать очень похожие физические величины: путь и перемещение. Путьвеличина скалярная и поэтому для ее нахождения с помощью графика на рис. 4 надо зеркально отобразить отрицательные участки скорости и сложить площади фигур (см. Рис. 5)

Рис. 5. Зеркальное отображение отрицательных участков
Рис. 5. Зеркальное отображение отрицательных участков

Перемещение – величина векторная и поэтому при определении этой величины необходимо учитывать знак площади. Например, если нужно найти перемещение тела с 0с по 10с (см. рис. 5), то нужно площадь треугольника с 0с по 4с сложить с площадью треугольника с 8с по 10с и из полученного результата вычесть площадь треугольника с 4с по 8с.

5. Когда можно и не считать!

Рис. 6. Анализ графиков
Рис. 6. Анализ графиков

Иногда требуется визуальный анализ графиков. Например, необходимо определить какой автомобиль из 4-х с 0с до 15с проехал наибольшее расстояние?
Рассматривая площади геометрических фигур под графиками (см. рис. 6) видим, что площадь больше у графика (и машины) №3.

6. Переходим к ускорению

До сих пор мы на линейных графиках с координатами скорости и времени (см. рис. 7) видели скорость, время и перемещение (или путь).

Рис. 7. Ищем на графике ускорение
Рис. 7. Ищем на графике ускорение

А тут ещё прячется ускорение. Давайте попробуем его найти. Вспоминаем формулу равноускоренного движения

Формула 2 . Формула равноускоренного движения
Формула 2 . Формула равноускоренного движения

Рассматривая график на рис. 7 определим Vo при t = 0с => Vo = 2м/с.
А теперь возьмём на графике точку в момент времени
t = 1c и определим по графику скорость в этот момент времени => V = 4м/с.
Подставляем найденные значения в формулу 2 =>
4м/с = 2м/с +
a * 1c => а = (4м/с – 2м/с) / 1с = 2м/с2

Возвращаемся к графику (см. рис. 8)

Рис. 8. Находим уравнение графика
Рис. 8. Находим уравнение графика

Теперь мы можем сказать, что на рис. 8 представлен график линейного уравнения V = Vo + a*t = 2 + 2*t. Эти знания расширяют область использования графика на рис. 8. Например мы можем сказать, что при
t = 10c скорость будет равна V = 2м/с + 2м/с2*10с = 22м/с

7. Ищем ускорение на произвольном прямолинейном участке графика

Нас могут попросить найти ускорение тела на произвольном прямолинейном участке графика. Например с 6с по 10с на графике, представленном на рис. 9.

Рис. 9. Находим ускорение на произвольном прямолинейном участке графика
Рис. 9. Находим ускорение на произвольном прямолинейном участке графика

Для этого получим формулу для ускорения, усложнив формулу 2 заменив t на (t – to):

Формула 3.  Формула для определения ускорения
Формула 3. Формула для определения ускорения

Возвращаемся к поиску ускорения:
а = (5м/с – (-5м/с))/(10с – 6с) = 10м/с / 4с = 2.5м/с2

8. Ищем координаты тела

Зная начальные координаты тела, начальную скорость, ускорение тела и время перемещения можем найти координаты тела в любой момент времен (формула 4)

Формула 4. Уравнение для координаты тела
Формула 4. Уравнение для координаты тела

9. Ищем скорость в пространстве

Рис. 10. Скорость в пространстве
Рис. 10. Скорость в пространстве

Мы можем знать значение проекций скорости на оси: х, y и z. Нас могут попросить найти модуль скорости. Ищем по формуле 5:

Формула 5. Формула для модуля скорости
Формула 5. Формула для модуля скорости

Для понимания формулы 5 можно представить модуль скорости диагональю параллелепипеда, а проекции скорости сторонами параллелепипеда (см. рис. 11)

рис. 11 Расшифровка формулы 4
рис. 11 Расшифровка формулы 4

Заключение

Пока, это все мысли, которые появлялись во время решения задач в разделе сайта “Решу ЕГЭ” по адресу https://phys-ege.sdamgia.ru/test?theme=204. Пишите в комментариях, если что-то напрашивается добавить.

Автор с благодарностью примет любые пожертвования на развитие канала “От сложного к простому” https://money.yandex.ru/to/4100170126360.

Проекции скорости и ускорения

Для выполнения
расчетов скоростей и ускорений необходимо
переходить от записи уравнений в
векторной форме к записи уравнений в
алгебраической форме.

Векторы начальной
скорости
и ускорениямогут иметь различные направления,
поэтому переход от векторной записи
уравнений к алгебраической может
оказаться весьма трудоемким.

Известно, что
проекция суммы двух векторов на какую-либо
координатную ось равна сумме проекций
слагаемых векторов на ту же ось.

Поэтому для
нахождения проекции
вектора скоростина произвольную ось OX нужно найти
алгебраическую сумму проекций векторовина ту же ось.

Проекцию
вектора на ось считают положительной,
если от проекции начала к проекции
конца вектора нужно идти по направлению
оси, и отрицательной в противоположном
случае.

График скорости

Из уравнения
следует, что графиком зависимости
проекции скорости равноускоренного
движения от времени является прямая.
Если проекция начальной скорости на
ось OX равна нулю, то прямая проходит
через начало координат.

Основные
виды движения

  1. аn
    = 0, a
    = 0

    прямолинейное равномерное движение;

  2. аn
    = 0, a
    =
    const
    – прямолинейное равнопеременное
    движение;

  3. аn
    = 0, a

    0 –
    прямолинейное
    с переменным ускорением;

  4. аn
    = const,
    a
    = 0 –
    равномерное
    по окружности

  5. аn
    = const,
    a
    =
    const
    – равнопеременное по окружности

  6. аn

    const,
    a

    const
    – криволинейное с переменным ускорением.

Вращательное движение твердого тела.

Вращательное
движение твердого тела относительно
неподвижной оси

– движение, при котором все точки
твердого тела описывают окружности,
центры которых лежат на одной прямой,
называемой осью
вращения.

Равномерное движение по окружности

Рассмотрим наиболее
простой вид вращательного движения, и
уделим особое внимание центростремительному
ускорению.

При равномерном
движении по окружности значение скорости
остается постоянным, а направление
вектора скорости
изменяется в процессе движения.

За
интервал времени t
тело проходит путь
.
Этот путь равен длине дугиAB.
Векторы скоростей
ив точкахA
и B направлены
по касательным к окружности в этих
точках, а угол
между векторами
иравен углу между радиусамиOA
и OB.
Найдем разность векторов
и определим отношение изменения
скорости кt:

Из подобия
треугольников OAB и BCD следует

Если интервал
времени ∆t
мал, то мал и угол .
При малых значениях угла 
длина хорды AB примерно равна длине дуги
AB, т.е.
.
Т.к.,,
то получаем

.

Поскольку
,
то получаем

Период и частота

Промежуток времени,
за который тело совершает полный оборот
при движении по окружности, называется
периодам
обращения

(Т).
Т.к. длина окружности равна 2R,
период обращения при равномерном
движении тела со скоростью v
по окружности радиусом R
равняется:

Величина, обратная
периоду обращения, называется частотой.
Частота показывает, сколько оборотов
по окружности совершает тело в единицу
времени:

-1)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #

    01.06.2015304.13 Кб31KP.doc

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Рассмотрим поступательное движение. Когда тело движется поступательно, его координаты изменяются.

Прямолинейное движение – это когда тело движется по прямой. Прямую, вдоль которой движется тело, назовем осью Ox.

Будем отдельно рассматривать:

  • движение без ускорения (равномерное), и
  • движение с ускорением (неравномерное).

1). Равномерное движение — скорость тела остается одной и той же (т. е. не изменяется). При таком движении ускорения нет: (vec{a} =0).

2). Неравномерное движение — скорость меняется и появляется ускорение.

Пусть ускорение есть и, оно не изменяется: (vec{a} =const). Такое неравномерное движение называют равнопеременным. Чтобы уточнить, увеличивается ли скорость, или уменьшается, вместо слова «равнопеременное» говорят:

  • Равноускоренное движение — скорость тела увеличивается.
  • Равнозамедленное движение — скорость уменьшается.

Примечание: Когда изменяется скорость, всегда появляется ускорение!

Движение будем изображать графически, используя две перпендикулярные оси.

На графиках будем откладывать:

  • по горизонтали — время в секундах.
  • по вертикали — координаты тела, или проекции скорости и ускорения.

Для каждого вида движения получим три графика. Графики будем называть так:

  1. x(t) – зависимость координаты от времени;
  2. v(t) – зависимость проекции скорости от времени;
  3. a(t) – зависимость проекции ускорения от времени.

Прочитайте вначале, что такое проекция вектора на ось, это поможет лучше усвоить материал.

