Как найти жорданову форму матрицы онлайн

Пусть дана матрица
3-го порядка. Надо найти жорданову форму
и жорданов базис.

  1. Пусть
    характеристический многочлен матрицы

    имеет вид


,
где


.

Тогда
жорданова форма матрицы имеет вид

.

  1. Пусть
    характеристический многочлен матрицы

    имеет вид


,

где

.
Возможны два случая:

а)

,
поэтому

и, следовательно,

,
поэтому жорданова форма содержит две
жордановы клетки с собственным значением


:


;

б)

,
поэтому

и, следовательно, жорданова форма
содержит одну жорданову клетку с
собственным значением

:


.

  1. Пусть
    характеристический многочлен матрицы

    имеет вид


.

Возможны два
случая:

а)

,
поэтому

и, следовательно, жорданова форма
содержит две жордановы клетки с
собственным значением

:


;

б)

,
поэтому

и, следовательно, жорданова форма
содержит одну жорданову клетку с
собственным значением

:


.

Задача.
Дана матрица

.
Найти

.

Р е ш е
н и е.

Найдем характеристический многочлен
матрицы:


.

Жорданова
форма матрицы

имеет вид

.

Найдем


.

Для
нахождения

воспользуемся формулой

,
где

– матрица перехода от базиса

к базису

.
Очевидно, что

,

поэтому


.

Пример
1.
Найти жорданову форму и жорданов
базис матрицы оператора


.

Р е ш е
н и е.

Вычислим


,

следовательно,
собственное значение

,


.

Найдем
геометрическую кратность собственного
значения

.
Для этого посчитаем ранг матрицы


.

Следовательно,


,

поэтому
жорданова форма имеет вид

или

.

Найдем собственный вектор

,
соответствующий собственному значению

.
Так как он удовлетворяет условию


,

то
решим систему


.

Следовательно,
координаты собственного вектора

удовлетворяют уравнению


.

Заметим, что коэффициент при

равен 0, поэтому

может принимать любые значения.
Отбрасывать

нельзя !!!

Для
нахождения ФСР построим таблицу

.

Векторы

,

образуют фундаментальную систему
решений в собственном подпространстве


,
поэтому любой собственный вектор,
отвечающий собственному значению

,
линейно через них выражается и,
следовательно, имеет вид

.
Так как

,

,
то должен быть один присоединенный
вектор, который будет являться решением
системы

.
Подберем коэффициенты

и

таким образом, чтобы система

была совместна. Так как


,

то для
совместности системы необходимо, чтобы
выполнялось условие

.
Возьмем

,
тогда

,
и координаты присоединенного вектора
являются решением системы


,

то есть
удовлетворяют уравнению

или

.

Возьмем


.

Таким образом, у нас есть собственный
вектор

,
присоединенный к нему

и нужен еще один собственный вектор,
отвечающий собственному значению

.
Можно взять или вектор

,
или

,
или любой другой, отличный от

,
отвечающий собственному значению

.
Эти три вектора и будут образовывать
жорданов базис.

Пример 2. Найти жорданову
форму и жорданов базис матрицы оператора


.

Р е ш е
н и е.

Вычислим


,

следовательно,
собственное значение

,

.

Найдем
геометрическую кратность собственного
значения

.
Для этого посчитаем ранг матрицы


.

Следовательно,


,

поэтому
жорданова форма имеет вид

или

.

Найдем собственный вектор

,
соответствующий собственному значению

.
Так как он удовлетворяет условию


,

то
решим систему


.

Очевидно,
что координаты собственного вектора

удовлетворяют уравнению

или

.

Для
нахождения ФСР построим таблицу

.

Векторы

,

образуют фундаментальную систему
решений в собственном подпространстве


,
поэтому любой собственный вектор,
отвечающий собственному значению

,
линейно через них выражается
и, следовательно, имеет вид


.

Так как

,

,
то должен быть один присоединенный
вектор, который будет являться решением
системы

.
Подберем коэффициенты

и

таким образом, чтобы система

была совместна. Так как


,

то для
совместности системы необходимо, чтобы
выполнялось условие

.
Возьмем

,
тогда

и координаты присоединенного вектора
являются решением системы


,

то есть
удовлетворяют уравнению

или

.

Возьмем


.

Таким образом, у нас есть собственный
вектор

,
присоединенный к нему

и нужен еще один собственный вектор,
отвечающий собственному значению

.
Можно взять или вектор

,
или

,
или любой другой, отличный от

,
отвечающий собственному значению

.
Эти три вектора и будут образовывать
жорданов базис.

Пример 3. Найти жорданову
форму и жорданов базис матрицы оператора


.

Р е ш е
н и е.

Вычислим


.

Таким образом, получили три собственных
значения

,

,


.
Так как алгебраическая кратность каждого
из них равна 1, то жорданова форма имеет
следующий вид


.

Найдем собственный вектор

,
соответствующий собственному значению

.
Очевидно, что он является решением
уравнения

и, следовательно, его координаты
удовлетворяют системе


,

то есть


,
поэтому можем взять

.

Вычислим собственный вектор

,
соответствующий собственному значению

.
Очевидно, что он удовлетворяет уравнению

,
а его координаты – системе


,

откуда
следует, что

,
поэтому можем взять

.

Найдем собственный вектор

,
соответствующий собственному значению


.
Так как он является решением уравнения

,
то его координаты удовлетворяют системе

,

и,
следовательно,

,
поэтому можем взять

.

Векторы

образуют жорданов базис матрицы.

Пример 4. Найти жорданову
форму и жорданов базис матрицы оператора


.

Р е ш е
н и е.

Вычислим


.

Таким образом, получили два собственных
значения

,

.
Так как алгебраическая кратность

равна 2, нужно вычислить геометрическую
кратность

собственного значения

.
Для этого посчитаем ранг матрицы


.

Очевидно, что

,
поэтому

и, следовательно, жорданова форма имеет
следующий вид


.

Найдем собственные векторы

,

,
соответствующие собственному значению

.
Очевидно, что они являются решением
уравнения

,
а их координаты

– решением системы


,

и,
следовательно, удовлетворяют уравнению

или

.

Для
нахождения ФСР построим таблицу

.

Векторы


,

образуют фундаментальную систему
решений в собственном подпространстве


,
поэтому любой собственный вектор,
отвечающий собственному значению

,
линейно через них выражается и,
следовательно, имеет вид


.

Так
как

,
то нужно выбрать любые два линейно
независимых вектора из этой линейной
комбинации. Возьмем

,


.

Найдем собственный вектор

,
соответствующий собственному значению

.
Очевидно, что он удовлетворяет уравнению

,
а его координаты

– системе


,

то есть


,
поэтому можем взять

.

