Как найти значение числового выражения пример

В данной статье рассмотрено, как находить значения математических выражений. Начнем с простых числовых выражений и далее будем рассматривать случаи по мере возрастания их сложности. В конце приведем выражение, содержащее буквенные обозначения, скобки, корни, специальные математические знаки, степени, функции и т.д. Всю теорию, по традиции, снабдим обильными и подробными примерами.

Как найти значение числового выражения?

Числовые выражения, помимо прочего, помогают описывать условие задачи математическим языком. Вообще математические выражения могут быть как очень простыми, состоящими из пары чисел и арифметических знаков, так и очень сложными, содержащими функции, степени, корни, скобки и т.д. В рамках задачи часто необходимо найти значение того или иного выражения. О том, как это делать, и пойдет речь ниже.

Простейшие случаи

Это случаи, когда выражение не содержит ничего, кроме чисел и арифметических действий. Для успешного нахождения значений таких выражений понадобятся знания порядка выполнения арифметических действий без скобок, а также умение выполнять действия с различными числами. 

Если в выражении есть только числа и арифметические знаки “+”, “·”, “-“, “÷”, то действия выполняются слева направо в следующем порядке: сначала умножение и деление, затем сложение и вычитание. Приведем примеры.

Пример 1. Значение числового выражения

Пусть нужно найти значения выражения 14-2·15÷6-3.

Выполним сначала умножение и деление. Получаем:

14-2·15÷6-3=14-30÷6-3=14-5-3.

Теперь проводим вычитание и получаем окончательный результат:

14-5-3=9-3=6.

Пример 2. Значение числового выражения

Вычислим: 0,5-2·-7+23÷234·1112.

Сначала выполняем преобразование дробей, деление и умножение:

0,5-2·-7+23÷234·1112=12-(-14)+23÷114·1112

12-(-14)+23÷114·1112=12-(-14)+23·411·1112=12-(-14)+29.

Теперь займемся сложением и вычитанием. Сгруппируем дроби и приведем их к общему знаменателю:

12-(-14)+29=12+14+29=14+1318=141318.

Искомое значение найдено.

Выражения со скобками

Если выражение содержит скобки, то они определяют порядок действий в этом выражении. Сначала выполняются действия в скобках, а потом уже все остальные. Покажем это на примере.

Пример 3. Значение числового выражения

Найдем значение выражения 0,5·(0,76-0,06).

В выражении присутствуют скобки, поэтому сначала выполняем операцию вычитания в скобках, а уже потом – умножение.

0,5·(0,76-0,06)=0,5·0,7=0,35.

Значение выражений, содержащих скобки в скобках, находится по такому же принципу.

Пример 4. Значение числового выражения

Вычислим значение 1+2·1+2·1+2·1-14.

Выполнять действия будем начиная с самых внутренних скобок, переходя к внешним. 

1+2·1+2·1+2·1-14=1+2·1+2·1+2·34

1+2·1+2·1+2·34=1+2·1+2·2,5=1+2·6=13.

В нахождении значений выражений со скобками главное – соблюдать последовательность действий.

Выражения с корнями

Математические выражения, значения которых нам нужно найти, могут содержать знаки корня. Причем, само выражение может быть под знаком корня. Как быть в таком случае? Сначала нужно найти значение выражения под корнем, а затем извлечь корень из числа, полученного в результате. По возможности от корней в числовых выражениях нужно лучше избавляться, заменяя из на числовые значения.

Пример 5. Значение числового выражения

Вычислим значение выражения с корнями -2·3-1+60÷43+3·2,2+0,1·0,5.

Сначала вычисляем подкоренные выражения.

-2·3-1+60÷43=-6-1+153=83=2

2,2+0,1·0,5=2,2+0,05=2,25=1,5.

Теперь можно вычислить значение всего выражения.

-2·3-1+60÷43+3·2,2+0,1·0,5=2+3·1,5=6,5

Часто найти значение выражения с корнями часто нужно сначала провести преобразование исходного выражения. Поясним это на еще одном примере.

Пример 6. Значение числового выражения

Сколько будет 3+13-1-1

Как видим, у нас нет возможности заменить корень точным значением, что усложняет процесс счета. Однако, в данном случае можно применить формулу сокращенного умножения.