Тело покоится, его координата не меняется, а скорость и ускорение отсутствуют

Пусть тело покоится на оси Ox – (рис 1а).
Точкой (x_{0}) обозначена координата этого тела. Когда тело неподвижно, его координата не меняется. На графике неизменную координату обозначают горизонтальной линией, расположенной параллельно оси времени (рис. 1б).
[x=x_{0}]

Случаю, когда тело покоится – рис. а), соответствует горизонтальный график координаты x(t) – рис. б), скорость «v» – рис. в) и ускорение «a» – рис. г) лежат на оси времени

Рис.1. Тело покоится, график координаты x(t) — горизонтальная прямая рис. б).
Скорость «v» и ускорение «a» — это прямые, лежащие на оси Ox. График скорости – рис. в). График ускорения – рис. г)

Скорость и ускорение неподвижного тела равны нулю:

[vec{v}=0]

[vec{a}=0]

Из-за этого, графики скорости (рис. 1в) и ускорения (рис. 1г) – это горизонтальные линии, лежащие на оси t времени.

Скорость не меняется — движение равномерное

Разберём равномерное движение в направлении оси (рис. 2а).

Начальная координата тела – это точка (x_{0}), а конечная координата — точка (x) на  оси Ox. В точку «x» тело переместится к конечному времени «t».

Красной стрелкой обозначено направление, в котором тело движется.

 Примечание: Тело движется туда, куда направлен вектор его скорости.

Движению с постоянной скоростью вдоль оси Ox соответствует возрастающая прямая x(t) – рис а). Скорость не изменяется, поэтому график v(t) – горизонтальная прямая, а ускорение нулевое, его график г) лежит на оси времени

Рис.2. Тело движется равномерно в направлении оси Ox – рис а). Зависимость координаты от времени – это возрастающая прямая x(t) – рис. б). График скорости в) – это горизонтальная прямая, а график ускорения г) лежит на оси времени, так как ускорение равно нулю

Координата возрастает со временем, так как тело движется туда же, куда указывает ось. Поэтому график координаты от времени — это возрастающая прямая x(t) – рис. б).

Уравнение, описывающее изменение координаты выглядят так:

[ x  = x_{0} + v cdot t ]

Скорость на графике рис. в) изображена горизонтальной прямой линией, потому, что скорость остается одной и той же (не изменяется). Уравнение скорости записывается так:

[ v  = v_{0} = const ]

Ускорение рис. г) изображается прямой, лежащей на оси времени, так как ускорения нет. Математики посмотрят на такой график и скажут: «Ускорение равно нулю и не изменяется». Эту фразу они запишут формулой:

[ a = 0 ]

Равномерное движение в направлении противоположном оси

Пусть теперь тело движется с одной и той же скоростью в направлении, противоположном оси (рис. 3а).

Случаю, когда тело движется равномерно против оси Ox – рис. а), соответствуют убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Рис.3. Тело движется равномерно противоположно направлению оси Ox – рис. а). Такому движению соответствуют: убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Так как тело теперь движется против направления оси, то координата тела будет уменьшаться. График (рис 3б) координаты x(t) выглядит, как убывающая прямая линия.

Так как скорость не изменяется, то график v(t) – это горизонтальная прямая.

Тело движется против оси, его вектор скорости направлен противоположно оси Ox. Поэтому проекция скорости будет отрицательной (рис 3в) и на графике v(t) скорость — это горизонтальная прямая, лежащая ниже оси времени.

А график ускорения (рис 3г) лежит на оси времени, так как ускорение нулевое.

Равноускоренное движение в направлении оси, скорость увеличивается

Следующий набор графиков – это случай, когда тело движется вдоль оси Ox с возрастающей скоростью (рис. 4). То есть, мы рассматриваем равноускоренное движение.

Когда тело движется равноускорено по направлению оси Ox – рис. а), его координата изменяется параболически – рис. б), график скорости изображается возрастающей наклонной прямой – рис. в), проекция ускорения на ось Ox – это горизонтальный график рис. г)

Рис.4. Тело движется равноускорено – рис. а) по направлению оси Ox. Изменение координаты от времени x(t) описывается правой ветвью параболы – рис. б), график v(t) скорости изображен наклонной возрастающей прямой – рис. в), а график неизменного ускорения a(t) – рис. г) изображается горизонтальной прямой, лежащей выше оси времени

Координата «x» теперь изменяется не по линейному, а по квадратичному закону. На графике квадратичное изменение выглядит, как ветвь параболы (рис. 4б). Тело движется по оси и скорость его растет. Такое движение описывается правой ветвью параболы, направленной вверх.

Уравнение, которое описывает квадратичное изменение координаты, выглядит так:

[ x = frac{a}{2}cdot t^{2} + v_{0} cdot t + x_{0} ]

Скорость, так же, растет (рис. 4в). Рост скорости описан наклонной прямой линией – то есть, линейной зависимостью:

[ v  = v_{0} + a cdot t ]

Ускорение есть (рис. 4г) и оно не меняется:

[ a = const ]

Скорость и ускорение сонаправлены с осью Ox, поэтому их проекции на ось положительны, а их графики лежат выше оси времени.

Примечания:

1). Координата «x» будет изменяться:

  • по линейному закону, когда скорость не меняется — остается одной и той же.
  • по квадратичному закону, когда скорость будет изменяться (расти, или убывать).

2). Линейный закон – это уравнение первой степени, на графике – наклонная прямая линия.

3). Квадратичный закон – это уравнение второй степени, на графике — парабола.

4). Когда скорость увеличивается, для графика координаты x(t) выбираем правую ветвь параболы, а когда скорость уменьшается – то левую ветвь.

Равноускоренное движение против оси

Если тело будет увеличивать свою скорость, двигаясь в направлении, противоположном оси (рис. 5а), то ветвь параболы, описывающая изменение координаты тела, будет направлена вниз (рис. 5б).

Скорость направлена против оси и увеличивается в отрицательную область. Такое изменение скорости изображаем прямой, направленной вниз (рис. 5в).

Когда тело движется равноускорено против оси Ox – рис. а), его координата изменяется по правой ветви параболы – рис. б), график скорости - возрастающая в отрицательную область наклонная прямая – рис. в), горизонтальный график ускорения - рис. г) лежит ниже оси Ox

Рис.5. Тело движется равноускорено противоположно оси Ox – рис. а). Координата меняется параболически – рис. б), ветвь правая, так как скорость растет. Скорость — рис. в), и ускорение — рис. г), направлены против оси Ox, их графики лежат ниже оси времени

Примечание: Чтобы скорость увеличивалась (по модулю), нужно, чтобы векторы скорости и ускорения были сонаправленными (ссылка).

Так как скорость увеличивается, то векторы скорости и ускорения сонаправлены. Но при этом, они направлены против оси, поэтому проекции векторов (vec{v}) и (vec{a}) на ось Ox будут отрицательными. Значит, графики скорости и ускорения будут лежать ниже горизонтальной оси времени.

Ускорение (рис. 5г) не изменяется, поэтому изображается горизонтальной прямой. Но эта прямая будет лежать ниже горизонтальной оси времени, так как ускорение имеет отрицательную проекцию на ось Ox.

Скорость уменьшается — движение равнозамедленное

Когда скорость тела уменьшается с постоянным ускорением, движение называют равнозамедленным. Координата в этом случае изменяется по квадратичному закону. График координаты – это ветвь параболы. Когда скорость уменьшается, координату описываем с помощью левой ветви параболы, с вершиной вверху (рис. 6б).

Равнозамедленное движение по оси Ox – рис. а), координата тела изменяется по левой ветви параболы – рис. б), график скорости - убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения - рис. г) лежит ниже оси времени

Рис.6. Тело движется равнозамедленно по оси Ox – рис. а), его координата растет по левой ветви параболы – рис. б), график скорости — убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения — рис. г) лежит ниже оси времени

Примечание: Чтобы скорость уменьшалась по модулю, нужно, чтобы векторы скорости и ускорения были направлены в противоположные стороны (ссылка).

Скорость уменьшается, при этом, скорость направлена по оси. Поэтому, график скорости – это убывающая прямая линия, лежащая выше оси времени (рис. 6в).

А ускорение есть, оно не изменяется и направлено против оси. Поэтому, ускорение отрицательное, его график – это горизонтальная прямая, лежащая ниже оси времени (рис. 6г).

Равнозамедленное движение против оси

Если тело будет двигаться против оси, замедляясь, то график координаты — это левая ветвь параболы, вершиной вниз (рис. 7б).

Скорость вначале была большой, но так как тело замедляется, она падает до нуля. Но тело двигается против оси Ox, поэтому график скорости лежит ниже оси времени (рис. 7в).

Равнозамедленное движение против оси. Координата убывает по левой ветви параболы – рис. б), отрицательная скорость падает к нулю, график скорости - наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения - рис. г) лежит выше оси времени

Рис.7. Тело движется равнозамедлено против оси Ox – рис. а), его координата убывает по левой ветви параболы – рис. б), скорость отрицательная и уменьшается к нулю, график скорости — наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения — рис. г) лежит выше оси времени

Скорость отрицательная. А чтобы она уменьшалась, нужно, чтобы ускорение было направлено противоположно скорости. Поэтому ускорение будет положительным. Значит, график ускорения будет лежать выше оси времени. Так как ускорение не меняется, то его график изображен горизонтальной прямой линией (рис. 7г).