Векторы

образуют жорданов базис матрицы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Radians} mathrm{Degrees} square! ( ) % mathrm{clear}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Subscribe to verify your answer

Subscribe

Sign in to save notes

Sign in

Number Line

Examples

  • gauss:jordan:begin{pmatrix}1 & 2 \3 & 4end{pmatrix}

  • gauss:jordan:begin{pmatrix}1 & 2 & 3 \4 & 5 & 6 \7 & 8 & 9end{pmatrix}

  • gauss:jordan:begin{pmatrix}1 & 3 & 5 & 9 \1 & 3 & 1 & 7 \4 & 3 & 9 & 7 \5 & 2 & 0 & 9end{pmatrix}

Description

Reduce matrix to Gauss Jordan (RREF) form step-by-step

matrix-gauss-jordan-calculator

en

Related Symbolab blog posts

  • The Matrix, Inverse

    For matrices there is no such thing as division, you can multiply but can’t divide. Multiplying by the inverse…

    Read More

  • Enter a problem

    Save to Notebook!

    Sign in

    Приведение матрицы к жордановой форме

    Задача приведения матрицы к жордановой форме формулируется следующим образом. Требуется привести квадратную матрицу A к жордановой форме J_A при помощи преобразования подобия: J_A=S^{-1}AS, т.е.

    найти жорданову форму J_A квадратной матрицы A {первый этап);

    найти преобразующую матрицу S (второй этап), для которой

    J_A=S^{-1}cdot Acdot S.

    (7.39)

    В некоторых прикладных и теоретических задачах достаточно определить только жорданову форму матрицы, т.е. ограничиться первым этапом. Однако чаще кроме жордановой формы J_A матрицы A требуется также найти и преобразующую матрицу S, т.е. выполнить оба этапа.


    Нахождение жордановой формы матрицы

    Для нахождения жордановой формы J_A квадратной матрицы A нужно выполнить следующие действия (см. лекцию жордановой форме).

    1. Составить характеристическую матрицу (A-lambda E).

    2. Найти ее инвариантные множители (7.33) одним из способов, рассмотренных в предыдущей лекции.

    3. По инвариантным множителям (7.33) составить таблицу (7.34) элементарных делителей.

    4. По элементарным делителям составить жорданову форму J_A.


    Нахождение преобразующей матрицы

    Рассмотрим два способа нахождения преобразующей матрицы.

    Первый способ. Если жорданова форма J_A матрицы A известна, то для нахождения преобразующей матрицы S нужно выполнить следующие действия.

    1. Составить матричное уравнение SJ_A=AS относительно неизвестной матрицы S, которое равносильно однородной системе n^2 линейных уравнении с n^2 неизвестными элементами s_{ij} матрицы S.

    2. Найти такое частное решение этой системы уравнений, для которого det{S}ne0.

    Второй способ. Для нахождения преобразующей матрицы S можно использовать следствие теоремы 7.7.

    1. Составить блочную λ-матрицу (A-lambda Emid E), приписав к характеристической матрице (A-lambda E) единичную матрицу того же порядка. При помощи элементарных преобразований, выполняемых над строками и столбцами блочной матрицы, привести ее левый блок к нормальному диагональному виду (7.9). При этом блочная матрица преобразуется к виду begin{pmatrix}Lambda(lambda)!!&vline!!&S_A(lambda)end{pmatrix}, где Lambda(lambda)=operatorname{diag}(e_1(lambda),ldots,e_n(lambda)) — матрица нормального диагонального вида, эквивалентная матрице (A-lambda E), a S_A(lambda) — некоторая элементарная λ-матрица.

    2. Составить блочную λ-матрицу (J_A-lambda Emid E), приписав к характеристической матрице (J_A-lambda E) единичную матрицу того же порядка. При помощи элементарных преобразований, выполняемых над строками и столбцами блочной матрицы, привести ее левый блок к нормальному диагональному виду (7.9). При этом блочная матрица преобразуется к виду begin{pmatrix}Lambda(lambda)!!&vline!!&S_J(lambda)end{pmatrix}, где Lambda(lambda)=operatorname{diag}(e_1(lambda),ldots,e_n(lambda)) -такая же матрица, что и в пункте 1, а S_J(lambda) — некоторая элементарная λ-матрица.

    3. Найти λ-матрицу S(lambda)=S_J^{-1}(lambda)cdot S_A(lambda).

    4. Вычислить левое значение S_{text{left}}(J_A) при замене переменной lambda матрицей J_A.

    5. Найти преобразующую матрицу S, обращая матрицу S_{text{left}}(J_A)colon~ S=[S_{text{left}}(J_A)]^{-1}.

    Действительно, при помощи элементарных преобразований характеристические матрицы (A-lambda E) и (J_A-lambda E) приводятся к одному и тому же нормальному диагональному виду Lambda(lambda):

    S_J(lambda)cdot (J_1-lambda E)cdot T_J(lambda)= Lambda(lambda)= S_A(lambda)cdot (A-lambda E)cdot T_A(lambda).

    Отсюда J_A-lambda E=S_J^{-1}(lambda)S_A(lambda)(A-lambda E)T_A(lambda)T_J^{-1}(lambda), то есть

    J_A-lambda E=S(lambda)cdot (A-lambda E)cdot T(lambda), где S(lambda)=S_J^{-1}(lambda) S_A(lambda),~ T(lambda)=T_A(lambda)T_J^{-1}(lambda).

    Согласно следствию теоремы j? 7.6, преобразующая числовая матрица S=[S_{text{left}}(J_A)]^{-1}, т.е. S — это матрица, /Обратная к левому значению λ-матрицы S_{text{left}}(J_A) при подстановке вместо lambda матрицы J_A.


    Замечания 7.7.

    1. Несмотря на простоту, первый способ мало пригоден из-за большого Объема вычислений. Количество решаемых уравнений n^2.

    2.Второй способ позволяет полностью решить задачу приведения матрицы к жордановой форме. Выполняя пункт 1, находим нормальный диагональный вид Delta(lambda)= operatorname{diag}(e_1(lambda),ldots,e_n(lambda)) характеристической матрицы (A-lambda E), и, как следствие, ее инвариантные множители e_1(lambda),ldots,e_n(lambda). Тогда выполняя пункты 3, 4 алгоритма нахождения жордановой формы, получим жорданову форму J_A матрицы A. Далее выполняем пункты 2, 3 второго способа и находим преобразующую матрицу.

    3. В пунктах 1,2 второго способа λ-матрицы, стоящие в левых блоках матриц (A-lambda Emid E) и (J_A-lambda Emid E), приводятся к нормальному диагональному виду при помощи элементарных преобразований над строками и над столбцами. При этом правые блоки этих матриц “учитывают” только преобразования строк, в отличие от алгоритма, описанного в пункте 5 замечаний 7.4.

