Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?
Содержание:
- Сила упругости и закон Гука
- Определение коэффициента жесткости
- Расчет жесткости системы
- Последовательное соединение системы пружин
- Параллельное соединение системы пружин
- Вычисление коэффициента жесткости опытным методом
- Примеры задач на нахождение жесткости
- Видео
Сила упругости и закон Гука
Для начала определим основные термины, которые будут использоваться в данной статье. Известно, если воздействовать на тело извне, оно либо приобретет ускорение, либо деформируется. Деформация — это изменение размеров или формы тела под влиянием внешних сил. Если объект полностью восстанавливается после прекращения нагрузки, то такая деформация считается упругой; если же тело остается в измененном состоянии (например, согнутом, растянутом, сжатым и т. д. ), то деформация пластическая.
Примерами пластических деформаций являются:
- лепка из глины;
- погнутая алюминиевая ложка.
В свою очередь, упругими деформациями будут считаться:
- резинка (можно растянуть ее, после чего она вернется в исходное состояние);
- пружина (после сжатия снова распрямляется).
В результате упругой деформации тела (в частности, пружины) в нем возникает сила упругости, равная по модулю приложенной силе, но направленная в противоположную сторону. Сила упругости для пружины будет пропорциональна ее удлинению. Математически это можно записать таким образом:
F = – k·x;
где F — сила упругости, x — расстояние, на которое изменилась длина тела в результате растяжения, k — необходимый для нас коэффициент жесткости. Указанная выше формула также является частным случаем закона Гука для тонкого растяжимого стержня. В общей форме этот закон формулируется так: «Деформация, возникшая в упругом теле, будет пропорциональна силе, которая приложена к данному телу». Он справедлив только в тех случаях, когда речь идет о малых деформациях (растяжение или сжатие намного меньше длины исходного тела).
Определение коэффициента жесткости
Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ — на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:
k = F/x.
Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.
Единица измерения жесткости в СИ — Н/м.
Расчет жесткости системы
Встречаются более сложные задачи, в которых необходим расчет общей жесткости. В таких заданиях пружины соединены последовательно или параллельно.
Последовательное соединение системы пружин
При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:
1/k = 1/k1 + 1/k2 + … + 1/ki,
где k — общая жесткость системы, k1, k2, …, ki — отдельные жесткости каждого элемента, i — общее количество всех пружин, задействованных в системе.
Параллельное соединение системы пружин
В случае когда пружины соединены параллельно, величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:
k = k1 + k2 + … + ki.
Измерение жесткости пружины опытным путем – в этом видео.
Вычисление коэффициента жесткости опытным методом
С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:
- линейка;
- пружина;
- груз с известной массой.
Последовательность действий для опыта такова:
- Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
- При помощи линейки измеряется ее длина и записывается как величина x1.
- На свободный конец нужно подвесить груз с известной массой m.
- Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
- Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
- Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
- После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.
Примеры задач на нахождение жесткости
Задача 1
На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.
- Рассчитываем длину абсолютного удлинения: x = 14—10 = 4 см = 0,04 м.
- По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.
Ответ: жесткость пружины составит 2500 Н/м.
Задача 2
Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.
- Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
- Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
- Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
- По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
- Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.
Ответ: во втором случае пружина растянется на 10 см.
Видео
Из этого видео вы узнаете, как определить жесткость пружины.
Определение
Жесткость — способность твёрдого тела, конструкции или её элементов сопротивляться деформации от приложенного усилия вдоль выбранного направления в заданной системе координат.
Сила жесткости — сила, возникающая в теле в результате его деформации и стремящаяся вернуть его в исходное состояние.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
От чего зависит жесткость
Жесткость пружины зависит от нескольких параметров:
- геометрии пружины;
- типа материала;
- коэффициента;
- срока эксплуатации.
Геометрия пружины
На жесткость витой пружины влияет:
- количество витков;
- их диаметр;
- диаметр проволоки.
Диаметр намотки измеряется от оси пружины. Так как длина проволоки в пружине значительно больше длины упругого стержня, сопротивляемость внешней деформации многократно возрастает.
Волновые пружины состоят из металлических лент, навитых ребром по окружности заданного диаметра.
Их основные геометрические параметры:
- количество витков;
- количество волн на виток;
- сечение ленты.
Тип материала
У каждого материала есть условный предел упругости, характеризующий его способность восстанавливаться после деформации. Если этот предел превышается, в структуре материала возникают необратимые изменения.