Примечание: Можно вычислить перемещение тела по графику скорости v(t), не пользуясь для этого графиком функции x(t) для координат тела.

Выводы

1). Все, что лежит:

  • выше оси t – положительное;
  • ниже оси t – отрицательное;
  • на горизонтальной оси t – равно нулю.

2). Когда ускорение, или скорость направлены против оси, они будут отрицательными, т. е. будут лежать ниже горизонтальной оси t. Если график ускорения лежит на горизонтальной оси, то ускорение отсутствует (т. е. равно нулю, нулевое).

3). Если скорость не меняется, ускорения нет.

  • График x(t) координаты – это прямая линия.
  • График v(t) скорости – горизонтальная прямая.
  • График a(t) ускорения лежит на оси t.

4). Если скорость растет, ускорение и скорость направлены в одну и ту же сторону.

  • График x(t) координаты – это правая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

5). Если скорость уменьшается, ускорение и скорость направлены в противоположные стороны.

  • График x(t) координаты – это левая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

Равномерное прямолинейное движение

Всё в мире находится в движении.

Каждый день, когда мы выходим из дома, мы стараемся рассчитать, насколько быстро доберемся до школы или работы.

Может, однажды мы захотим научиться чему-то новому и купим машину.

А физика объяснит тебе, как не попасть в аварию и как всюду успевать.

Приступим!

Равномерное прямолинейное движение — коротко о главном

Сегодня ты узнал:

  • Как решить основную задачу механики в общем виде;
  • Равномерное прямолинейное движение — такое движение, при котором тело за любые равные промежутки времени совершает равные перемещения;
  • Скорость равномерного прямолинейного движения есть физическая величина, равная отношению вектора перемещения ко времени, за которое оно произошло;
  • Скорость равномерного прямолинейного движения постоянна;
  • Как решить основную задачу механики для равномерного прямолинейного движения;
  • Как строить и анализировать графики равномерного прямолинейного движения;
  • Графиком равномерного прямолинейного движения является прямая;
  • Встреча – такое событие, при котором координаты тел в один и тот же момент времени совпадают;
  • Проекция перемещения тела численно равна площади под графиком скорости тела;
  • Как строить траекторию движения тела;
  • Средняя скорость тела – векторная физическая величина, равная отношению перемещения тела на определенном участке траектории ко времени, за которое оно совершено;
  • Средняя путевая скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден;
  • Траектория движения тела зависит от выбора системы отсчета;
  • Как доказать закон сложения скоростей;
  • Абсолютная скорость есть векторная сумма относительной и переносной скоростей;

А еще ты научился решать задачи разного уровня сложности!

Ой, я что, не сказал? Там сложные были!

Ты, наверное, и не заметил 😉

О том, как решить основную задачу механики

Мы помним, что основная задача механики – указать положение тела в пространстве в любой момент времени, не только в настоящем, но и в будущем.

Мы узнали это, когда только начали изучать кинематику. 

Итак, что нужно знать для того, чтобы найти положение тела в пространстве?

Неплохо было бы знать, где оно находилось в начале своего движения, его начальные координаты.  Ведь нам важно, откуда мы выдвигаемся в путь.

Зависят ли начальные координаты тела от времени? Совсем нет: мы просто принимаем то, что тело где-то есть.

А еще нам важно знать, как далеко оказалось тело от своего начального положения и куда вообще двигалось. Важно знать перемещение этого тела.

Давай опробуем свои силы! Думаю, мы уже готовы решить главную задачу!

Рассмотрим какое-то тело. Оно подвигалось, изменило свое положение, оказалось в другой точке.

Назовем ее конечной и постараемся найти ее координаты, то есть узнать положение тела после совершенного им перемещения.

Помним, что перемещение – вектор, поэтому изобразим его:

Уже сейчас мы можем указать начальные координаты тела! Нет чисел – не пугаемся, используем буквы:

Нам нужно узнать конечное положение тела. Отметим координаты тела в конце, их нам и нужно найти, чтобы определить положение тела в конце:

Но как найти эти координаты, зная лишь начальное положение тела и его перемещение? Как нам попасть из ({{x}_{0}}) в (x) и из ({{y}_{0}}) в (y) ?

Все очень просто! Если есть вектор, то какая-нибудь проекция-то найдется, правда?

Отметим их:

Теперь ответить на вопрос, как добраться из начала в конец становится очень легким: просто нужно прибавить к начальной точке проекцию перемещения для нужной оси!

То есть положение точки в любой момент времени можно записать так:

(x={{x}_{0}}+{{S}_{x}}) — для оси Х

(y={{y}_{0}}+{{S}_{y}}) — для оси Y

Поздравляю! Мы только что решили основную задачу механики!

Правда, сделали это в общем виде… Но перемещение ведь может быть очень разнообразным! Как вообще его найти? Не всегда же оно будет дано!

Это зависит от движения тела.

Равномерное прямолинейное движение

Определение равномерного прямолинейного движения

Самым простым движением по праву считается равномерное прямолинейное движение. Мы начнем с него.

Давай попробуем дать ему определение.

Всегда стоить помнить, что знать определения наизусть вовсе не обязательно. Главное – научиться строить его самостоятельно.

Успех любого хорошего определения заключается в правильной его структуре.

Равномерное прямолинейное движение – это движение. Мы нашли главное слово нашего определения. Давай развивать его.

Мы уже знаем, что такое движение. Давай дополним это определение.

Что значит равномерное? Равная мера… Но что является этой самой равной мерой?

Тело проходит равные пути. Логично, что происходит это за какие-то промежутки времени.

А за какие промежутки? За равные. За секунду, за минуту, за час. Не обязательно за ОДНУ секунду, ОДНУ минуту, ОДИН час. Равными промежутками времени могут быть, например, три часа или две секунды.

Но что значит прямолинейное? Можно сказать, что это движение по прямой. Но давайте объясним это, исходя из уже знакомых нам понятий.

Представь: какое-то тело движется, у нас в руках секундомер.

Прошла секунда – тело переместилось на метр. Еще секунда – еще метр. В том же направлении.

То есть тело совершает равные перемещения!

Поэтому…

Равномерное прямолинейное движение — такое движение, при котором тело за любые равные промежутки времени совершает равные перемещения.

С перемещением намного проще объяснить, почему за равные промежутки времени можно принимать абсолютно любое количество единиц времени.

Пусть тело совершает за 1 секунду перемещение (vec{S}).

Тогда за две секунды совершает перемещение (2vec{S}):

Будет ли тело все еще совершать равные перемещения за каждые 2 секунды? Конечно! Давай посмотрим:

Скорость

Равномерное прямолинейное движение тоже бывает разным: быстрым и медленным. Чтобы охарактеризовать его, существует скорость.

Чем большее перемещение совершает тело за промежуток времени, тем больше его скорость. Это очевидно: за одно и то же время гепард преодолевает расстояние во много раз большее, чем термит.

То есть скорость прямо пропорциональна перемещению!

А еще мы помним, что нам действительно важно направление скорости, ведь нам важно направление движения. То есть скорость – величина векторная. Давай убедимся в этом.

Скорость равномерного прямолинейного движения есть физическая величина, равная отношению вектора перемещения ко времени, за которое оно произошло.

Запишем это в виде формулы:

(vec{V}=frac{{vec{S}}}{t})

Векторы с обеих сторон, верно, но… Мы ведь учились умножать векторы, а не делить их. При делении тоже вектор получается?

Да. Ведь любое деление можно представить в виде умножения, смотри:

(vec{V}=frac{1}{t}cdot vec{S})

Время – скалярная величина. Оно не имеет направления. Поэтому можно сказать, что скорость есть перемещение, умноженное на скаляр, то есть тоже вектор! Более того, вектор перемещения и скорости сонаправлены.

Подробнее о свойствах векторов можно прочитать в Большой теории по векторам.

Помнишь, мы чуть выше выясняли, будет ли тело все так же совершать одинаковые перемещения за 2 секунды, а не за одну? Причем эти перемещения сами будут в два раза больше. Значит отношение останется прежним, вот так:

(vec{V}=frac{2vec{S}}{2t}=frac{{vec{S}}}{t})

Отсюда делаем вывод:

Скорость равномерного прямолинейного движения постоянна.

Как это записать? Кажется, очевидно, но это «задачка со звездочкой». Вот так:

(vec{V}=overrightarrow{const})

Мы не можем приравнять векторную величину к скалярной. Поэтому над константой тоже нужно ставить вектор.

Решение основной задачи механики для равномерного прямолинейного движения

Из уравнения скорости можно легко выразить перемещения, что сделает нас на шаг ближе к конкретному решению основной задачи. Давай сделаем это:

(vec{S}=vec{V}cdot t)

Из свойств векторов мы помним, что это будет справедливо и для проекций:

({{S}_{x}}={{V}_{x}}cdot t)

({{S}_{y}}={{V}_{y}}cdot t)

Стоп-стоп-стоп… Мы что, можем уже с помощью этого определить положение точки?