    4. Преобразующая матрица S в (7.39) определяется неоднозначно. В самом деле, если S — преобразующая матрица, а M — невырожденная матрица, перестановочная с A (AM=MA) , то матрица T=MS будет также преобразующей. Действительно, матрица T — обратимая и

    T^{-1}cdot Acdot T= S^{-1}cdot M^{-1}cdot Acdot Mcdot S= S^{-1}cdot M^{-1}cdot Mcdot Acdot S=S^{-1}cdot Acdot S=J_A.

    Первый способ нахождения преобразующей матрицы, вообще говоря, позволяет найти все такие матрицы, перебирая в пункте 2 подходящие частные решения однородной системы. Второй способ позволяет найти одну преобразующую матрицу из этого множества. Как правило, на практике достаточно найти хотя бы одну преобразующую матрицу.

    5. Задачу приведения матрицы к диагональному виду можно считать частным случаем задачи приведения матрицы к жордановой форме. Если квадратная матрица A n-го порядка имеет n линейно независимых собственных векторов, то, как это следует из теоремы 7.5, ее жорданова форма J_A является диагональной матрицей (с собственными значениями на главной диагонали), а преобразующая матрица S может быть составлена из n линейно независимых собственных векторов матрицы A.


    Пример 7.15. Привести к жордановой форме следующие матрицы:

    A=begin{pmatrix}4&4\ -1&0 end{pmatrix}!;quad B=begin{pmatrix} 1&0&1\ 0&1&-1 end{pmatrix}!;quad C=begin{pmatrix} 1&1&1\ 1&1&1\ 1&1&1 end{pmatrix}!;quad D=begin{pmatrix} -2&5&-3\ -2&5&-3\ 1&-1&0 end{pmatrix}!.

    Решение для матрицы A

    Первый этап — нахождение жордановой формы матрицы A.

    1. Составляем характеристическую матрицу A-lambda E= begin{pmatrix}4-lambda&4\ -1&-lambdaend{pmatrix}.

    2. Инвариантные множители будем искать по формуле (7.11). Записываем миноры 1-го порядка: M_{{}_1}^{{}^1}=4-lambda, M_{{}_2}^{{}^1}=4, M_{{}_1}^{{}^2}=-1, M_{{}_2}^{{}^2}=-lambda. Находим наибольший общий делитель этих многочленов: d_1(lambda)=1. Минор второго порядка равен определителю характеристической матрицы M_{{}_{1,2}}^{{}^{1,2}}= begin{vmatrix}4-lambda&4\ -1&-lambda end{vmatrix}=(lambda-2)^2. Следовательно, d_2(lambda)=(lambda-2)^2. Таким образом, по формуле (7.11) получаем

    e_1(lambda)=d_1(lambda)=1,qquad e_2(lambda)=frac{d_2(lambda)}{d_1(lambda)}= (lambda-2)^2.

    3. По инвариантным множителям составляем таблицу (7.34) элемен тарных делителей. Так как собственное значение матрицы единственное (lambda_1=2), то таблица (7.34) состоит из одной строки (и одного столбца): (lambda-2)^2.

    4. Единственному элементарному делителю (lambda-2)^2 соответствует од на жорданова клетка 2-го порядка, образующая жорданову форму матрицы Acolon~ J_A= begin{pmatrix}2&1\0&2end{pmatrix}.

    Второй этап — нахождение преобразующей матрицы. Воспользуемся первым способом.

    1. Составляем матричное уравнение SJ_A=AS~Rightarrow, begin{pmatrix}x&y\z&w end{pmatrix}!cdot! begin{pmatrix}2&1\0&2end{pmatrix}= begin{pmatrix}4&4\-1&0end{pmatrix} !cdot! begin{pmatrix}x&y\z&wend{pmatrix}. Перемножая матрицы, получаем однородную систему уравнений относительно элементов искомой матрицы S=begin{pmatrix}x&y\ z&wend{pmatrix}colon

    begin{cases} 2x=4x+4z,\ 2z=-x,\x+2y=4y+4w,\ z+2w=-y,end{cases}Leftrightarrowquad begin{cases} 2x+4z=0,\ x+2z=0,\ x-2y-4w=0,\ y+z+2w=0.end{cases}

    2. Решаем эту систему. Расширенную матрицу системы приводим к ступенчатому, а затем к упрощенному виду:

    begin{pmatrix}2&0&4&0!!&vline!!&0\ 1&0&2&0!!&vline!!&0\ 1&-2&0&-4!!&vline!!&0\ 0&1&1&2!!&vline!!&0 end{pmatrix}sim begin{pmatrix} 1&0&2& 0!!&vline!!&0\ 0&0&0&0!!&vline!!&0\ 0&-2&-2&-4!!&vline!!&0\ 0&1&1& 2!!&vline!!&0 end{pmatrix}sim begin{pmatrix}1&0&2&0!!&vline!!&0\ 0&1&1&2!!& vline!!&0\ 0&0&0&0!!&vline!!&0\ 0&0&0&0!!&vline!!&0 end{pmatrix}sim begin{pmatrix} E_2!!&vline!!&A'!!&vline!!&o\hline O!!&vline!!&O!!&vline!!&o end{pmatrix}!,

    где A'=begin{pmatrix}2&0\1&2end{pmatrix}. Находим фундаментальную матрицу Phi и общее решение:

    Phi=begin{pmatrix}dfrac{-A'}{E_2}end{pmatrix}=begin{pmatrix}-2&0\-1&-2\hline 1&0\0&1end{pmatrix}!,quad begin{pmatrix}x\y\z\wend{pmatrix}=C_1cdot! begin{pmatrix}-2\-1\1\0end{pmatrix}+ C_2cdot! begin{pmatrix}0\-2\0\1end{pmatrix}!, где C_1,,C_2 — произвольные постоянные.

    Следовательно, любая преобразующая матрица имеет вид

    S=begin{pmatrix}x&y\z&wend{pmatrix}= begin{pmatrix}-2C_1&-C_1-2C_2\ C_1&C_2 end{pmatrix}!,

    где C_1,,C_2 — произвольные постоянные, но C_1ne0, так как матрица S невырожденная:

    det{S}=-2C_1cdot C_2+C_1^2+2C_1cdot C_2=C_1^2ne0.

    Например, при C_1=-1,~ C_2=0 получаем S=begin{pmatrix}2&1\-1&0 end{pmatrix}.

    Используем второй способ нахождения преобразующей матрицы.

