Как найти жорданов базис онлайн

Пусть дана матрица
3-го порядка. Надо найти жорданову форму
и жорданов базис.

  1. Пусть
    характеристический многочлен матрицы

    имеет вид


,
где


.

Тогда
жорданова форма матрицы имеет вид

.

  1. Пусть
    характеристический многочлен матрицы

    имеет вид


,

где

.
Возможны два случая:

а)

,
поэтому

и, следовательно,

,
поэтому жорданова форма содержит две
жордановы клетки с собственным значением


:


;

б)

,
поэтому

и, следовательно, жорданова форма
содержит одну жорданову клетку с
собственным значением

:


.

  1. Пусть
    характеристический многочлен матрицы

    имеет вид


.

Возможны два
случая:

а)

,
поэтому

и, следовательно, жорданова форма
содержит две жордановы клетки с
собственным значением

:


;

б)

,
поэтому

и, следовательно, жорданова форма
содержит одну жорданову клетку с
собственным значением

:


.

Задача.
Дана матрица

.
Найти

.

Р е ш е
н и е.

Найдем характеристический многочлен
матрицы:


.

Жорданова
форма матрицы

имеет вид

.

Найдем


.

Для
нахождения

воспользуемся формулой

,
где

– матрица перехода от базиса

к базису

.
Очевидно, что

,

поэтому


.

Пример
1.
Найти жорданову форму и жорданов
базис матрицы оператора


.

Р е ш е
н и е.

Вычислим


,

следовательно,
собственное значение

,


.

Найдем
геометрическую кратность собственного
значения

.
Для этого посчитаем ранг матрицы


.

Следовательно,


,

поэтому
жорданова форма имеет вид

или

.

Найдем собственный вектор

,
соответствующий собственному значению

.
Так как он удовлетворяет условию


,

то
решим систему


.

Следовательно,
координаты собственного вектора

удовлетворяют уравнению


.

Заметим, что коэффициент при

равен 0, поэтому

может принимать любые значения.
Отбрасывать

нельзя !!!

Для
нахождения ФСР построим таблицу

.

Векторы

,

образуют фундаментальную систему
решений в собственном подпространстве


,
поэтому любой собственный вектор,
отвечающий собственному значению

,
линейно через них выражается и,
следовательно, имеет вид

.
Так как

,

,
то должен быть один присоединенный
вектор, который будет являться решением
системы

.
Подберем коэффициенты

и

таким образом, чтобы система

была совместна. Так как


,

то для
совместности системы необходимо, чтобы
выполнялось условие

.
Возьмем

,
тогда

,
и координаты присоединенного вектора
являются решением системы


,

то есть
удовлетворяют уравнению

или

.

Возьмем


.

Таким образом, у нас есть собственный
вектор

,
присоединенный к нему

и нужен еще один собственный вектор,
отвечающий собственному значению

.
Можно взять или вектор

,
или

,
или любой другой, отличный от

,
отвечающий собственному значению

.
Эти три вектора и будут образовывать
жорданов базис.

Пример 2. Найти жорданову
форму и жорданов базис матрицы оператора


.

Р е ш е
н и е.

Вычислим


,

следовательно,
собственное значение

,

.

Найдем
геометрическую кратность собственного
значения

.
Для этого посчитаем ранг матрицы


.

Следовательно,


,

поэтому
жорданова форма имеет вид

или

.

Найдем собственный вектор

,
соответствующий собственному значению

.
Так как он удовлетворяет условию


,

то
решим систему


.

Очевидно,
что координаты собственного вектора

удовлетворяют уравнению

или

.

Для
нахождения ФСР построим таблицу

.

Векторы

,

образуют фундаментальную систему
решений в собственном подпространстве


,
поэтому любой собственный вектор,
отвечающий собственному значению

,
линейно через них выражается
и, следовательно, имеет вид


.