Да, почему нет? Просто подставим это вместо проекций перемещения туда, где мы решали основную задачу механики в общем виде:

(x={{x}_{0}}+{{V}_{x}}cdot t)

(y={{y}_{0}}+{{V}_{y}}cdot t)

Обычно в задачах по физике мы стараемся выбрать оси так, чтобы было проще работать с проекциями. Мы стараемся расположить их так, чтобы как можно больше векторов располагалось параллельно один осям и перпендикулярно другим, вот так:

Проекция перемещения на ось Y будет равняться нулю, мы можем не обращать на нее внимания.

По оси Y тело вообще не меняло своего положения, верно?

Именно поэтому в задачах чаще всего мы будем использовать упрощенный вариант нахождения конечного положения тела. Его координата будет описана лишь одним числом.

То есть используем лишь одну ось:

(x={{x}_{0}}+{{V}_{x}}cdot t)

Работаем с проекциями. Настораживаемся. Вспоминаем о знаках.

Здесь все просто: если проекция скорости положительна, тело движется вдоль оси. Если она отрицательна, тело движется против оси.

Помни, что работаем мы с координатной осью! Начальное положение тела тоже может быть отрицательным. Это зависит лишь от того, как расположено тело относительно начала координат:

Графики равномерного прямолинейного движения

Построение графика

Очень важно уметь описывать движение графиком. Это может значительно упростить решение задачи.

Давай посмотрим, как с помощью графика описать равномерное прямолинейное движение.

Любой график – множество точек, который показывает зависимость одного значения от другого. Эта зависимость определяется каким-то уравнением.

Например, когда мы строим параболу, мы руководствуемся уравнением (y={{x}^{2}}). Как еще это можно записать?

Вот так: (f(x)={{x}^{2}}). Это показывает, что функция (f) зависит от значения (x).

Давай аналогично составим график движения тела. Вспомним то главное уравнение:

(x={{x}_{0}}+{{V}_{x}}cdot t)

Иными словами, это график зависимости координаты тела от времени. Давай так и запишем:

(x(t)={{x}_{0}}+{{V}_{x}}cdot t)

Начинаем работать с уравнением. Предположим, что нам известна проекция скорости и начальное положение тела. Работать с конкретными числами удобнее.

Пусть: ({{V}_{x}}=0.5)м/с и ({{x}_{0}}=3)м

Тогда уравнение имеет вид: (x=3+0.5cdot t)

Нарисуем оси и обозначим их. Так как у нас даны единицы измерения (метры и секунды), мы обязательно должны подписать их рядом с названиями осей!

Теперь можем взять и рассмотреть положение тела в любую секунду: хоть в первую, хоть в двенадцатую!

Отметим точки и соединим их. Получим график движения.

А теперь вопрос на засыпку: может ли время быть отрицательным?

Могу ли я указать положение тела в минус третью секунду? Могу.

Для этого стоит помнить, что «нулевая» секунда – момент, когда мы запускаем секундомер, когда мы только начинаем наблюдать за телом. Но оно могло двигаться и до того, как мы включили таймер, верно?

Давай покажем движение тела до наших наблюдений пунктирной линией:

Зачастую точки пересечения графика с осями несут в себе очень важную информацию!

Например, когда мы только включили секундомер ((t=0)с), тело находилось в начальном положении (({{x}_{0}}=3)м), и это видно по графику!

А когда координата тела была равна нулю?

Все очень просто: за 6 секунд до того, как мы включили секундомер! Прямая пересекает ось времени в точке -6.

Итак, мы выяснили, что…

График равномерного прямолинейного движения представляет собой прямую.

Точка пересечения ее с осью Х есть координата в начальный момент времени.

Точка пересечения с осью времени показывает ту секунду, когда тело находится в начале координат.

И действительно, само уравнение (x={{x}_{0}}+{{V}_{x}}cdot t) уже напоминает стандартное уравнение прямой, которое мы изучаем на математике: (y=kx+m), где (m) — точка пресечения графика с осью Х, а (k) — коэффициент наклона прямой.

В нашем случае роль коэффициента наклона играет проекция скорости.

Зависимость графика от проекции скорости

Давай изобразим несколько графиков в общем виде, то есть без каких-либо конкретных значений. Например, пусть у нас есть два движущихся тела, вот так:

Чем отличаются движения этих двух тел?

Ну, прежде всего, у них разные начальные положения. Ладно.

А что насчет проекции скорости?

Рассмотрим первое тело. С течением времени оно все больше удаляется от начала координат. А вот второе к нему приближается: оно даже достигает начала координат через некоторое время (когда пересекает ось).

Значит, первое тело идет вдоль оси, а второе против нее, то есть к началу! Мы помним, что это определяет знак проекции скорости.

А именно: проекция скорости первого тела положительна. Проекция скорости второго тела отрицательна.

Со знаками разобрались. А как быть, если попросят узнать, какая проекция скорости больше?

Рассмотрим следующий график. Чтобы было легче его анализировать, представим, что два тела имеют одинаковое положение, когда мы включаем секундомер:

Чтобы понять, чья скорость больше, рассмотрим определенный промежуток времени, отделим его вертикальной пунктирной линией. А еще обозначим начальную и конечную координаты тел в этот промежуток времени:

Теперь посмотрим, чем отличаются графики. Ну так, навскидку. Они отличаются наклоном.

График движения второго тела расположен к оси Х значительно ближе. Что это значит?

Рассмотрим, какое расстояние прошло первое тело, обозначим его на рисунке. Оно численно равно проекции перемещения, убедимся с помощью формулы:

(Delta {{x}_{1}}={{x}_{1}}-{{x}_{01}}={{S}_{x}}_{1})

Теперь рассмотрим расстояние, которое преодолело второе тело:

(Delta {{x}_{2}}={{x}_{2}}-{{x}_{02}}={{S}_{x}}_{2})

Видим, что за одинаковый промежуток времени второе тело прошло значительно большее расстояние! Это значит, что его скорость больше.

Чем ближе к оси Х расположена прямая, тем больше скорость движения тела.

А что будешь делать с таким графиком?

Координата тела с течением времени не меняется. Значит ли это, что тело не движется вовсе?

Нет. Тело не движется лишь по этой оси. Но по какой-нибудь другой оси оно двигаться может.

Например, вот так:

Тело не меняет координаты по оси Х, однако движется по оси Y.

Если мы видим такой график, мы можем лишь утверждать, что проекция скорости равна нулю. О самой скорости говорить не можем.

Встреча

Помнишь самый первый рисунок с двумя телами? Вот этот:

В нем есть одна интересная деталь. Графики движения тел пересекаются.

Со временем все понятно: оно для всех идет одинаково, ничего не поделаешь.

А вот с координатой интереснее: ведь мы можем утверждать, что в какой-то момент тела встретились. То есть в какой-то момент их координаты на оси Х стали равны. Обозначим момент встречи и координату («место») встречи:

Встреча – такое событие, при котором координаты тел в один и тот же момент времени совпадают.

Это еще один момент, о котором стоит помнить при решении задач на графики.

А еще стоит обратить внимание на то, что координаты тел должны совпадать в один момент времени! Если в лесу мимо дуба пробежала лань, а через несколько дней мимо этого же дуба пробежал енот, мы не можем сказать, что они встретились. 

Просто у них совпала траектория.

График зависимости проекции скорости от времени. Нахождение проекции перемещения

Рассмотрим несколько другой график. График зависимости проекции скорости от времени при равномерном прямоли…

Стоп, чего? Какой зависимости? Скорость ведь постоянная и не меняется со временем.

Ты абсолютно прав. А график-то начертить можем, вот так:

Скучный график. Просто прямая, параллельная оси времени. Проекция скорости не меняется, а время всё идет и идет.

Давай хоть что-то найдем по графику. Хоть площадь под ним. Обозначим эту область:

Получили прямоугольник. Его площадь ищем путем перемножения двух соседних сторон, то есть мы берем проекцию скорости и умножаем еще на время.

Где-то мы это слышали.

Верно, ведь именно так ищется проекция перемещения!

({{S}_{x}}={{V}_{x}}cdot t)

Совпадение? Не думаю.

Искать проекцию перемещения таким способом можно не только для равномерного прямолинейного движения, но и для других его видов!

Проекция перемещения тела численно равна площади под графиком скорости тела.

Решение простейших задач и задач на графики равномерного прямолинейного движения

Текстовые задачи

Задача 1. Охарактеризуйте движение соседки, которая спускается по лестнице и одновременно с этим закатывает рукава, услышав в 11 часов вечера громкую музыку из квартиры снизу, если уравнение ее движения: (x=2cdot t), а ось направлена вниз по лестнице.

Решение:

Итак, для начала вспомним уравнение движения в общем виде:

(x={{x}_{0}}+{{S}_{x}})

Соответствует ли уравнение движения соседки уравнению выше? Конечно!

Почему? По глазам вижу, догадываешься! Потому что его можно записать так:

(x=0+2cdot t)

Начальная координата соседки равна нулю: соседка двигалась из начала координат. С этим разобрались. Осталось определить тип ее движения.

Она движется вниз по лестнице. Значит, идет по прямой в одном направлении. Это прямолинейное движение.