    Составляем блочную матрицу: (A-lambda Emid E)= begin{pmatrix}4-lambda&4!!&vline!!&1&0\ -1&-lambda!!& vline!!&0&1end{pmatrix}. При помощи элементарных преобразований, выполняемых над строками и над столбцами этой блочной матрицы, приводим левый блок к нормальному диагональному виду. Меняем местами строки и умножаем первую строку на (-l). Выбрав ведущий элемент, равный единице, делаем равными нулю остальные элементы в первом столбце и в первой строке левого блока:

    begin{pmatrix}4-lambda&4!!&vline!!&1&0\ -1&-lambda!!& vline!!&0&1 end{pmatrix}sim begin{pmatrix}1&lambda !!&vline!!&0&-1\ 4-lambda&4!!& vline!!&1&0 end{pmatrix}sim begin{pmatrix}1&0 !!&vline!!&0&-1\ 0&(lambda-2)^2!!& vline!!&1&4-lambdaend{pmatrix}!. Следовательно, S_{A}(lambda)=begin{pmatrix}0&-1\ 1&4-lambdaend{pmatrix}!.

    2. Составляем блочную матрицу и приводим левый блок этой матрицы к нормальному диагональному виду

    begin{pmatrix}J_A-lambda E!!&vline!!&Eend{pmatrix}!=! begin{pmatrix}2-lambda&1!!&vline!!&1&0\ 0&2-lambda!!& vline!!&0&1end{pmatrix}!sim!  begin{pmatrix} 1&2-lambda!!&vline!!&1&0\ 2-lambda&0!!& vline!!&0&1end{pmatrix}!sim! begin{pmatrix} 1&lambda-2!!&vline!!&1&0\ 2-lambda&0!!& vline!!&0&1end{pmatrix}!sim! begin{pmatrix} 1&0!!&vline!!&1&0\ 0&(lambda-2)^2!!& vline!! lambda-20&1end{pmatrix}!.

    Следовательно, S_J(lambda)=begin{pmatrix}1&0\ lambda-2&1end{pmatrix}.

    3. Обращаем матрицу S_J^{-1}(lambda)=frac{1}{det{S_J(lambda)}}cdot S_J^{+}(lambda)= frac{1}{1}cdot! begin{pmatrix}1&0\2-lambda&1end{pmatrix}. Находим λ-матрицу, которая оказалась не зависящей от lambda:

    S(lambda)=S_J^{-1}(lambda)cdot S_A(lambda)= begin{pmatrix}1&0\ 2-lambda&1 end{pmatrix}!cdot! begin{pmatrix}0&-1\1&4-lambda end{pmatrix}= begin{pmatrix}0&-1\1&2 end{pmatrix}!.

    4. Так как λ-матрица S(lambda) оказалась числовой, то S_{text{left}}(J_A)=begin{pmatrix} 0&-1\1&2end{pmatrix}.

    5. Находим преобразующую матрицу S=[ S_{text{left}}(J_A)]^{-1}= begin{pmatrix}0&-1\1&2end{pmatrix}^{-1}= begin{pmatrix} 2&1\-1&0 end{pmatrix}. Такой же результат, как частный случай, был получен первым способом.

    Решение для матрицы B

    Будем искать преобразующую матрицу S вторым способом. При этом попутно найдем и жорданову форму J_B матрицы B (см. пункт 2 замечаний 7.7).

    1. Составляем блочную матрицу: (B-lambda Emid E)= begin{pmatrix} 1-lambda&0&1!!&vline!!&1&0&0\ 0&1-lambda&-1!!&vline!!&0&1&0\ -1&-1&1-lambda!!&vline!!&0&0&1 end{pmatrix}!.

    Выполняя элементарные преобразования над строками и над столбцами этой блочной матрицы, приводим левый блок к нормальному диагональному виду. Меняем местами первую и третью строки и умножаем первую строку на (-1). Выбрав ведущий элемент, равный единице, делаем равными нулю остальные элементы в первом столбце и в первой строке левого блока:

    begin{gathered}begin{pmatrix}1-lambda&0&1!!&vline!!&1&0&0\ 0&1-lambda&-1!!&vline!!&0&1&0\ -1&-1&1-lambda!!&vline!!&0&0&1end{pmatrix}sim begin{pmatrix}-1&-1&1-lambda!!&vline!!&0&0&1\ 0&1-lambda&-1!!&vline!!&0&1&0\ 1-lambda&0&1!!& vline!!&1&0&0end{pmatrix}sim\[2pt] simbegin{pmatrix} 1&1&lambda-1!!&vline!!&0&0&-1\ 0&1-lambda&-1!!&vline!!&0&1&0\ 1-lambda&0&1!!&vline!!&1&0&0end{pmatrix}sim begin{pmatrix} 1&0&0!!& vline!!&0&0&-1\ 0&1-lambda&-1!!&vline!!&0&1&0\ 0&lambda-1&(lambda-1)^2+1!!&vline!!&1&0&1-lambdaend{pmatrix}!.end{gathered}

    Меняем местами второй и третий столбцы и умножаем вторую строку на (-1). Выбрав ведущий элемент, равный единице, делаем равными нулю остальные элементы во втором столбце и во второй строке левого блока:

    begin{gathered} begin{pmatrix} 1&0&0!!& vline!!&0&0&-1\ 0&1-lambda&-1!!& vline!!&0&1&0\ 0&lambda-1&(lambda-1)^2+1!!&vline!!&1&0&1-lambdaend{pmatrix}sim begin{pmatrix} 1&0&0!!& vline!!&0&0&-1\ 0&-1&1-lambda!!&vline!!&0&1&0\ 0&(lambda-1)^2+1&lambda-1!!&vline!!&1&0&1-lambdaend{pmatrix}sim\[2pt] begin{pmatrix} 1&0&0!!& vline!!&0&0&-1\ 0&1&lambda-1!!&vline!!&0&-1&0\ 0&(lambda-1)^2+1&lambda-1!!&vline!!&1&0&1-lambdaend{pmatrix}sim begin{pmatrix} 1&0&0!!& vline!!&0&0&-1\ 0&1&0!!&vline!!&0&-1&0\ 0&0&(lambda-1)^3!!&vline!!&1&(lambda-1)^2+1&1-lambdaend{pmatrix}!.end{gathered}

    Умножая третий столбец на (-1), получаем нормальную диагональную форму характеристической матрицы и матрицу S_B(lambda):

    B-lambda Esim begin{pmatrix}1&0&0\ 0&1&0\ 0&0&(lambda-1)^3end{pmatrix}= Lambda(lambda),quad S_B(lambda)=begin{pmatrix}0&0&-1\0&-1&0\ 1&lambda^2-2 lambda+2& 1-lambdaend{pmatrix}!.

    Находим жорданову форму J_B матрицы B (см. пункт 2 замечаний 7.7). По инвариантным множителям e_1(lambda)=e_2(lambda)=1, e_3(lambda)= (lambda-1)^3 составляем таблицу элементарных делителей. Таблица состоит из одного делителя (lambda-1)^3, которому соответствует одна жорданова клетка 3-го порядка (для собственного значения lambda_1=lambda_2=lambda_3):

    J_B=begin{pmatrix}1&1&0\0&1&1\0&0&1end{pmatrix}!.