Так как

,

,
то должен быть один присоединенный
вектор, который будет являться решением
системы

.
Подберем коэффициенты

и

таким образом, чтобы система

была совместна. Так как


,

то для
совместности системы необходимо, чтобы
выполнялось условие

.
Возьмем

,
тогда

и координаты присоединенного вектора
являются решением системы


,

то есть
удовлетворяют уравнению

или

.

Возьмем


.

Таким образом, у нас есть собственный
вектор

,
присоединенный к нему

и нужен еще один собственный вектор,
отвечающий собственному значению

.
Можно взять или вектор

,
или

,
или любой другой, отличный от

,
отвечающий собственному значению

.
Эти три вектора и будут образовывать
жорданов базис.

Пример 3. Найти жорданову
форму и жорданов базис матрицы оператора


.

Р е ш е
н и е.

Вычислим


.

Таким образом, получили три собственных
значения

,

,


.
Так как алгебраическая кратность каждого
из них равна 1, то жорданова форма имеет
следующий вид


.

Найдем собственный вектор

,
соответствующий собственному значению

.
Очевидно, что он является решением
уравнения

и, следовательно, его координаты
удовлетворяют системе


,

то есть


,
поэтому можем взять

.

Вычислим собственный вектор

,
соответствующий собственному значению

.
Очевидно, что он удовлетворяет уравнению

,
а его координаты – системе


,

откуда
следует, что

,
поэтому можем взять

.

Найдем собственный вектор

,
соответствующий собственному значению


.
Так как он является решением уравнения

,
то его координаты удовлетворяют системе

,

и,
следовательно,

,
поэтому можем взять

.

Векторы

образуют жорданов базис матрицы.

Пример 4. Найти жорданову
форму и жорданов базис матрицы оператора


.

Р е ш е
н и е.

Вычислим


.

Таким образом, получили два собственных
значения

,

.
Так как алгебраическая кратность

равна 2, нужно вычислить геометрическую
кратность

собственного значения

.
Для этого посчитаем ранг матрицы


.

Очевидно, что

,
поэтому

и, следовательно, жорданова форма имеет
следующий вид


.

Найдем собственные векторы

,

,
соответствующие собственному значению

.
Очевидно, что они являются решением
уравнения

,
а их координаты

– решением системы


,

и,
следовательно, удовлетворяют уравнению

или

.

Для
нахождения ФСР построим таблицу

.

Векторы


,

образуют фундаментальную систему
решений в собственном подпространстве


,
поэтому любой собственный вектор,
отвечающий собственному значению

,
линейно через них выражается и,
следовательно, имеет вид


.

Так
как

,
то нужно выбрать любые два линейно
независимых вектора из этой линейной
комбинации. Возьмем

,


.

Найдем собственный вектор

,
соответствующий собственному значению

.
Очевидно, что он удовлетворяет уравнению

,
а его координаты

– системе


,

то есть


,
поэтому можем взять

.

Векторы

образуют жорданов базис матрицы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

NenSi писал(а):

Найти жорданову форму и жорданов базис линейного оператора, заданного матрицей [math]mathbf{A}[/math]:

1) [math]mathbf{A}=left(!!begin{array}{*{20}{r}}-1&5&4\[3pt]4&-6&-6\[3pt]-8&16&14end{array}!!right)[/math]

Вычислим характеристический многочлен [math]varphi(lambda)[/math] матрицы [math]mathbf{A}[/math]:

[math]{varphi(lambda)=det(mathbf{A}-lambdamathbf{E})=,,vline!!begin{array}{*{20}{c}}{-1-lambda}&5&4\[3pt]4&{-6-lambda}&{-6}\[3pt]{-8}&{16}&{14-lambda}end{array}!vline,=12-16lambda+7lambda^2-lambda^3=-(lambda-2)^2(lambda-3)}[/math].