Она свирепеет и ускоряется? Нет. Она движется равномерно. Давай вспомним уравнение движения для равномерного прямолинейного движения:

(x={{x}_{0}}+{{V}_{x}}cdot t)

И еще раз посмотрим на наше:

(x=0+2cdot t)

Сопоставляем их и понимаем, что рядом с временем расположена проекция скорости. Она, как видим, положительна и равна 2 м/с. Соседка двигается вдоль оси. Ось направлена вниз и соседка движется туда же!

Подробно мы разбирали зависимость направления от знака проекции в Большой теории по векторам.

Таким образом, соседка совершает равномерное прямолинейное движение вдоль оси из начала координат, а проекция ее скорости на эту ось равняется 2 м/с.

Задача 2. Таракан Вася совершает равномерное прямолинейное движение вдоль линейки (соответствующей оси Х) на столе семиклассника Вовы, который, старательно уча уроки, уже неделю не выносит из комнаты мусор. Проекция скорости таракана на эту ось 0.1 м/с. Вова берет секундомер и начинает отсчет в тот момент, когда таракан находится на втором сантиметре линейки.

На каком сантиметре линейки окажется таракан через две секунды?

Решение:

Первое правило решающих физику: увидеть тему и писать формулы по теме.

Второе правило решающих физику: увидеть тему и писать ВСЕ формулы по теме. Могут пригодиться.

Знаем тип движения! Равномерное прямолинейное!

Знаем уравнение равномерного прямолинейного движения! Пишем:

(x={{x}_{0}}+{{V}_{x}}cdot t)

Делов-то! Начнем подставлять известные величины для таракана. Из задачи знаем, что в начале отсчета таракан находится на втором сантиметре линейки…

Стоп. «Сантиметре…»

Никогда не теряй бдительность, боец. Всегда проверяй величины. 

Переведем все, что есть, в СИ. Скорость – в м/с. Отлично, уже есть. Как быть с линейкой? Просто перевести сантиметры в метры!

Таракан был на втором сантиметре, а значит на 0.02 метре линейки!

Теперь можем записать уравнение его движения:

(x=0.02+0.1cdot t)

Чтобы узнать, где окажется таракан через 2 секунды, просто подставим цифру 2 в это уравнение: 

(x=0.02+0.1cdot 2=0.22)м

На 0.22 метре линейки! Получили ответ. Но в задаче спрашивается, на каком сантиметре будет находится таракан. Переводим наш ответ в сантиметры и получаем, что таракан будет находится на 22-ом сантиметре линейки!

Задача 3. По коридору мчится восьмиклассник Петя, уравнение его движения можно описать следующим уравнением: (x=6+2cdot t). За ним несётся разъяренный директор Максим Михайлович, уравнение его движения: (x=3+3cdot t).

Догонит ли директор Петю и, если догонит, когда и на каком метре коридора это произойдет? Скорость измерять в м/с, время в секундах.

Решение:

Итак, давай разберемся. Что вообще значит «догонит»? То же самое, что «встретит», верно?

Мы знаем, что такое встреча. Это такое событие, при котором координаты тел в один и тот же момент времени совпадают.

Чтобы понять, встретятся ли они вообще, давай построим графики движения Пети (П) и директора (Д):

Видим, что прямые пересекаются. В какой-то момент времени их координаты действительно одинаковы.

Но как узнать, в какой?

Что-что? Видно по графику? Ну уж нет! Думаешь, там координата 12? А вдруг там 11.999?

Всегда нужно проверять себя аналитически.

Запишем два уравнения:

({{x}_{P}}=6+2cdot t) — Пети

({{x}_{D}}=3+3cdot t) — директора

При встрече у них одинаковые координаты: ({{x}_{P}}={{x}_{D}})

Да… Наверное, другие части уравнений приравнять будет полезнее:

(6+2cdot t=3+3cdot t)

Отсюда легко вычислить время встречи:

(t=3) c

Значит, через три секунды после начала отсчета их координаты будут одинаковы, они встретятся. Найдем место встречи, просто подставив время в одно из двух (какое больше нравится 🙂 ) уравнений:

({{x}_{B}}=6+2cdot 3=12) м

Директор догонит Петю через 3 секунды. Это произойдет на 12-ти метрах от начала коридора.

Задачи на графики

Задача 4. Написать уравнение движение тела, если график этого движения:

Решение:

Какое это движение? Видим, что графиком движения является прямая. Значит, это равномерное прямолинейное движение.

Удивительно, но начнем с уравнения:

(x={{x}_{0}}+{{V}_{x}}cdot t)

График очень информативный. По крайней мере мы уже знаем начальную координату: ({{x}_{0}}=8) м

Имеем:

(x=8+{{V}_{x}}cdot t)

Как найти проекцию скорости? Ну, давай ее выразим для начала.

({{V}_{x}}=frac{x-8}{t}) м/с

Дальше все очень просто: сделаем так, чтобы она осталось единственной неизвестной. Подставим в уравнение координату и время из графика, абсолютно любую пару, вот так:

Считаем:

({{V}_{x}}=frac{6-8}{2}=-1) м/с

Проекция скорости отрицательна. И правда: с течением времени тело приближается к началу координат, то есть движется против оси.

Подставим в уравнение:

(x=8-t) — уравнение движения тела.

Задача 5. Тело движется вдоль оси Х. Описать движение на каждом участке графика. Найти проекции скоростей. Построить графики проекции скорости и пройденного пути от времени.

Решение:

Опишем движение. Какое оно?

«Ха! Это не прямая, — скажешь ты, — а ломаная!»

И будешь абсолютно прав.

А я скажу: «А что такое ломаная? Это просто соединенные между собой отрезки! А отрезки — части прямых!»

Поэтому давай рассматривать этот график частями!

С первым отрезком все понятно: равномерное прямолинейное движения, ведь эта часть графика – прямая. С течением времени тело приближается к началу координат, значит движется против оси.

Найдем проекцию скорости.

Для начала, что есть скорость?

Мы помним, что скорость – отношение перемещения к промежутку времени.

(vec{V}=frac{{vec{S}}}{t})

Знаем, что это справедливо и для проекций:

({{V}_{x}}=frac{{{S}_{x}}}{t})

Ну, время у нас есть. А проекцию перемещения откуда взять?

Давай вспомним, что это такое. Перемещение – вектор, проведенный из начального положения тела в конечное. А проекция перемещения – проекция этого вектора. Логично, правда? То есть:

({{S}_{x}}=x-{{x}_{0}})

Подробнее о проекциях можно узнать в Большой теории по векторам. 

Вот и нашли проекцию скорости:

({{V}_{x}}=frac{x-{{x}_{0}}}{t})

Подставим в уравнение выше значения необходимых величин:

({{V}_{x}}=frac{4-10}{2}=-3) м/с

Проекция скорости на первом участке графика равна -3м/с.

Второй отрезок необычнее: тело не меняет координату. Тело на этом участке неподвижно.

Так как в условии сказано, что тело движется именно вдоль оси Х, модуль проекции скорости на эту ось равен длине вектора скорости.

Так как тело не меняет координату, проекция его перемещения равна нулю. А значит и проекция скорости равна нулю.

Третий отрезок описывает равномерное прямолинейное движение. Тело отдаляется от начала координат и движется туда же, куда направлена ось.

Найдем проекцию скорости на третьем участке:

({{V}_{x}}=frac{9-4}{12-7}=1) м/с

Так. Давай разберемся, почему там 12-7.

Помнишь, мы считаем отношение проекции перемещения к ПРОМЕЖУТКУ времени. А от 7 до 12 секунды промежуток времени составляет 5 секунд.

Проекция скорости на третьем участке равна 1м/с.

Всё нашли, осталось лишь построить графики! Начнем с графика зависимости проекции скорости от времени. Начертим и обозначим оси, обязательно обозначив единицы измерения и помня, что проекция может быть отрицательна:

Работаем с первой частью:

Мы выяснили, что в течение первых двух секунд проекция скорости была постоянна (как-никак, равномерное прямолинейное движение 🙂 ) и равна -3 м/с.

Давай нарисуем!

На втором участке проекция скорости равна нулю, а на третьем – единице.

Избавимся от вспомогательных линий и получим:

Что-то мне подсказывает, что на графике пути тоже будет три участка. Приступим.

Нарисуем оси и обозначим их:

Логично будет утверждать, что, пока тело не начало двигаться, оно и путь никакой не прошло. Отметим это точкой на графике:

Первые две секунды тело двигалось равномерно со скоростью 3 метра в секунду. Значит, за две секунды тело прошло (3cdot 2=6) метров! Отметим это!.. Нет, не так, на графике отметим:

Движемся дальше. Мы знаем, что на втором участке тело было неподвижно, а значит путь никакой не проходило. За промежуток времени второго участка тело не прошло никакой путь.

Однако суммарно за всё свое движение тело все так же прошло 6 метров:

На третьем участке тело движется. Значит, суммарно пройденный путь увеличится. Оно двигалось со скоростью 1м/с. Посмотрим сколько оно прошло за 5 (12-7) секунд.