    2. Составляем блочную матрицу

    (J_B-lambda Emid E)= begin{pmatrix}1-lambda&1&0!!&vline!!&1&0&0\ 0&1-lambda&1!!&vline!!&0&1&0\ 0&0&1-lambda!!&vline!!&0&0&1 end{pmatrix}!.

    Приводим левый блок этой матрицы к нормальному диагональному виду. Меняем местами столбцы левого блока

    begin{pmatrix}1-lambda&1&0!!&vline!!&1&0&0\ 0&1-lambda&1!!& vline!!& 0&1&0\ 0&0&1-lambda!!&vline!!&0&0&1 end{pmatrix}sim begin{pmatrix} 1&0&1-lambda!!& vline!!&1&0&0\ 1-lambda&1&0!!&vline!!&0&1&0\ 0&1-lambda&0!!&vline!!&0&0&1 end{pmatrix}!.

    Выбираем ведущий элемент, равный единице, в левом верхнем углу. Делаем в левом блоке равными нулю все элементы ведущей (первой) строки и ведущего (первого) столбца, за исключением ведущего элемента:

    begin{pmatrix} 1&0&1-lambda!!& vline!!&1&0&0\ 1-lambda&1&0!!&vline!!& 0&1&0\ 0&1-lambda&0!!&vline!!&0&0&1 end{pmatrix} sim begin{pmatrix} 1&0&0!!& vline!!&1&0&0\ 0&1&-(lambda-1)^2!!&vline!!&lambda-1&1&0\ 0&1-lambda& 0!!&vline!!& 0&0&1 end{pmatrix}!.

    Выбираем ведущий элемент, равный единице, на пересечении второго столбца и второй строки. К третьей строке прибавляем вторую, умноженную на (lambda-1), а затем к третьему столбцу прибавляем второй, умноженный на (lambda-1)^2, и, наконец, умножаем третий столбец на (-1). В результате получим

    begin{pmatrix} 1&0&0!!& vline!!&1&0&0\ 0&1&-(lambda-1)^2!!&vline!!& lambda-1&1&0\ 0&1-lambda&0!!&vline!!&0&0&1 end{pmatrix}sim begin{pmatrix} 1&0&0!!& vline!!&1&0&0\ 0&1&0!!&vline!!&lambda-1&1&0\ 0&0&(lambda-1)^3!!&vline!!&(lambda-1)^2&lambda-1&1 end{pmatrix}!.

    Следовательно, S_J(lambda)=begin{pmatrix}1&0&0\ lambda-1&1&0\ (lambda-1)^2&lambda-1&1 end{pmatrix}!,~ Lambda(lambda)= operatorname{diag}Bigl(1,1,(lambda-1)^3Bigr)

    3. Обращаем матрицу S_J^{-1}(lambda)= frac{1}{det{S_J(lambda)}}cdot S_J^{+}(lambda)= begin{pmatrix}1&0&0\ 1-lambda&1&0\ 0&1-lambda&1end{pmatrix}.

    Находим λ-матрицу S(lambda)=S_J^{-1}(lambda)cdot S_B(lambda):

    S(lambda)= begin{pmatrix}1&0&0\ 1-lambda&1&0\ 0&1-lambda&1 end{pmatrix}!cdot! begin{pmatrix}0&0&-1\ 0&-1&-1\ 1&(lambda-1)^2+1&1-lambda end{pmatrix}= begin{pmatrix}0&0&-1\ 0&-1&lambda-1\ 1&lambda^2-lambda+1&1-lambda end{pmatrix}!.

    Представляем λ-матрицу S(lambda) в виде многочлена с матричными коэффициентами, ставя переменную lambda перед коэффициентами:

    S(lambda)= lambda^2cdot! begin{pmatrix}0&0&0\ 0&0&0\ 0&1&0end{pmatrix}+ lambdacdot! begin{pmatrix}0&0&0\ 0&0&1\ 0&-1&-1end{pmatrix}+ begin{pmatrix}0&0&-1\ 0&-1&-1\ 1&1&1 end{pmatrix}!.

    Подставляем вместо аргумента lambda матрицу J_B:

    begin{aligned}S_{text{left}}(J_B)&= begin{pmatrix}1&1&0\ 0&1&1\ 0&0&1 end{pmatrix}^2!cdot! begin{pmatrix}0&0&0\ 0&0&0\ 0&1&0end{pmatrix}+ begin{pmatrix} 1&1&0\ 0&1&1\ 0&0&1end{pmatrix}!cdot! begin{pmatrix}0&0&0\0&0&1\0&-1&-1 end{pmatrix}+ begin{pmatrix}0&0&-1\0&-1&-1\1&1&1end{pmatrix}=\[2pt] &=begin{pmatrix} 1&2&1\ 0&1&2\ 0&0&1 end{pmatrix}!cdot! begin{pmatrix}0&0&0\ 0&0&0\ 0&1&0 end{pmatrix}+ begin{pmatrix}0&0&1\ 0&-1&0\ 0&-1&-1end{pmatrix}+ begin{pmatrix}0&0&-1\ 0&-1&-1\ 1&1&1 end{pmatrix}= begin{pmatrix}0&1&0\0&0&-1\ 1&1&0 end{pmatrix}!. end{aligned}

    5. Обращая полученную матрицу, находим преобразующую

    S=Bigl[S_{text{left}}(J_B)Bigr]^{-1}= begin{pmatrix}0&1&0\0&0&-1\ 1&1&0end{pmatrix}^{-1}= begin{pmatrix}-1&0&1\ 1&0&0\ 0&-1&0end{pmatrix}!.

    Сделаем проверку, сравнивая левую и правую части равенства SJ_B=BS:

    begin{aligned}Scdot J_B&= begin{pmatrix}-1&0&1\ 1&0&0\ 0&-1&0 end{pmatrix} !cdot! begin{pmatrix}1&1&0\ 0&1&1\ 0&0&1end{pmatrix}= begin{pmatrix}-1&-1&1\ 1&1&0\ 0&-1&-1 end{pmatrix}!;\[5pt] Bcdot S&= begin{pmatrix}1&0&1\ 0&1&-1\ -1&-1&1 end{pmatrix} !cdot! begin{pmatrix}-1&0&1\ 1&0&0\ 0&-1&0end{pmatrix}= begin{pmatrix}-1&-1&1\ 1&1&0\ 0&-1&-1 end{pmatrix}!. end{aligned}

    Следовательно, равенство верное.

    Решение для матрицы C

    Применяем второй способ нахождения преобразующей матрицы, попутно определяя жорданову форму J_C матрицы C (см. пункт 2 замечаний 7.7).