Таким образом, получили два собственных значения [math]lambda_1=2[/math] и [math]lambda_2=3[/math]. Так как алгебраическая кратность [math]lambda_1=2[/math] равна 2, нужно вычислить геометрическую кратность [math]k[/math] этого собственного значения. Для этого посчитаем ранг матрицы [math]mathbf{A}-lambda_1mathbf{E}[/math]:

[math]det(mathbf{A}-lambda_1mathbf{E})=,,vline!!begin{array}{*{20}{r}}{-3}&5&4\[3pt]4&{-8}&{-6}\[3pt]{-8}&{16}&{12}end{array}!vline,=0[/math] и [math]operatorname{M}_2(mathbf{A}-lambda_1mathbf{E})=,,vline!!begin{array}{*{20}{r}}{-3}&5\[3pt]4&{-8}end{array}!vline,=4ne0[/math], следовательно, [math]operatorname{rang}(mathbf{A}-lambda_1mathbf{E})=2[/math]

Таким образом, имеем [math]k=n-operatorname{rang}(mathbf{A}-2mathbf{E})=3-2=1,[/math] где [math]n[/math]-порядок матрицы [math]mathbf{A}[/math].

Итак, жорданова форма линейного оператора, заданного матрицей [math]mathbf{A}[/math] имеет вид

[math]{J!}_mathbf{A}=left(!!begin{array}{*{20}{c}}2&1&0\[3pt]0&2&0\[3pt]0&0&3end{array}!!right)[/math] или [math]{J!}_mathbf{A}=left(!!begin{array}{*{20}{c}}3&0&0\[3pt]0&2&1\[3pt]0&0&2end{array}!!right)[/math]

NenSi писал(а):

Найти жорданову форму и жорданов базис линейного оператора, заданного матрицей [math]mathbf{A}[/math]:

2) [math]mathbf{A}=left(!!begin{array}{*{20}{r}}1&-1&1&-2\[3pt]0&1&{-2}&{-2}\[3pt]0&0&1&2\[3pt]0&0&0&1end{array}!!right)[/math]

[math]{varphi(lambda)=det(mathbf{A}-lambdamathbf{E})=,,vline!!begin{array}{*{20}{c}}1-lambda&-1&1&-2\[3pt]0&1-lambda&-2&-2\[3pt]0&0&1-lambda&2\[3pt]0&0&0&{1-lambda}end{array}!vline,=(lambda-1)^4}[/math]

[math]operatorname{rang}(mathbf{A}-mathbf{E})=operatorname{rang}!left(!!begin{array}{*{20}{r}}0&-1&1&-2\[3pt]0&0&-2&-2\[3pt]0&0&0&2\[3pt]0&0&0&0end{array}!!right)=3[/math]

[math]k=4-operatorname{rang}(mathbf{A}-mathbf{E})=4-3=1[/math]

[math]{J!}_mathbf{A}=left(!!begin{array}{*{20}{c}}1&1&0&0\[3pt]0&1&1&0\[3pt]0&0&1&1\[3pt]0&0&0&1end{array}!!right)[/math]

Как найти жорданов базис, я ещё не въехал :(
Может быть, Prokop знает, как это сделать.

ДОКЛАД:

Жорданова нормальная форма матрицы оператора, жорданов базис.

  1. Определения и основные понятия

Введем два основных понятия.

1.1 Жорданова клетка

Жордановой клеткой порядка k, относящейся к числу λ0, называется матрица порядка k, 1≤kn, имеющая вид:

Также можем сказать, что на её главной диагонали стоит одно и то же число из поля P, а параллельные элементы, ближайшие к главной диагонали сверху, равны 1, все остальные элементы матрицы равны нулю.

Её характеристический многочлен (λ0 − λ)k имеет корень λ0 кратности k.

Таким образом, данная матрица имеет собственное значение λ0 алгебраической кратности k. Отвечающие ему собственные векторы — это ненулевые решения однородной системы линейных уравнений с матрицей

Так как rangB = k −1, так что размерность собственного подпространства равна 1, то существует лишь один линейно независимый собственный вектор. Таким образом, при k ≥ 2 не существует базиса, состоящего из собственных векторов этого оператора, то есть ни в одном базисе матрица оператора не может иметь диагонального вида. Матрица Jk0) называется жордановой клеткой порядка k, соответствующей собственному значению λ0.