Определение
Предел упругости — механическая характеристика материала, показывающая максимальное напряжение, при котором имеют место только упругие, обратимые деформации.
Предел упругости измеряют в паскалях и определяют по формуле:
(sigma_{у;}=;frac FS)
где F — действие внешней силы на исследуемый образец, приводящее к повреждениям, а S — его площадь.
Кроме предела упругости, существуют такие характеристики упругости материалов, как модули упругости (модуль Юнга) и сдвига, коэффициент жесткости и другие. Все они взаимосвязаны, поэтому, выяснив значение одной из величин с помощью справочной таблицы, можно вычислить другие.
Коэффициент
Определение
Согласно закону Гука, при малой деформации абсолютная величина силы упругости прямо пропорциональна величине деформации.
Эта линейная зависимость описывается формулой:
(F=;k;times;x)
где k — коэффициент жесткости, а х — величина, на которую сжалась или растянулась пружина.
Примечание
Деформация считается малой в том случае, когда изменение размеров тела значительно меньше его первоначальных размеров.
Срок эксплуатации
Нахождение под напряжением приводит к постепенной необратимой деформации, называемой ослаблением пружины.
Жесткость пружины влияет на срок ее эксплуатации, как и сила воздействия. Конструкторы пружин, предварительно рассчитав эти параметры, проводят тесты на прототипах, прежде чем начать массовое производство. В специальных установках для испытания на усталость материала их сжимают и отпускают определенное количество циклов, отдельно проверяя поведение пружин при максимальной и минимальной нагрузке.
В чем измеряется жесткость
Жесткость пружины в системе СИ измеряется в ньютонах на метр, Н/м. Также встречается единица измерения ньютон на миллиметр, Н/мм. Численно жесткость равна величине силы, изменяющей размер пружины на метр длины.
Как обозначается
Коэффициент жесткости пружины обозначают буквой k.
Коэффициент жесткости пружины
Определение
Коэффициент жесткости — коэффициент, связывающий в законе Гука удлинение упругого тела и возникающую вследствие этого удлинения силу жесткости.
Применяется в механике твердого тела в разделе упругости.
Формула расчета через массу и длину
Используя закон Гука, коэффициент жесткости можно вычислить по формуле:
(k;=;frac Fx)
Чтобы выяснить силу тяжести, воздействующую на пружину, нужно воспользоваться формулой:
(F;=;m;times;g)
где m — масса подвешенного на пружине тела, а g — величина свободного ускорения, равная 9,8.
Чтобы найти х, нужно дважды измерить длину пружины и вычислить разницу между этими двумя значениями.
При соединении нескольких пружин общая жесткость системы меняется. Коэффициенты каждой из пружин суммируются при параллельном соединении. При последовательном соединении общая жесткость вычисляется по формуле:
(frac1k;=;(frac1{k_1};+;frac1{k_2};+;…;+;frac1{k_n}))
Как можно измерить жесткость
Измерительные приборы
Приборы для испытания пружин на сжатие-растяжение контролируют приложенное усилие с помощью тензометрического датчика, а также изменение их длины, выводя показатели на дисплей. Без специального прибора измерить осевую жесткость можно, используя динамометр и линейку.
Существуют приборы и для измерения поперечной жесткости пружин. Для этого нужно измерить смещение нескольких точек пружины, определив расстояние и угол между ними.
Практическая задача
Самый простой способ измерить жесткость пружины — провести стандартный школьный опыт со штативом и подвешенными на пружине грузиками.
Для измерения осевой жесткости спиральной пружины используют:
- штатив, на котором закрепляют пружину;
- крючок, который крепят на свободный ее конец;
- грузики с известной массой, которые подвешивают на свободный конец пружины;
- линейку, чтобы измерить длину пружины с грузом и без груза.
Проведя несколько измерений с грузиками разной массы и вычислив силу тяжести, воздействовавшую на пружину в каждом из них, можно построить график зависимости длины пружины от приложенного усилия и узнать среднее значение коэффициента жесткости.
Альтернативные способы определения жесткости
Жесткость пружины можно определить и через период ее колебания, воспользовавшись формулой:
(Т;=;2mathrmpisqrt{frac{mathrm m}{mathrm k}})
Или через частоту колебаний по формуле:
(omega=;sqrt{frac{mathrm k}{mathrm m}})
Проводя опыт с пружиной, закрепленной на штативе, и грузиками с известной массой, можно не измерять длину пружины, а привести ее в колебательное движение и сосчитать количество колебаний в период времени.