    1. Составляем блочную матрицу:

    (C-lambda Emid E)= begin{pmatrix}1-lambda&1&1!!&vline!!&1&0&0\ 1&1-lambda&1!!&vline!!&0&1&0\ 1&1&1-lambda!!&vline!!&0&0&1 end{pmatrix}!.

    Элементарными преобразованиями приводим левый ее блок к нормальному диагональному виду (см. пример 7.12). Меняем местами первый и третий столбцы, выбираем первую строку и первый столбец в качестве ведущих и делаем равными нулю все элементы выбранной строки (в пределах левого блока) и выбранного столбца, за исключением ведущего элемента:

    begin{pmatrix}1&1&1-lambda!!&vline!!&1&0&0\ 1&1-lambda&1!!& vline!!& 0&1&0\ 1-lambda&1&1!!&vline!!&0&0&1 end{pmatrix}sim begin{pmatrix} 1&0&0!!& vline!!&1&0&0\ 0&-lambda&lambda!!& vline!!&-1&1&0\ 0&lambda&2 lambda-lambda^2!!& vline!!&lambda-1&0&1 end{pmatrix}!.

    Умножаем второй столбец на (-l), выбираем ведущими вторую строку и второй столбец, делаем равными нулю соответствующие элементы этой строки и столбца:

    begin{pmatrix} 1&0&0!!& vline!!&1&0&0\ 0&lambda&lambda!!& vline!!&-1&1&0\ 0&-lambda&2 lambda-lambda^2!!& vline!!&lambda-1&0&1 end{pmatrix}sim begin{pmatrix} 1&0&0!!& vline!!&1&0&0\ 0&lambda&0!!& vline!!&-1&1&0\ 0&0&3 lambda-lambda^2!!& vline!!&lambda-2&1&1 end{pmatrix}!.

    Умножим третий столбец на (-1), чтобы старший коэффициент многочлена был равен единице. Итак, получили матрицу S_C(lambda)= begin{pmatrix} 1&0&0\-1&1&0\ lambda-2&1&1 end{pmatrix} и нормальный диагональный вид характеристической матрицы (C-lambda E)sim operatorname{diag}(1,lambda,lambda(lambda-3)). Составляем таблицу (7.33) инвариантных множителей:

    e_1(lambda)=1;qquad e_2(lambda)=lambda;qquad e_3(lambda)=lambda(lambda-3).

    Составляем таблицу (7.34) элементарных делителей: begin{vmatrix}lambda,&quad lambda,\ lambda-3.&quad {}end{vmatrix}. Каждому из трех делителей соответствует жорданова клетка 1-го порядка (для собственных значений lambda_1=lambda_2=0, lambda_3=3), т.е. жорданова форма матрицы C — диагональная матрица:

    J_C=operatorname{diag}Bigl(J_1(0),,J_1(0),,J_1(3)Bigr)= begin{pmatrix}0&0&0\ 0&0&0\ 0&0&3 end{pmatrix}!.

    2. Составляем блочную матрицу

    Bigl(J_C-lambda Emid EBigr)= begin{pmatrix} -lambda&0&0!!& vline!!&1&0&0\ 0&-lambda&0!!& vline!!&0&1&0\ 0&0&3-lambda!!& vline!!&0&0&1 end{pmatrix}!.

    Левый блок этой матрицы имеет диагональный вид, который не является нормальным, так как (3-lambda) не делится на (-lambda). Прибавляем к первому столбцу третий, к третьей строке прибавляем первую, умноженную на (-1), меняем местами первую и третью строки:

    Bigl(J_C-lambda Emid EBigr)sim! begin{pmatrix} -lambda&0&0!!& vline!!&1&0&0\ 0&-lambda&0!!& vline!!&0&1&0\ 3-lambda&0&3-lambda!!& vline!!&0&0&1 end{pmatrix}!sim! begin{pmatrix} -lambda&0&0!!& vline!!&1&0&0\ 0&-lambda&0!!& vline!!&0&1&0\ 3&0&3-lambda!!& vline!!&-1&0&1 end{pmatrix}!sim! begin{pmatrix} 3&0&3-lambda!!& vline!!&-1&0&1\ 0&-lambda&0!!& vline!!&0&1&0\ -lambda&0&0!!& vline!!&1&0&0 end{pmatrix}!.

    Разделим первый столбец на 3, возьмем ведущий элемент, стоящий в левом верхнем углу, и сделаем равными нулю соответствующие элементы:

    begin{pmatrix} 1&0&3-lambda!!& vline!!&-1&0&1\ 0&-lambda&0!!& vline!!&0&1&0\ -lambda/3&0&0!!& vline!!&1&0&0 end{pmatrix}sim begin{pmatrix} 1&0&0!!& vline!!&-1&0&1\ 0&-lambda&0!!& vline!!&0&1&0\ 0&0&lambda-lambda^2/3!!& vline!!&1-lambda/3&0&lambda/3 end{pmatrix}!.

    Умножив второй столбец на (-1), а третью строку на (-3), получим в левом блоке нормальный диагональный вид Lambda(lambda)= operatorname{diag}(1,lambda,lambda^2-3 lambda), а в правом блоке матрицу

    S_J(lambda)= begin{pmatrix} -1&0&1\0&1&0\ lambda-3&0&-lambdaend{pmatrix}!.

    3. Обращаем матрицу S_J(lambda):

    S_J^{+}(lambda)= frac{1}{det{S_J(lambda)}}cdot S_J^{+}(lambda)= frac{1}{3}cdot! begin{pmatrix}-lambda&0&-1\ 0&3&0\ 3-lambda&0&-1end{pmatrix}= begin{pmatrix} -lambda/3&0&-1/3\ 0&1&0\ 1-lambda/3&0&-1/3end{pmatrix}!.

    Находим λ-матрицу S(lambda)=S_J^{-1}(lambda)cdot S_C(lambda):

    S(lambda)= begin{pmatrix}-lambda/3&0&-1/3\ 0&1&0\ 1-lambda/3&0&-1/3 end{pmatrix}!cdot! begin{pmatrix}1&0&0\ -1&1&0\ lambda-2&1&1end{pmatrix}= begin{pmatrix}2/3-2 lambda/3&-1/3&-1/3\ -1&1&0\ 5/2-2 lambda/3&-1/3&-1/3 end{pmatrix}!.

    4. Представляем λ-матрицу S(lambda) в виде многочлена с матричными коэффициентами, помещая переменную A перед коэффициентами:

    S(lambda)= lambdacdot! begin{pmatrix} -2/3&0&0\ 0&0&0\ -2/3&0&0end{pmatrix}+ begin{pmatrix}2/3&-1/3&-1/3\ -1&1&0\ 5/3&-1/3&-1/3end{pmatrix}!.