Оно пройдет 5 метров.

Добавим их к нашим уже пройденным 6 метрам и получим 11 метров:

Остается только соединить точки прямой:

Задача 6. Найти проекцию перемещения тела по графику

Решение:

Определимся, из чего вообще складывается то, что нам нужно найти. В разные промежутки времени тело двигалось с разными постоянными скоростями.

Значит, проекция перемещения складывается из проекций перемещения в разных промежутках времени! Их 6:

({{S}_{x}}={{S}_{x1}}+{{S}_{x2}}+{{S}_{x3}}+{{S}_{x4}}+{{S}_{x5}}+{{S}_{x6}})

Попробуем найти первую проекцию. Помнишь, мы знаем, что проекция перемещения есть площадь под графиком?

«Под графиком» означает «между графиком и осью», то есть вот эта:

Что ж, давай найдем перемещение:

Проекция скорости есть -2м/с, а промежуток времени – 3с.

Поэтому: ({{S}_{x1}}=-2cdot 3=-6)м

Попробуем найти площадь второго прямоугольника:

Сразу обрати внимание на то, что промежуток времени – с третьей по пятую секунду, то есть 2 секунды!

({{S}_{x2}}=2cdot 2=4)м

Аналогично для остальных:

({{S}_{x3}}=3cdot 3=9)м

({{S}_{x4}}=2cdot 1=2)м

({{S}_{x5}}=1cdot 1=1)м

({{S}_{x6}}=-3cdot 2=-6)м

Посмотрим, чему равна проекция перемещения:

({{S}_{x}}=-6+4+9+2+1-6=4)м

Тяжело в учении – легко в бою. Давай поднажмём и составим график зависимости проекции перемещения от времени.

Когда мы включили таймер, она была равна нулю:

В конце первого промежутка времени она становится равна -6м:

А, ну дальше-то все легко: отмечаем 4, потом отмечаем 9… Нет!

Мы ведь работаем с ОБЩЕЙ проекцией. А общая проекция есть сумма.

Тогда в конце второго промежутка проекция будет равна:

({{S}_{x}}={{S}_{x1}}+{{S}_{x2}})

Дальше – больше слагаемых.

Следующая точка: (-6+4=-2) м

А после нее:(-6+4+9=7) м и т.д.

Теперь соединяем точки по порядку:

Задача 7. Постройте траекторию движения колибри, если начальное положение его по оси Х – 1 м, по оси Y – 3 м, а проекция его скорости на оси, расположенные перпендикулярно друг другу, описывается следующими графиками:

Решение:

Увидел сложную задачу – пиши всё, что знаешь! Зачем? Так надо! Пиши!

Скорость изменяется скачками, но на отдельных промежутках она постоянна. Тело движется равномерно.

Тело изменяет свое положение в пространстве. Изменяет свою координату.

Вспомним, как записывается уравнение координаты тела при равномерном прямолинейном движении:

(x={{x}_{0}}+{{V}_{x}}cdot t)

(y={{y}_{0}}+{{V}_{y}}cdot t)

Мы учились делать это раньше. Построим графики зависимости координаты от времени.

Итак, по оси Х у нас 3 участка, обозначим их вспомогательными линиями на нашем новом графике:

Начнем с первого участка. Знаем проекцию скорости и даже начальную координату! Подарок судьбы.

(x=1+2cdot t)

Строим его на первом промежутке:

Теперь координата тела – 17м и тело начинает двигаться с другой скоростью. Из координаты 17 тело движется со скоростью… А, ни с какой скоростью. Проекция скорости на эту ось равна нулю, поэтому:

(x=17+0cdot t)

Координата не меняется. Рисуем:

Тело на 17 м. Оттуда продолжаем движение с проекцией скорости -2 м/с. Тогда: (x=17-2cdot t)

Аналогично строим график для оси Y. Теперь у нас есть два графика:

Построим траекторию движения в плоскости. Для этого нам нужны оси Х и Y одновременно!

Давай построим их:

Всегда бери длину с запасом! Чтобы потом не перечерчивать оси. Наибольшее значение по Х – 17м. По Y – 15м. На всякий случай будем брать 20Х20.

Давай будем анализировать по секундам. Каковы были координаты тела в момент начала отсчета? Давай посмотрим.

В начальный момент времени координата по Х равна 1м, по Y – 3м. В конечный момент по Х координата равна 13, по Y – 15м.

Отметим эти точки:

Дальше будем рассматривать «переломные моменты». Для первого графика это 8 и 10с, для второго – 4 и 6с.

То есть секунды: 4, 6, 8, 10.

Запишем координаты точек для нужных нам секунд:

4: (9;15)

6: (13; 9)

8: (17;11)

10: (17;13)

Отметим их и соединим прямой, укажем последовательность:

Задача решена!

Теперь ты знаешь, как работать с графиками равномерного прямолинейного движения и их уравнениями! Движемся дальше. Иронично звучит 🙂

Средняя скорость по перемещению. Средняя путевая скорость

Хочешь, покажу фокус?

Смотри.

Из горной пещеры вылетает дракон, а за ним в ту же секунду выбегает доблестный рыцарь. Дракон хочет разрушить замок, находящийся от пещеры на расстоянии 7 километров. Задача рыцаря – добраться до замка первым и остановить дракона.

Рыцарь скачет на лошади прямо к замку по равнине в течении 20 минут. Он обнаруживает, что мост через реку на пути к замку разрушен, поэтому решает переплыть реку, и (спасибо его хорошей подготовке) у него уходит лишь 5 минут на то, чтобы снять с себя доспехи и сделать это. Затем в течении 10 минут он продолжает движение к замку.

Дракон после вылета из пещеры движется вперед и вверх, на это у него уходит 15 минут. На какой-то высоте он останавливается, потому что видит стаю пролетающих мимо уток. Драконы, динозавры, птицы… Смекаешь, да? Он решает поиграться со своими «родственниками», на что у него уходит 15 минут. Затем он вспоминает о замке и стремительно пикирует к нему на протяжении 5 минут.

Давай всё это изобразим для наглядности:

Дракон и рыцарь совершили одинаковые перемещения, так? 7 км, ведь они оказались у замка, двигаясь из пещеры.

Давай посчитаем время каждого в пути. И для дракона, и для рыцаря оно составило 35 минут. Они прибыли к замку одновременно.

Так что ж получается… Они совершили одинаковое перемещение за одинаковый промежуток времени.

Но их траектории были очень различны! И двигались они по-разному!

Для того, чтобы описать это, существует средняя скорость по перемещению.

Средняя скорость тела – векторная физическая величина, равная отношению перемещения тела на определенном участке траектории ко времени, за которое оно совершено.

Можно в виде формулы: ({{vec{V}}_{cp}}=frac{{vec{S}}}{t})

Средняя скорость дракона и рыцаря по перемещению одинакова, ведь они пришли одновременно в одно и то же место.

Есть подвох, о котором тебе на математике не рассказали. Ты все время работал не с этой средней скоростью. А с этой:

Средняя путевая скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден.

Понял, да? Путевая – про путь, а не про перемещение. Средняя путевая скорость совпадает (по модулю) со средней скоростью по перемещению только в том случае, если тело двигалось по прямой в одном направлении.

Средняя путевая скорость дракона сильно отличается от средней путевой скорости рыцаря.

Если не помнишь, в чем отличие пути от перемещения, советую посмотреть основные определения кинематики!

Относительность движения. Операции над скоростями

Давай вспомним одну из важнейших вещей, когда мы говорим про движение. Мы давали ему определение, когда говорили о кинематике в целом.

Это тело отсчета. То тело, относительно которого мы рассматриваем движение.

Мы уже знаем, что относительно одного тела тело может нестись с бешеной скоростью, а относительно другого не двигаться вовсе.

От системы отсчета зависит изменение положения тела. А что еще от нее зависит? Траектория зависит?

Оказывается, да!

Однажды человек изобрел колесо и изменил мир. Давай воспользуемся этим изобретением для того, чтобы найти ответ на вопрос выше.

Возьмем какую-то точку на колесе и пусть оно катится по дороге! Как движется эта точка относительно оси колеса? По кругу.

А относительно Земли?

Вот так:

Круто, да?

Эта кривая называется циклоида. И она точно отличается от траектории движения точки относительно оси колеса.

Сегодня мы научимся определять и связывать скорости в разных системах отсчета.

А еще на относительности основан главный закон скоростей – закон об их сложении.

Поступим как настоящие ученые. Готовые формулы – для слабаков. Мы будем выводить их сами.

Рассмотрим ситуацию.

По реке плывет плот (П) со спортсменом (С). На берегу реки сидит рыбак (Р) и наблюдает за этим. В какой-то момент пловец прыгает с плота и движется к другому берегу реки. Их несёт течение реки.

Давай изобразим это:

Давай нарисуем вектор перемещения спортсмена относительно плота и назовем его относительным перемещением:

Теперь нарисуем вектор перемещения плота, которого несет течение. Назовем этот вектор переносным:

А теперь посмотрим, как спортсмен двигался относительно рыбака, и назовем вектор этого перемещения абсолютным:

Ты только посмотри! У нас тут треугольник!