1.2 Жорданов блок

Жордановым блоком, отвечающим собственному значению λ0, называется блочно-диагональная матрица, каждый блок которой представляет собой жорданову клетку вида:

На главной диагонали матрицы расположены s жордановых клеток Ji1(λ0), Ji2(λ0), . . . , Jis(λ0) порядков i1, i2 . . . , is, где s — геометрическая кратность собственного значения λ0.

Сумма порядков этих клеток равна алгебраической кратности собственного значения λ0, т.е. i1 + i2 + · · · + is = m.

Все элементы матрицы вне жордановых клеток равны нулю. Порядок расположения жордановых клеток в матрице A(λ0) определен неоднозначно.

1.3 Примеры жордановых блоков

Рассмотрим простой случай, когда характеристический многочлен матрицы имеет вид f(λ) = (λ0 − λ)m и геометрическая кратность собственного значения λ0 равна s.

Пример 1. Пусть m = 2, s = 1. Тогда

имеем одну жорданову клетку порядка 2.

Пример 2. Пусть m = 3, s = 1. Тогда

имеем одну жорданову клетку порядка 3.

Пример 3. Пусть m = 3, s = 2. Имеем жорданов блок, состоящий из двух жордановых клеток порядков 1 и 2:

  1. Теорема о жордановой форме матрицы оператора

Пусть линейный оператор A действует в линейном пространстве над полем комплексных чисел размерности n и его характеристический многочлен имеет вид

f(λ) = (λ1 − λ)m1(λ2 − λ)m2. . .(λp − λ)mp, где λj ≠ λk при j ≠ k,

m1 + m2 + · · · + mp = n.

Тогда в этом пространстве существует базис, состоящий из собственных и присоединенных векторов оператора A, в котором матрица оператора имеет блочно-диагональную форму (она называется жордановой формой)

где Aj ) — жорданов блок, соответствующий собственному значению λj. Указанный базис называется жордановым.

Сформулированная теорема верна и в случае, когда линейный оператор действует в линейном пространстве над произвольным числовым полем K, но все корни характеристического многочлена принадлежат полю K.

Рассмотрим примеры. Обозначаем через n размерность пространства, mj и sj — алгебраическую и геометрическую кратности собственного значения λj соответственно.

Пример 1. Пусть n = 2, λ1 ≠ λ2. Тогда матрица оператора может быть приведена к диагональному виду:

Пример 2. Пусть n = 3 и оператор имеет два различных собственных значения λ1 (m1 = 2, s1 = 1) и λ2 (m2= s2 = 1). Тогда матрица оператора может быть приведена к виду

Пример 3. Пусть n = 4 и оператор имеет два различных собственных значения λ1 (m1 = 3, s1 = 1) и λ2 (m2 = s2 = 1). Тогда

3 Жорданов базис

Базис векторного пространства, в котором матрица оператора имеет вид одной сплошной ячейки, должен обладать свойством (“цикличность”), которое получим на основе правила “столбцы матрицы = образы базисных векторов”.

Итак, пусть матрица A линейного оператора в некотором базисе e1,e2,e3,e4   имеет вид одной ячейки: 

Здесь q обозначает некое, известное нам число.

Очевидно, векторы базиса e1,e2,e3,e4 можно записать в виде линейных комбинаций векторов этого же базиса. Так, например:

e1 = 1e1 + 0e2+0e30e4 .

Это означает, что координаты вектора eв этом базисе равны (1,0,0,0).

Если мы умножим нашу матрицу на столбец (1,0,0,0), то получим, очевидно, ее первый столбец, то есть (q,0,0,0). Это означает, что Ae1qe1то есть e1– собственный вектор, q – собственное число.