    Подставляем вместо аргумента lambda матрицу J_C:

    S_{text{left}}(J_C)= begin{pmatrix} 0&0&0\ 0&0&0\ 0&0&3 end{pmatrix}!cdot! begin{pmatrix}-2/3&0&0\ 0&0&0\ -2/3&0&0end{pmatrix}+ begin{pmatrix}2/3&-1/3&-1/3\ -1&1&0\ 5/3&-1/3&-1/3end{pmatrix}= begin{pmatrix}2/3&-1/3&-1/3\ -1&1&0\ -1/3&-1/3&-1/3 end{pmatrix}!.

    5. Обращая полученную матрицу, находим преобразующую

    S=begin{pmatrix}2/3&-1/3&-1/3\ -1&1&0\ -1/3&-1/3&-1/3end{pmatrix}^{-1}= begin{pmatrix}1&0&-1\ 1&1&-1\ -2&-1&-1 end{pmatrix}!.

    Сделаем проверку, вычислив матрицу C=SJ_CS^{-1}:

    begin{aligned}C&= begin{pmatrix}1&0&-1\ 1&1&-1\ -2&-1&-1end{pmatrix}!cdot! begin{pmatrix}0&0&0\ 0&0&0\ 0&0&3 end{pmatrix}!cdot! begin{pmatrix}2/3&-1/3&-1/3\ -1&1&0\ -1/3&-1/3&-1/3end{pmatrix}=\[2pt] &= begin{pmatrix}1&0&-1\ 1&1&-1\ -2&-1&-1 end{pmatrix}!cdot! begin{pmatrix}0&0&0\ 0&0&0\ -1&-1&-1 end{pmatrix}= begin{pmatrix} 1&1&1\1&1&1\1&1&1end{pmatrix}!.end{aligned}

    Заметим, что в примере 7.10 эта матрица была приведена к диагональному виду. Поэтому, согласно пункта 5 замечаний 7.7, ее жорданова форма является диагональной, а преобразующая матрица составляется из линейно независимых собственных векторов:

    J_C= begin{pmatrix}0&0&0\ 0&0&0\ 0&0&3end{pmatrix}!,qquad S=begin{pmatrix} 1&1&1\ 0&-1&1\ -1&0&1 end{pmatrix}!.

    Эта матрица S отличается от найденной вторым способом. Но она тоже является преобразующей (проверка равенства J_A=S^{-1}AS была фактически выполнена в примере 7.10).

    Решение для матрицы D

    Применяем второй способ нахождения преобразующей матрицы S, попутно определяя жорданову форму J_D матрицы D (см. пункт 2 замечаний 7.7).

    1. Составляем блочную матрицу:

    bigl(D-lambda E~|~Ebigr)= left(!!begin{array}{ccc|ccc}-2-lambda&5&-3&1&0&0\-2&5-lambda&-3&0&1&0\1&-1&-lambda&0&0&1end{array}!!right)!.

    Элементарными преобразованиями приводим левый ее блок к нормальному диагональному виду. Взяв элемент, равный единице, в качестве ведущего, делаем равными нулю все элементы ведущего (первого) столбца и ведущей (третьей) строки (в пределах левого блока):

    bigl(D-lambda E~|~Ebigr)sim left(!! begin{array}{ccc|ccc}0&3-lambda&-3-2 lambda-lambda^2&1&0&lambda+2\ 0&3-lambda&-3-2 lambda&0&1&2\ 1&0&0&0&0&1end{array} !!right)!.

    К первой строке прибавляем вторую, умноженную на (-1), затем к третьему столбцу прибавляем второй, умноженный на (-2)colon

    left(!! begin{array}{ccc|ccc}0&0&-lambda^2&1&-1&lambda\ 0&3-lambda&-3-2lambda&0&1&2\ 1&0&0&0&0&1 end{array} !!right)sim left(!! begin{array}{ccc|ccc}0&0&-lambda^2&1&-1&lambda\ 0&3-lambda&-9&0&1&2\ <br />1&0&0&0&0&1 end{array} !!right)!.

    Ко второму столбцу прибавляем третий, умноженный на tfrac{3-lambda}{9}, а затем к первой строке прибавляем вторую, умноженную на (-lambda^2slash9)colon

    left(!! begin{array}{ccc|ccc}0&frac{lambda^2(lambda-3)}{9}&-lambda^2&1&-1&lambda\ 0&0&-9&0&1&2\ 1&0&0&0&0&1 end{array} !!right)sim left(!! begin{array}{ccc|ccc}0&frac{lambda^2(lambda-3)}{9}&0&1&-1-frac{lambda^2}{9}&lambda-frac{2lambda^2}{9}\ 0&0&-9&0&1&2\ 1&0&0&0&0&1 end{array} !!right)!.

    Меняем местами второй и третий столбцы, затем умножим первую строку на 9, второй столбец разделим на (-9):

    left(!! begin{array}{ccc|ccc}0&0&frac{lambda^2(lambda-3)}{9}&1&frac{-9-lambda^2}{9}&frac{9lambda-2lambda^2}{9}\ 0&-9&0&0&1&2\ 1&0&0&0&0&1 end{array} !!right)sim left(!! begin{array}{ccc|ccc}0&0&lambda^2(lambda-3)&9&-9-lambda^2&9lambda-2lambda^2\ 0&1&0&0&1&2\ 1&0&0&0&0&1 end{array} !!right)!.

    Меняем местами первую и третью строки, после чего получим в левом блоке нормальный диагональный вид характеристической матрицы (D-lambda E), a в правом блоке – матрицу S_D(lambda)colon

    (D-lambda E)sim begin{pmatrix}1&0&0\0&1&0\0&0&lambda^2(lambda-3)end{pmatrix}!,quad S_D(lambda)= begin{pmatrix}0&0&1\0&1&2\9&-9-lambda^2&9 lambda-2 lambda^2end{pmatrix}!.

    Составляем таблицу (7.33) инвариантных множителей:

    begin{gathered}e_1(lambda)=1;\ e_2(lambda)=1;\ e_3(lambda)=lambda^2(lambda-3).end{gathered}

    Составляем таблицу (7.34) элементарных делителей:

    begin{gathered}lambda^2,\ lambda-3.end{gathered}

    Делителю lambda^2 соответствует жорданова клетка 2-го порядка, а делителю (lambda-3) – жорданова клетка 1-го порядка, т.е. жорданова форма матрицы D имеет вид:

    J_D=operatorname{diag}bigl(J_2(0),J_1(3)bigr)= begin{pmatrix}0&1&0\0&0&0\0&0&3end{pmatrix}!.