Нет, оставь свои теории заговора и иллюминатов. Не тот треугольник. Треугольник суммы векторов!

Переносное перемещение и относительное в сумме дают абсолютное!

({{vec{S}}_{a}}={{vec{S}}_{n}}+{{vec{S}}_{o}})

Как связать перемещение со скоростью? Нужно поделить его на время!

Та-а-ак… А его откуда брать?

Оно для всех течёт одинаково. Смело делим:

(frac{{{{vec{S}}}_{a}}}{t}=frac{{{{vec{S}}}_{n}}}{t}+frac{{{{vec{S}}}_{o}}}{t})

И получаем:

({{vec{V}}_{a}}={{vec{V}}_{n}}+{{vec{V}}_{o}})

А теперь давай разбираться.

Что такое абсолютная скорость? В нашем случае это скорость пловца относительно берега.

Абсолютная скорость – скорость движения тела относительно неподвижной системы отсчета.

Что такое переносная скорость? Скорость плота, скорость течения реки относительно берега.

Переносная скорость – скорость движущейся системы отсчета относительно неподвижной.

Что такое относительная скорость? Это скорость спортсмена относительна плота.

Относительная скорость – скорость движения тела относительно подвижной системы отсчета.

Таким образом,

Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно движущейся системы отсчета и скорости движущейся системы отсчета относительно неподвижной.

Иначе говоря:

Абсолютная скорость есть векторная сумма относительной и переносной скоростей.

Чем хороши векторные уравнения? Они не заставляют тебя думать о знаках.

Знаки ты определишь в проекциях. Это будет зависеть от условия задачи.

Внимание, практика!

Решение задач на среднюю скорость и действия со скоростями

Задача 8 (продолжение задачи 3 🙂 ). Поймавший Петю директор пишет замечание в его дневник, его ручка движется по листу бумаги со скоростью 0.05 м/с. Через 3 секунды Петя взмолится перед Максимом Михайловичем, его ручка станет двигаться со скоростью 0.03 м/с на протяжении 4 секунд.

А если бедному ученику повезёт и ручка начнет плохо писать, то, чтобы расписать ее, директор будет давить на нее сильнее в течение 5 секунд и скорость ее станет равна 0.01 м/с.

Найдите среднюю путевую скорость ручки. Зная, что длина красноречивого замечания равна 24 см, найдите среднюю скорость ручки по перемещению.

Решение: 

Если в задаче много букв – составляй ее план. Давай это сделаем и переведем все в СИ, если необходимо.

3с – 0.05 м/с

4с – 0.03 м/с

5с – 0.01 м/с

24см=0.24м

Что значит «длина замечания»? Фактически, расстояние от начала до конца, то есть это кратчайшая ПРЯМАЯ. Запишем ее как вектор – получим перемещение.

Ведь перемещение есть вектор, проведенный из начального положение в конечное.

Давай посчитаем, сколько времени директор писал замечание:

(3+4+5=12) с

Значит, мы уже можем найти среднюю скорость по перемещению!

Сделаем это:

({{V}_{cp}}=frac{0.24}{12}=0.02) м/с

Почему там не вектор? Помни: мы не можем приравнивать векторные величины к скалярным. Когда нам сказали, чему равно перемещение, нам дали ДЛИНУ вектора перемещения. А длина есть величина скалярная.

Приступим к средней путевой скорости. Для начала нам нужно найти путь, время у нас уже есть.

Путь будет состоять из трёх участков, в которых тело двигалось с разными скоростями:

(L={{L}_{1}}+{{L}_{2}}+{{L}_{3}})

Каждый из них можно найти умножением скорости на участке на время движения с этой скоростью. Вот так:

(L={{V}_{1}}cdot {{t}_{1}}+{{V}_{2}}cdot {{t}_{2}}+{{V}_{3}}cdot {{t}_{3}})

Давай подставим:

(L=0.05cdot 3+0.03cdot 4+0.01cdot 5=0.32)

А теперь можем найти среднюю путевую скорость:

({{V}_{cpL}}=frac{0.32}{12}approx 0.027) м/с

Задача решена!

Задача 9. В небе летят два вертолёта. Скорость одного из них – 350 км/ч, другого – 400 км/ч. Найти скорость второго вертолёта относительно первого.

Решение:

Вот тебе дело: найди одно очень важное потерянное условие.

Дело в том, что в задаче не сказано, летят ли они в одном направлении или в разных. Рассмотрим оба случая.

Случай 1. Вертолеты движутся в одном направлении.

Давай вспомним главное уравнение:

({{vec{V}}_{a}}={{vec{V}}_{n}}+{{vec{V}}_{o}})

Мы ищем скорость одного вертолета относительно другого. Скорость одного движущегося тела относительно другого движущегося тела называется относительной. Выразим ее:

({{vec{V}}_{o}}={{vec{V}}_{a}}-{{vec{V}}_{n}})

Помним, что с векторами рука об руку идут их проекции. Давай начертим схему задачи и построим ось, на которую будем проецировать векторы скорости:

Всё это, конечно, здорово, но какая скорость абсолютная, а какая переносная?

Давай разбираться.

Переносная скорость – скорость движущейся системы отсчета относительно неподвижной.

В система отсчета, которую требует задача, все происходит относительно первого вертолета. Он – тело отсчета.

Значит, переносная скорость – скорость первого вертолета относительно земли.

Абсолютная скорость – скорость движения тела относительно неподвижной системы отсчета. То есть это скорость второго вертолета, данная в задаче.

Вернемся к уравнению и запишем его по-новому:

({{vec{V}}_{o}}={{vec{V}}_{a}}-{{vec{V}}_{n}})

({{vec{V}}_{o}}={{vec{V}}_{2}}-{{vec{V}}_{1}})

Мы помним, что с векторами рука об руку идут проекции. Давай запишем это уравнение в проекции на ось Х.

Обе этих скорости направлены по направлению оси. Значит, их проекции положительны:

({{V}_{ox}}={{V}_{2x}}-{{V}_{1x}})

Мы выбрали ось так, чтобы векторы были ей параллельны, поэтому мы смело можем утверждать, что проекции по модулю равны длинам векторов:

({{V}_{o}}={{V}_{2}}-{{V}_{1}})

Считаем:

({{V}_{o}}=400-350=50) км/ч

Случай 2. Вертолеты движутся в разных направлениях.

Нарисуем схему снова:

Нетрудно догадаться, что теперь проекция уравнения на ось будет иметь другой вид. Проекция скорости первого вертолета будет отрицательна: она направлена против оси.

({{vec{V}}_{o}}={{vec{V}}_{2}}-{{vec{V}}_{1}})

({{V}_{o}}={{V}_{2}}-(-{{V}_{1}})={{V}_{2}}+{{V}_{1}})

Скорости складываются. И правда: оба вертолета стремятся отдалиться друг от друга, никто никого не догоняет.

({{V}_{o}}=400+350=750) км/ч

Таким образом, скорость второго вертолета относительно первого равна 50 км/ч, если они движутся в одном направлении, и 750 км/ч, если движутся в разных.

Задача 10. Дядя Стэн, с уверенностью открыв сезон рыбалки, мчится на моторной лодке против течения реки в течение 3 ч и преодолевает 4 км, пока не вспоминает, что забыл дома свой любимый сборник анекдотов. Скорость течения реки – 2.5 км/ч.

Сколько времени понадобится Стэну, чтобы преодолеть то же самое расстояние, возвращаясь обратно?

Решение:

Давай сделаем рисунок. Это в большинстве случаев упрощает задачу!

Сначала нарисуем реку с течением:

А теперь лодку Стэна, которая плывет против течения. Обозначим ее собственную скорость.

Давай посмотрим, как мы можем связать эти две скорости с путем и временем.

Для начала вспомним формулу:

({{vec{V}}_{a}}={{vec{V}}_{n}}+{{vec{V}}_{o}})

Пройденный путь и время будет определять абсолютная скорость – та, что характеризует движение тела относительно неподвижной системы отсчета. В нашем случае – берега.

Можно объяснять проекциями, а можно просто понять. Куда легче плыть? По течению или против? Конечно, по течению! Оно подгоняет тебя.

В нашей ситуации Стэн сначала плывет против течения. Абсолютная скорость будет меньше собственной скорости лодки, ведь ее тормозит течение.

Давай запишем:

({{V}_{a1}}={{V}_{L}}-{{V}_{T}}) или (frac{L}{{{t}_{1}}}={{V}_{L}}-{{V}_{T}}), где ({{t}_{1}}) — время против течения.

Хорошо. Посмотрим, что может дать нам вторая часть задачи.