Формула расчета через длину, дающая более точные результаты и применимая к пружинам со значительной деформацией, различается для пружин разных геометрических параметров. Например, жесткость витой цилиндрической пружины, упруго деформируемой вдоль оси, вычисляется по формуле:
(k=;frac{d_D^4;times;G}{8;times;d_F^3;times;n})
где (d_D) — диаметр проволоки, (d_F) — диаметр намотки, (G) — модуль сдвига, который зависит от материала, а (n) — число витков.
Задача
Рассчитайте коэффициент жесткости пружины, если известно, что ее диаметр 20 мм, диаметр проволоки 1 мм, число витков — 25. Модуль сдвига равен (8times;10^{10};) Па.
Решение
Переведем числовые значения в систему СИ и подставим в формулу:
(k;=;frac{{(10^{-3})}^{4;}times8;times;10^{10}}{8;times;left(2;times;10^{-2}right)^3;times;25})
(k = 100 frac Нм)
Жесткость при деформации кручения существенно отличается от жесткости сжатия-растяжения. Предел прочности при кручении у любого материала будет меньше, чем предел прочности при сжатии-растяжении или изгибе. Торсионная жесткость, также называемая крутильной, в системе СИ измеряется в ньютон-метрах на радиан, сокращенно Н-м/рад. Ее можно определить по формуле:
(k;=;frac Malpha)
где (М) — крутящий момент, приложенный к телу, а (alpha) — угол закручивания тела по оси приложения крутящего момента.
Задачи на закон Гука
(F=kx ) .
(F)- Сила, растягивающая или сжимающая пружину
(k)- коэффициент жесткости пружины
(x)- удлинение пружины (насколько растянулась пружина)
Репетитор по физике
+7 916 478 10 32
Задача 1. ( Закон Гука )
Пружина, с коэффициентом жесткости (k=100 Н/м ), растянулась на (x=0,1 м) после приложения к свободному концу
этой пружины силы (F.)
Найти силу (F), приложенную к этой пружине.
Показать ответ
Показать решение
Видеорешение
Задача 2. ( Закон Гука )
К пружине с коэффициентом жесткости (k=100 Н/м ) была приложена сила (F) , вследствии чего она удлиннилась на 10 сантиметров.
Найти силу (F), вызвавшую это удлинение.
Показать ответ
Показать решение
Видеорешение
Задача 3. ( Закон Гука )
Сила (F=50Н ) растягивает пружину на (x=0,5 м.)
Найти коэффициент жесткости этой пружины.
Показать ответ
Показать решение
Видеорешение
Задача 4. ( Закон Гука )
Найти коэффициент жесткости пружины, если сила (F=200Н), может растянуть эту пружину на 5 сантиметров.
Показать ответ
Показать решение
Видеорешение
Задача 5. ( Закон Гука )
На сколько растянется пружина с коэффициентом жесткости ( k=25Н/м ), если к ее будет растягивать сила
(F=10Н )
Показать ответ
Показать решение
Видеорешение
Задача 6. ( Закон Гука )
Найти растяжение пружины жесткостью ( k=600Н/м ), если к ее свободному концу приложить силу (F=30Н .)
Ответ дать в сантиметрах.
Показать ответ
Показать решение
Видеорешение
Задача 7. Приведено решение для тех, кому тяжело понять
Один конец пружины жесткостью ( k=400Н/м ) прикрепляют к потолку, а к другому ее концу
подвешивают груз массой (m=1 кг .)
На сколько сантиметров удлиннится пружина?
(g=10 Н/кг )
Показать ответ
Показать решение
Видеорешение
Задача 7. Приведено решение для тех, кто хочет научиться решать сложные задачи
Один конец пружины жесткостью ( k=400Н/м ) прикрепляют к потолку, а к другому ее концу
подвешивают груз массой (m=1 кг .)
На сколько сантиметров удлиннится пружина?
(g=10 Н/кг .)
Показать ответ
Показать решение
Видеорешение
Задача 8. Приведено решение для тех, кому тяжело понять
К свободному концу пружины жесткостью ( k=800Н/м ) прикрепляют груз массой (m=4 кг .)
Найти растяжение пружины.