Как нетрудно проверить, верно и обратное: если первый базисный вектор   является по совместительству собственным вектором оператора с собственным числом q, то первый столбец матрицы оператора в таком базисе равен (q,0,0,0).

Запишем равенство Ae1qe1 в другом виде: (A- qE)e1 = 0   или

Be1 = 0 (где B = A – qE).

Теперь займемся вторым базисным вектором e2. Его координаты равны (0,1,0,0). Умножив на столбец (0,1,0,0) нашу матрицу, мы получим в качестве результата ее второй столбец (1,q,0,0). Это означает, что

Ae2= qe2+ e1        или      (AqE) e2 = e1       или       Be2 = e1.

Точно так же получаются равенства

Be3 = e2    и    Be4 = e3.

В итоге мы приходим к выводу: если матрица оператора A в некотором базисе имеет вид Жордановой клетки (ячейки) с числом q на диагонали и с единичкам над ней, то векторы базиса превращаются друг в друга под воздействием оператора B=A-qE:

e4 e3 e2 e1→0

В этой цепочке стрелки (слева направо) показывают, что из каждого базисного вектора получается под воздействием оператора B.

4 Построение жорданова базиса и жордановой формы матрицы

Пусть λ — собственное значение оператора, m и s — алгебраическая и геометрическая кратности числа λ. Опишем построение линейно независимой совокупности из m собственных и присоединенных векторов, отвечающих данному λ. Этой совокупности векторов в жордановой матрице A′ будет соответствовать жорданов блок A(λ).

Обозначим:

B = A − λI, Bk= (A − λI)k, nk = ker Bk, nk = dim Nk, rk = rang Bk.

Ясно, что nk + rk = n. Для удобства считаем, что B0 = I, так что r0 = n, n0 = 0.

Поскольку rang Bk+1 ≤ rang Bk, имеем nk+1≥ nk, так что

N1 N2 N3 . . . .

Теорема. Существует такое натуральное число q, что

N1 N2 · · · Nq = Nq+1 = Nq+2 = . . . ,

т.е. все ядра с номером, большим, чем q, совпадают с ядром Nq. При этом

n1 = s, nq = m.

Построим часть жорданова базиса, соответствующую данному собственному значению λ, следующим образом.

1. Возводя матрицу B в последовательные натуральные степени, найдем показатель q, начиная с которого ранг степеней матрицы B перестает уменьшаться.

2. Рассмотрим ядра Nq и Nq-1. Пусть векторы f1, f2, · · · Nq достраивают произвольный базис пространства Nq-1 до базиса пространства Nq; их количество равно nq –nq-1. Эти векторы являются присоединенными векторами высоты q, и каждый из них порождает цепочку, состоящую из q векторов, которые войдут в состав жорданова базиса. Каждой такой цепочке будет соответствовать жорданова клетка порядка q; таким образом, в состав жордановой формы матрицы оператора A войдет nq –nq-1 жордановых клеток порядка q.

3. Рассмотрим ядра Nq-1 и Nq-2, а также векторы Bf1, Bf2 , · · · ; их количество равно

nq –nq-1 = (n – rq) − (n – rq-1) = rq-1− rq.

К этим векторам добавим векторы g1, g2, . . . из пространства Nq-1 так, чтобы система векторов

Bf1, Bf2, . . . , g1, g2, . . . Nq-1

дополняла произвольный базис ядра Nq-2 до базиса ядра Nq-1. Векторы g1, g2, . . являются присоединенными векторами высоты q −1, и каждому из них будет соответствовать, во-первых, цепочка векторов жорданова базиса, и во-вторых, жорданова клетка порядка q − 1. Количество добавляемых векторов g1, g2, . . равно

таким же будет количество жордановых клеток порядка q − 1.