    2. Составляем блочную матрицу:

    bigl(J_D-lambda E~|~Ebigr)=left(!! begin{array}{ccc|ccc}-lambda&1&0&1&0&0\ 0&-lambda&0&0&1&0\ 0&0&3-lambda&0&0&1 end{array} !!right)!.

    Приводим левый блок этой матрицы к нормальному диагональному виду. Выбираем единицу в качестве ведущего элемента и делаем равными нулю соответствующие элементы левого блока, а затем меняем местами первый и второй столбцы:

    bigl(J_D-lambda E~|~Ebigr)sim left(!! begin{array}{ccc|ccc}0&1&0&1&0&0\-lambda^2&0&0&lambda&1&0\ 0&0&3-lambda&0&0&1 end{array} !!right)sim left(!! begin{array}{ccc|ccc}1&0&0&1&0&0\ 0&-lambda^2&0&lambda&1&0\ 0&0&3-lambda&0&0&1 end{array} !!right)!.

    Полученный диагональный вид не является нормальным, так как (3-lambda) не делится на (-lambda^2). Поэтому прибавляем ко второму столбцу третий, умноженный на (-1), а затем ко второй строке прибавляем третью, умноженную на (lambda+3)colon

    left(!! begin{array}{ccc|ccc}1&0&0&1&0&0\ 0&-lambda^2&0&lambda&1&0\ 0&lambda-3&3-lambda&0&0&1 end{array} !!right)sim left(!! begin{array}{ccc|ccc}1&0&0&1&0&0\ 0&-9&9-lambda^2&lambda&1&lambda+3\ 0&lambda-3&3-lambda&0&0&1 end{array} !!right)!.

    Разделив второй столбец на (-9), получим элемент, равный единице, который принимаем за ведущий, и делаем равными нулю соответствующие элементы второй строки и второго столбца:

    left(!! begin{array}{ccc|ccc}1&0&0&1&0&0\ 0&1&9-lambda^2&lambda&1&lambda+3\ 0&frac{3-lambda}{9}&3-lambda&0&0&1 end{array} !!right)sim left(!! begin{array}{ccc|ccc}1&0&0&1&0&0\ 0&1&0&lambda&1&lambda+3\ <br />0&0&frac{lambda^2(3-lambda)}{9}&frac{lambda(lambda-3)}{9}&frac{lambda-3}{9}&frac{lambda^2}{9}end{array} !!right)!.

    Умножив третью строку на (-9), получим в левом блоке нормальный диагональный вид характеристической матрицы (J_D-lambda E)sim operatorname{diag}bigl(1,1,lambda^2 (lambda-3)bigr), а в правом блоке – матрицу

    S_J(lambda)=begin{pmatrix}1&0&0\ lambda&1&lambda+3\ 3 lambda-lambda^2&3-lambda&-lambda^2 end{pmatrix}!.

    3. Обращаем матрицу S_J(lambda)colon

    S_{J}^{-1}(lambda)= frac{1}{det S_{J}(lambda)}cdot S_{J}^{+}(lambda)= frac{1}{-9}! begin{pmatrix}-9&0&0\ 9 lambda&-lambda^2&-lambda-3\ 0&lambda-3&1 end{pmatrix}!.

    Находим λ-матрицу S(lambda)=S_{J}^{-1}(lambda)cdot S_{D}(lambda)colon

    begin{aligned}S(lambda)&=frac{1}{-9}cdot! begin{pmatrix}-9&0&0\ 9 lambda&-lambda^2&-lambda-3\ 0&lambda-3&1 end{pmatrix}!cdot! begin{pmatrix}0&0&1\0&1&2\ 9&-9-lambda^2&9lambda-2lambda^2end{pmatrix}=\ &=-frac{1}{9}cdot! begin{pmatrix}0&0&-9\-9lambda-27&lambda^3+2lambda^2+9lambda+27&2lambda^3-5lambda^2-18lambda\ 9&-lambda^2+lambda-12&-2lambda^2+11lambda-6end{pmatrix}!.end{aligned}

    4. Представляем λ-матрицу S(lambda) в виде многочлена с матричными коэффициентами, помещая переменную lambda перед коэффициентами:

    S(lambda)=-frac{lambda^3}{9}! begin{pmatrix}0&0&0\0&1&2\0&0&0 end{pmatrix}!-frac{lambda^2}{9}! begin{pmatrix}0&0&0\0&2&-5\0&-1&-2end{pmatrix}!-frac{lambda}{9}! begin{pmatrix}0&0&0\-9&9&-18\0&1&11end{pmatrix}!-frac{1}{9}! begin{pmatrix}0&0&-9\-27&27&0\9&-12&-6end{pmatrix}

    Подставляем вместо аргумента lambda матрицу J_D. Учитывая, что

    J_D=begin{pmatrix}0&1&0\0&0&0\0&0&3end{pmatrix}!,quad J_{D}^{2}=begin{pmatrix}0&0&0\0&0&0\0&0&9end{pmatrix}!,quad J_{D}^{3}=begin{pmatrix}0&0&0\0&0&0\0&0&27end{pmatrix}!,

    получаем

    S_{text{left}}(J_D)=frac{-1}{9}cdot left[!begin{pmatrix} 0&0&0\0&0&0\0&-9&-18 end{pmatrix}+begin{pmatrix}-9&9&-18\0&0&0\0&3&33 end{pmatrix}+begin{pmatrix} 0&0&-9\-27&27&0\9&-12&-6 end{pmatrix}!right]=begin{pmatrix}1&-1&3\3&-3&0\-1&2&-1end{pmatrix}!.

    5. Обращая полученную матрицу, находим преобразующую

    S={begin{pmatrix}1&-1&3\3&-3&0\-1&2&-1end{pmatrix}!!}^{-1}=frac{1}{9}cdot! begin{pmatrix}3&5&9\3&2&9\3&-1&0end{pmatrix}!.

    Сделаем проверку, вычислив матрицу D=S,J_D,S^{-1}colon

    begin{aligned}D&=frac{1}{9}cdot! begin{pmatrix}3&5&9\3&2&9\3&-1&0end{pmatrix}!cdot! begin{pmatrix}0&1&0\0&0&0\0&0&3end{pmatrix}!cdot! begin{pmatrix}1&-1&3\3&-3&0\-1&2&-1end{pmatrix}=\&=frac{1}{9}cdot! begin{pmatrix}0&3&27\0&3&27\0&3&0end{pmatrix}!cdot! begin{pmatrix}1&-1&3\3&-3&0\-1&2&-1end{pmatrix}=begin{pmatrix}-2&5&-3\-2&5&-3\1&-1&0end{pmatrix}!.<br />end{aligned}

    Получили заданную матрицу D.

    Математический форум (помощь с решением задач, обсуждение вопросов по математике).

    Кнопка "Поделиться"

    Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

    Добавить комментарий