Дать ответ в сантиметрах. (g=10 Н/кг . )
Показать ответ
Показать решение
Видеорешение
Задача 8. Приведено решение для тех, кто хочет научиться решать сложные задачи
Один конец пружины жесткостью ( k=800Н/м ) прикрепляют к потолку, а к другому ее концу
подвешивают груз массой (m=4 кг .)
На сколько сантиметров удлиннится пружина?
Дать ответ в сантиметрах. (g=10 Н/кг .)
Показать ответ
Показать решение
Видеорешение
Задача 9. Приведено решение для тех, кому тяжело понять
К пружине, закрепленной у потолка, подвешивают груз, при этом пружина растягивается на (x=0,08 м.)
Коэффициент жесткости пружины ( k=500Н/м ).
Найти массу груза, подвешенного к пружине.
(g=10 Н/кг . )
Показать ответ
Показать решение
Видеорешение
Задача 9. Приведено решение для тех, кто хочет научиться решать сложные задачи
К пружине, закрепленной у потолка, подвешивают груз, при этом пружина растягивается на (x=0,08 м.)
Коэффициент жесткости пружины ( k=500Н/м ).
Найти массу груза, подвешенного к пружине.
(g=10 Н/кг . )
Показать ответ
Показать решение
Видеорешение
Задача 10. Приведено решение для тех, кому тяжело понять
К пружине, закрепленной у потолка, подвешивают груз, при этом пружина растягивается на (x=0,01 м.)
Коэффициент жесткости пружины ( k=150Н/м ).
Найти массу груза, подвешенного к пружине.Дать ответ в граммах.
(g=10 Н/кг . )
Показать ответ
Показать решение
Видеорешение
Задача 10. Приведено решение для тех, кто хочет научиться решать сложные задачи
К пружине, закрепленной у потолка, подвешивают груз, при этом пружина растягивается на (x=0,08 м.)
Коэффициент жесткости пружины ( k=500Н/м ).
Найти массу груза, подвешенного к пружине. Дать ответ в граммах.
(g=10 Н/кг . )
Показать ответ
Показать решение
Видеорешение
Задача 11. ( Закон Гука )
Найти коэффициент жесткости пружины, если груз массой (m=5 кг ) растягивает ее на 2 сантиметра.
Показать ответ
Показать решение
Видеорешение
Как определить коэффициент жесткости
Коэффициент жесткости показывает, какую силу нужно приложить к телу, чтобы упруго деформировать его на единицу длины. Речь идет именно об упругой деформации, когда тело после воздействия на него снова принимает прежнюю форму. Для того чтобы найти эту величину, нужно деформировать тело, приложив к нему силу, или измерить потенциальную энергию его деформации.
Вам понадобится
- – калькулятор;
- – динамометр;
- – линейка.
Инструкция
Присоедините к телу динамометр и потяните за него, деформировав тело. Сила, которую покажет динамометр, будет по модулю равна силе упругости, действующей на тело. Найдите коэффициент жесткости, используя закон Гука, который говорит о том, что сила упругости прямо пропорциональна его удлинению и направлена в сторону, противоположную деформации. Рассчитайте коэффициент жесткости, поделив значение силы F на удлинение тела x, которое измерьте линейкой или рулеткой k=F/x. Чтобы найти удлинение деформированного тела вычтите длину деформированного тела от его первоначальной длины. Коэффициент жесткости измеряется в Н/м.
Если нет динамометра, подвесьте к деформируемому телу груз известной массы. Следите, чтобы тело деформировалось упруго и не разрушилось. В этом случае вес груза будет равен силе упругости, действующей на тело, коэффициент жесткости которого нужно найти, например, пружины. Рассчитайте коэффициент жесткости, поделив произведение массы m и ускорения свободного падения g≈9,81 м/с² на удлинение тела x, k=m•g/x. Удлинение измерьте по методике, предложенной в предыдущем пункте.
Пример. Под грузом 3 кг пружина длиной 20 см стала 26 см, определите ее жесткость. Сначала найдите удлинение пружины в метрах. Для этого от длины удлиненной пружины, вычтите ее длину в нормальном состоянии х=26-20=6 см=0,06 м. Вычислите жесткость, используя соответствующую формулу k=m•g/x=3•9,81/0,06≈500 Н/м.