4. Рассмотрим ядра Nq-2 и Nq-3 и векторы B2f1, B2f2, . . . , Bg1, Bg2, . . .К этим векторам (если их не хватает) добавим векторы h1,h2, . . . из пространства Nq2 так, чтобы совокупность векторов

дополняла произвольный базис пространства Nq-3 до базиса пространства Nq-2. Количество добавляемых векторов h1,h2, . . . равно

таким же будет количество жордановых клеток порядка q − 2.

Процесс продолжаем аналогично. Наконец, рассмотрим ядро N1 и векторы

Если эта система не образует базис пространства N1, то добавим собственные векторы u1, u2, . . . так, чтобы пополненная система являлась базисом в N1.

Итак, мы описали процесс построения жорданова базиса и выяснили, что количество жордановых клеток порядка k, входящих в состав жордановой формы матрицы оператора, может быть найдено по формуле

Построенную часть жорданова базиса, состоящую из m векторов, соответствующих данному λ (m — алгебраическая кратность этого собственного значения), запишем в таблицу («жорданова лестница»):

Все векторы таблицы линейно независимы, и их число равно m (алгебраической кратности собственного значения λ). Каждому столбцу этой таблицы соответствует одна жорданова клетка, порядок которой равен высоте столбца. Количество столбцов жордановой лестницы, т.е. полное количество жордановых клеток в блоке, соответствующем собственному значению λ, равно геометрической кратности s этого собственного значения.

Будем нумеровать векторы построенной части базиса по столбцам жордановой лестницы: внутри каждого столбца снизу вверх, а сами столбцы в произвольном порядке.

Например, пусть e1, . . . , eq — векторы первого столбца жордановой лестницы. Тогда

Этой группе векторов (собственный вектор e1 и присоединенные к нему векторы e1, . . . , eq) жорданова базиса соответствуют первые q столбцов матрицы A′, которые имеют вид

где Jq(λ) — жорданова клетка порядка q с числом λ на главной диагонали.

В следующих q столбцах матрицы A′, определенных векторами второго столбца жордановой лестницы, расположена жорданова клетка Jq(λ) так, что числа λ стоят на главной диагонали матрицы A′, а элементы вне клетки равны нулю. Подобным образом для данного λ получаем m столбцов матрицы A′. На этих m столбцах находится жорданов блок A(λ).

Для других собственных значений эта схема повторяется, в результате чего получим жорданову матрицу A′ и соответствующий жорданов базис.

4.1 Пример решения задач

Дана матрица A линейного оператора в некотором базисе. Требуется найти жорданов базис и жорданову форму матрицы оператора в этом жордановом базисе. Рассмотрим пример решения такой задачи методом построения жорданова базиса.

Характеристический многочлен

имеет корень λ = 2 кратности 3, т.е. m = 3. Матрица B = AλI равна

Легко проверить, что

Собственные векторы находим, решив однородную систему линейных уравнений BX = O; фундаментальная совокупность решений состоит из двух векторов, например,

Количество этих векторов (т.е. геометрическая кратность собственного значения) равно двум, s = 2, так что для построения жорданова базиса требуется еще один присоединенный вектор.

Так как B2 = O, то ядро N2 оператора B2 совпадает со всем пространством, т.е. n2 = 3, и при этом q = 2.

Дополним базис ядра N1, т.е. набор векторов (2), до базиса ядра N2, например, вектором

Тогда

Дополним вектор Bf1 до базиса пространства N1 вектором

Построим жорданову лестницу:

Жорданов базис:

соответствует жорданова клетка порядка 2,

соответствует жорданова клетка порядка 1.

При этом Be1 = 0, Be2 = e­1, Be3 = 0, т.е. e1 — собственный вектор, e2 — его присоединенный вектор, e3 — собственный вектор.

В жордановом базисе

матрица оператора A′ имеет вид

Список использованной литературы:

  1. В.В. Колыбасова, Н.Ч. Крутицкая, А.В. Овчинников «Жорданова форма матрицы оператора» (интернет ресурс).