Здесь лодка идет по течению. Уравнение имеет вид:

(frac{L}{{{t}_{2}}}={{V}_{L}}+{{V}_{T}}), где ({{t}_{2}}) — время по течению

Таким образом, у нас есть система уравнений:

(frac{L}{{{t}_{2}}}={{V}_{L}}+{{V}_{T}})

(frac{L}{{{t}_{1}}}={{V}_{L}}-{{V}_{T}})

Нам неизвестна собственная скорость лодки. А нам она и не нужна! Вычтем одно уравнение из другого и получим:

(frac{L}{{{t}_{2}}}-frac{L}{{{t}_{1}}}=2cdot {{V}_{T}})

Отсюда нужно выразить время по течению:

({{t}_{2}}=frac{L}{2cdot {{V}_{T}}+frac{L}{{{t}_{1}}}})

Считаем:

({{t}_{2}}=frac{4}{2cdot 2.5+frac{4}{3}}approx 0.6) ч

36 минут потребуется Стэну, чтобы приплыть обратно.

Задача 11. По узкой лесной тропе колонной длиной в 30 метров идут туристы со скоростью 5 км/ч. Замыкающий посылает одного туриста в начало строя, чтобы тот передал гиду карту местности. Турист бежит в начало строя со скоростью 8 км/ч и, выполнив поручение, тут же бежит обратно с той же скоростью.

Сколько времени потребуется туристу, чтобы добежать до начала строя и вернуться обратно?

Решение: 

Начнем с рисунка. Есть колонна определенной длины (пусть будет l), она движется с определенной скоростью. Из начала выходит турист (Т) и движется с другой скоростью:

Смотри. Пока турист движется, колонна тоже движется. Значит туда он пробежит путь больше, чем обратно:

Выглядит сложно.

Ну да, конечно! Это как идти в школу в соседнем дворе и для этого каждый раз покупать билет в Антарктиду.

Нужно выбрать удобную систему отсчета!

Сделаем так, чтобы колонна была неподвижна. Будем рассматривать все относительно нее. Можно даже представить, что ты один из туристов 🙂

Сделаем другую картинку!

Если ты один из туристов, будет очевидно, что туда и обратно «посыльный» будет двигаться с разной скоростью.

Например, когда ты едешь по шоссе, кто кажется быстрее: машины, которые обгоняют твою или машины, которые едут на встречу? Очевидно, что те, кто едут навстречу.

 Теперь осталось определить, с какой скоростью турист движется туда и обратно.

Изначально он движется с колонной в одном направлении, то есть пытается ее обогнать. Результирующая скорость будет меньше его собственной:

({{V}_{1}}={{V}_{T}}-{{V}_{K}})

({{V}_{1}}=8-5=3) км/ч

Когда он движется обратно, колонна будет идти ему навстречу. Результирующая скорость будет больше:

({{V}_{2}}={{V}_{T}}+{{V}_{K}})

({{V}_{2}}=8+5=13) км/ч

Слишком быстро? Посиди и подумай. Мне не удастся просто вложить знания в твою голову. Ты сам тоже должен стараться!

Итак, из чего складывается время, затраченное туристом? Из времени туда и обратно!

(t={{t}_{1}}+{{t}_{2}})

Время в пути есть путь, деленный на скорость. Давай подставим:

(t=frac{l}{{{V}_{1}}}+frac{l}{{{V}_{2}}}=frac{l}{{{V}_{T}}-{{V}_{K}}}+frac{l}{{{V}_{T}}+{{V}_{K}}})

Теперь можем посчитать!

(t=frac{0.03}{3}+frac{0.03}{13}approx 0.0123)ч

Или приблизительно 44 секунды!

Задача решена! Оказывается, она очень простая, если верно выбрать систему отсчета.

Задачи в плоскости

Задача 12. Индейцы переплывают реку. Один из них, Красный Джо, встает напротив маленького причала и прыгает в воду, начиная плыть в его сторону со скоростью 2 м/с. Расстояние от причала до берега – 120 м. Течение реки имеет скорость 3 км/ч.

Куда на самом деле приплывет Красный Джо, позабывший духовную (и не только) связь своей скорости с рекой, и сколько времени на это уйдет?

Решение.

Итак, в мыслях индейцах он плыл бы так:

И это было бы верно, если бы он плыл в стоячей воде! Но течение изменяет его движение:

Он движется вперед и его еще переносит река! Обозначим расстояние, на которое его перенесет от причала, за Х. Его и нужно найти.

Еще нам дано расстояние до причала. Покажем на рисунке:

Как можно найти Х? Давай посмотрим, как движется тело по горизонтали. Оно просто смещается со скоростью течения, верно?

Значит, Х можно найти самым простым уравнением пути, которое мы знаем еще с пятого класса!

(X={{V}_{T}}cdot t)

Но как найти время?

Для этого нужно понять, что сносить его будет ровно столько времени, сколько он движется вперед.

То есть это то же время, что он затратил бы в стоячей воде, чтобы переплыть реку!

(t=frac{l}{{{V}_{K}}})

Подставим в уравнение выше:

(X={{V}_{T}}cdot frac{l}{{{V}_{K}}})  

Теперь можем ответить на все вопросы задачи! Только не забудь перевести все в единую систему единиц измерения.

В задачах на движение не особенно важно (если не сказано иное), какие использовать единицы измерения. Главное, чтобы везде в решении они были одинаковые, например, везде километры или везде метры, везде часы или везде секунды. Как тебе удобно.

3 км/ч примерно равняется 0.83 м/с.

Подставляем значения в формулы:

(X=0.83cdot frac{120}{2}=49.8)м

Найдем время:

(t=frac{120}{2}=60)c

Таким образом, Красному Джо потребуется 1 минута на то, чтобы переплыть реку и оказаться на расстоянии 49.8 метров от причала.

Но есть и другой способ решения, если этот кажется тебе подозрительно легким 🙂

Попробуем решить эту задачу геометрией!

Вектор скорости течения параллелен отрезку Х, который нам нужно найти. Давай используем параллельный перенос и поставим его в более удобное место:

Сумма векторов скорости Красного Джо и течения даст нам абсолютную скорость – скорость, с которой тело движется относительно берега.

Вектор абсолютной скорости будет лежать на пунктире, конец которого – положение Джо после преодоления реки.

А теперь рассмотрим подобные треугольники:

Теперь запишем для них уравнение подобия, используя известные нам величины:

(frac{l}{{{V}_{K}}}=frac{X}{{{V}_{T}}})

Отсюда можем легко найти Х:

(X=frac{lcdot {{V}_{T}}}{{{V}_{K}}})

У нас получилась та же самая формула!

Задача 13. При скорости ветра 12 м/с капли дождя падают под углом 30 градусов к вертикали. При какой скорости ветра они будут падать под углом 45 градусов?

Решение:

Приятно и легко смотреть на дождь в окне. А еще легче решить эту задачу.

Если в физике видишь углы, ты точно будешь использовать тригонометрию. От нее не убежишь.

Начертим рисунок. Прежде всего, у нас есть вектор скорости ветра и какая-то вертикаль:

Как бы падали капли без ветра? Просто вниз:

Для удобства будем рассматривать одну каплю.

В этой задаче ветер можно сравнить с течением реки!  Давай сделаем рисунок по этому сравнению!

Но где тут угол? Все просто: это будет угол вектора суммы! 

Именно этот вектор принадлежит абсолютной скорости – той, что описывает движение капли относительно земли (и вертикали)

Давай разбираться. Скорость капли при отсутствии ветра нам неизвестна.

Не пугайся. Надежда на то, что неизвестные сократятся, всегда умирает последней.

Нам известна скорость ветра. И угол.

Рассмотрим получившийся у нас треугольник: он прямоугольный, его гипотенуза – абсолютная скорость. Она тоже неизвестна.

Давай попробуем с помощью угла связать два катета этого треугольника! Здесь поможет тангенс. Это отношение противолежащего катета к прилежащему, то есть:

(tgalpha =frac{{{V}_{B}}}{{{V}_{K}}})

Без векторов, потому что мы рассматриваем их длины и работаем с треугольником!

Давай выразим скорость капли в безветренную погоду, она ведь не изменится, она просто дана (вообще-то не дана, ну ладно) нам как факт.

({{V}_{K}}=frac{{{V}_{B}}}{tgalpha })

То есть когда скорость ветра и угол изменятся, мы все еще можем записать:

({{V}_{K}}=frac{{{{{V}’}}_{B}}}{tgbeta })

Давай приравняем:

(frac{{{V}_{B}}}{tgalpha }=frac{{{{{V}’}}_{B}}}{tgbeta })

Нужно найти новую скорость ветра. Выразим ее:

(frac{{{V}_{B}}cdot tgbeta }{tgalpha }={{V}_{B}}^{prime })

Можем подставить значения:

({{{V}’}_{B}}=frac{12cdot tg{{45}^{o}}}{tg{{30}^{o}}}=frac{12cdot 3}{sqrt{3}}approx 20.8) м/с

Задача решена!

Подготовка к ЕГЭ на 90+ в мини-группах

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Заключение

Мы разобрались с самым простым видом движения.

Необходимо очень хорошо разбираться даже в тех вещах, которые кажутся очевидными.

Дальше будет легче, ведь у нас уже есть хорошая база! Теперь будут меняться лишь характеристики движения.

Надеюсь, тебе понравились задачи 🙂

Все ли было понятно? Узнал ли ты что-то, о чем не рассказывали в школе?

Добавить комментарий