В том случае, когда известна потенциальная энергия упруго деформированного тела, вычислите его жесткость. Для этого дополнительно измерьте его удлинение. Жесткость будет равна удвоенной потенциальной энергии Ер поделенной на квадрат удлинения тела х, k=2•Ep/x². Например, если мяч деформировался на 2 см и получил потенциальную энергию 4 Дж, то его жесткость k=2•4/0,02²=20000 Н/м.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Формулы пружинного маятника в физике
Формулы пружинного маятника
Определение и формулы пружинного маятника
Определение
Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.
Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.
Уравнения колебаний пружинного маятника
Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:
[ddot{x}+{omega }^2_0x=0left(1right),]
где ${щu}^2_0=frac{k}{m}$ – циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:
[x=A{cos left({omega }_0t+varphi right)=A{sin left({omega }_0t+{varphi }_1right) } }left(2right),]
где ${omega }_0=sqrt{frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ – амплитуда колебаний; ${(omega }_0t+varphi )$ – фаза колебаний; $varphi $ и ${varphi }_1$ – начальные фазы колебаний.
В экспоненциальном виде колебания пружинного маятника можно записать как:
[Re tilde{x}=Releft(Acdot exp left(ileft({omega }_0t+varphi right)right)right)left(3right).]
Формулы периода и частоты колебаний пружинного маятника
Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:
[T=2pi sqrt{frac{m}{k}}left(4right).]
Так как частота колебаний ($nu $) – величина обратная к периоду, то:
[nu =frac{1}{T}=frac{1}{2pi }sqrt{frac{k}{m}}left(5right).]
Формулы амплитуды и начальной фазы пружинного маятника
Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($varphi $).
Амплитуду можно найти как:
[A=sqrt{x^2_0+frac{v^2_0}{{omega }^2_0}}left(6right),]
начальная фаза при этом:
[tg varphi =-frac{v_0}{x_0{omega }_0}left(7right),]
где $v_0$ – скорость груза при $t=0 c$, когда координата груза равна $x_0$.
Энергия колебаний пружинного маятника
При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.
Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:
[E_p=-frac{dF}{dx}(8)]
учитывая, что для пружинного маятника $F=-kx$,
тогда потенциальная энергия ($E_p$) пружинного маятника равна:
[E_p=frac{kx^2}{2}=frac{m{{omega }_0}^2x^2}{2}left(9right).]
Закон сохранения энергии для пружинного маятника запишем как:
[frac{m{dot{x}}^2}{2}+frac{m{{omega }_0}^2x^2}{2}=const left(10right),]
где $dot{x}=v$ – скорость движения груза; $E_k=frac{m{dot{x}}^2}{2}$ – кинетическая энергия маятника.
Из формулы (10) можно сделать следующие выводы:
- Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
- Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.
Примеры задач с решением
Пример 1
Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac{Н}{м}$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac{м}{с}$?
Решение. Сделаем рисунок.
По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:
[E_{pmax}=E_{kmax }left(1.1right),]
где $E_{pmax}$ – потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_{kmax }$ – кинетическая энергия шарика, в момент прохождения положения равновесия.
[E_{kmax }=frac{mv^2}{2}left(1.2right).]
Потенциальная энергия равна:
[E_{pmax}=frac{k{x_0}^2}{2}left(1.3right).]
В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:
[frac{mv^2}{2}=frac{k{x_0}^2}{2}left(1.4right).]
Из (1.4) выразим искомую величину:
[x_0=vsqrt{frac{m}{k}}.]
Вычислим начальное (максимальное) смещение груза от положения равновесия:
[x_0=1cdot sqrt{frac{0,36}{1600}}=1,5 cdot {10}^{-3}(м).]
Ответ. $x_0=1,5$ мм
Пример 2
Задание. Пружинный маятник совершает колебания по закону: $x=A{cos left(omega tright), } $где $A$ и $omega $ – постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_{p0}$.
В какой момент времени это произойдет?
Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:
[F=-kx=-kA{cos left(omega tright)left(2.1right). }]
Потенциальную энергию колебаний груза найдем как:
[E_p=frac{kx^2}{2}=frac{kA^2{{cos }^2 left(omega tright) }}{2}left(2.2right).]
В момент времени, который следует найти $F=F_0$; $E_p=E_{p0}$, значит:
[frac{E_{p0}}{F_0}=-frac{A}{2}{cos left(omega tright) }to t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}right) }.]
Ответ. $t=frac{1}{omega } arc{cos left(-frac{2E_{p0}}{AF_0}right) }$
Читать дальше: формулы равноускоренного прямолинейного движения.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!