  2. В.И. Сушков «Строим Жорданову башню: снизу вверх и сверху вниз» (интернет ресурс).

  3. А. Г. Курош «Курс Высшей Алгебры».

5

Пусть – линейный оператор, – все его собственные значения с кратностями равными соответственно , – соответствующие корневые подпространства, – индуцированнный нильпотентный оператор Ai на инвариантном корневом подпространстве Ri.

Определение 6: Жордановым базисом пространства V для оператора *** называется объединение жордановых базисов корневых подпространств Ri построенных для Ai.

Имеем: , где .

Фиксируем циклическое подпространство и рассмотрим индуцированный линейный оператор на инвариантном подпространстве Z. Так как , то φ(Z) < Z – инварантное подпространство. Найдем матрицу оператора в циклическом базисе Z: , это квадратичная матрица, ее порядок равен dim Z = H. Эта матрица называется жордановой клеткой порядка H для собственного значения λI. Если , то эту матрицу обозначим . Размер жордановой клетки . Так как , то матрица A линейного оператора φ в базисе подпространства Ri имеет вид: , тогда матрица линейного оператора φ в жордановом базисе V имет вид: (5).

Таким образом, доказано следующее утверждение.

Утверждение 2: матрица линейного оператора в жордановом базисе – клеточно-диагональная. На ее диагонали располагаются жордановы клетки размеров, равных размерам циклических подпространств, на которые распадаются корневые подпространства соответствующие собственным значениям оператора φ.

Определение 7: матрицу вида (5), описанную в Утверждении 2 называют жордановой матрицей. Нахождение матрицы линейного оператора φ в его жордановом базисе назвается приведением матрицы оператора φ к жордановой нормальной форме.

Теорема 3 (Жордана):

Для любого линейного оператора , имеющего собственные значения с кратностями существует базис, в котором матрица имеет жорданову нормальную формулу J. При этом жорданова нормальная форма J однозначно определена для оператора φ с точностью до порядка расположения диагональных клеток.

Доказательство: возьмем жорданов базис в пространстве V. По Утверждению 2 матрица оператора φ имеет в этом базисе жорданову нормальную форму. Докажем единственность J.Для построения J нужны корни характеристического уравнения с кратностями . Кроме того нужны размерности циклических подпространств. Характеристический многочлен – инвариант. Размерности циклических подпространств по Теореме 2 определяются однозначно. Следовательно J – единственно (с точностью до порядка расположения диагональных клеток). #

Построение жорданова базиса и жордановой нормальной формы J линейного оператора φ, заданного матрицей A.

1) находим корни характеристического ур-я и их кратности.

2) Для каждого составляем матрицу и вычисляем rang, если rang>, товычисляем , и т. д., пока не найдется минимальная степень такая, что rang=.

3) Рассмотрим столбцы, в которых расположен базисный минор матрицы . Их линейная оболочка очевидно есть Im. Найдем подпространство =ImKer. В находим базис – это те с. в-ры, с которых начинаются жордановы цепочки максимальной длины, равной , если общее число в-в в этих цепочках равно , по процесс прекращается. Если же длина цепочек <, то рассматриваем = ImKer и дополняем уже выбранные векторы (из ) до базиса . Вновь добавленные с. в-ры служат началом жорданновых цепочек максимальной длины . Если общая длина цепочек <, то продолжаем построение новых с. в-ор из (дадут цепочки длиной ). И так далее, пока общая длина цепочек не окажется равной .

4) Жорданов базис получается при объединении жордановых базисов корневых подпространств.

5) Жорданова нормальная форма J матрицы A имеет клеточно-диагональный вид и может быть выписана непосредственно или получена по формуле , где T– матрица перехода от исходного базиса (E) к жорданову базису. В столбцах матр. T Стоят коорд. базис. в-в жорданова базиса.

Замечание:

Последовательно присоединенные к векторы находятся, как решения сист. лин. ур-ий вида: , где .

< Предыдущая   Следующая >

Добавить комментарий