3+13-1=3-1.

Таким образом:

3+13-1-1=3-1-1=1.

Выражения со степенями

Если в выражении имеются степени, их значения нужно вычислить прежде, чем приступать ко всем остальным действиям. Бывает так, что сам показатель или основание степени являются выражениями. В таком случае, сначала вычисляют значение этих выражений, а затем уже значение степени.

Пример 7. Значение числового выражения

Найдем значение выражения 23·4-10+161-123,5-2·14.

Начинаем вычислять по порядку.

23·4-10=212-10=22=4

16·1-123,5-2·14=16*0,53=16·18=2.

Осталось только провести операцию сложение и узнать значение выражения:

23·4-10+161-123,5-2·14=4+2=6.

Также часто целесообразно бывает провести упрощение выражения  с использованием свойств степени.

Пример 8. Значение числового выражения

Вычислим значение следующего выражения: 2-25·45-1+3136.

Показатели степеней опять таковы, что их точные числовые значения получить не удастся. Упростим исходное выражение, чтобы найти его значение.

2-25·45-1+3136=2-25·225-1+313·6

2-25·225-1+313·6=2-25·22·5-2+32=22·5-2-25+32

22·5-2-25+32=2-2+3=14+3=314

Выражения с дробями

Если выражение содержит дроби, то при вычислении такого выражения все дроби в нем нужно представить в виде обыкновенных дробей и вычислить их значения. 

Если в числителе и знаменателе дроби присутствуют выражения, то сначала вычисляются значения этих выражений, и записывается финальное значение самой дроби. Арифметические действия выполняются в стандартном порядке. Рассмотрим решение примера.

Пример 9. Значение числового выражения

Найдем значение выражения, содержащего дроби: 3,22-3·7-2·36÷1+2+39-6÷2.

Как видим, в исходном выражении есть три дроби. Вычислим сначала их значения.

3,22=3,2÷2=1,6

7-2·36=7-66=16

1+2+39-6÷2=1+2+39-3=66=1.

Перепишем наше выражение и вычислим его значение:

1,6-3·16÷1=1,6-0,5÷1=1,1

Часто при нахождении значений выражений удобно бывает проводить сокращение дробей. Существует негласное правило: любое выражение перед нахождением его значения лучше всего упростить по максимуму, сводя все вычисления к простейшим случаям.

Пример 10. Значение числового выражения

Вычислим выражение 25-1-25-74-3.

Мы не можем нацело извлечь корень из пяти, однако можем упростить исходное выражение путем преобразований.

25-1=25+15-15+1=25+15-1=25+24

Исходное выражение принимает вид:

25-1-25-74-3=25+24-25-74-3.

Вычислим значение этого выражения:

25+24-25-74-3=25+2-25+74-3=94-3=-34.

Выражения с логарифмами

Когда в выражении присутствуют логарифмы, их значение, если это возможно, вычисляется с самого начала. К примеру, в выражении log24+2·4 можно сразу вместо log24 записать значение этого логарифма, а потом выполнить все действия. Получим: log24+2·4=2+2·4=2+8=10.

Под самим знаком логарифма и в его основании также могут находится числовые выражения. В таком случае, первым делом находятся их значения. Возьмем выражение log5-6÷352+2+7. Имеем:

log5-6÷352+2+7=log327+7=3+7=10.

Если же вычислить точное значение логарифма невозможно, упрощение выражения помогает найти его значение.

Пример 11. Значение числового выражения

Найдем значение выражения log2log2256+log62+log63+log5729log0,227.

log2log2256=log28=3.

По свойству логарифмов:

log62+log63=log6(2·3)=log66=1.

Вновь применяя свойства логарифмов, для последней дроби в выражении получим:

log5729log0,227=log5729log1527=log5729-log527=-log27729=-log27272=-2.

Теперь можно переходить к вычислению значения исходного выражения.

log2log2256+log62+log63+log5729log0,227=3+1+-2=2.

Выражения с тригонометрическими функциями

Бывает, что в выражении есть тригонометрические функции синуса, косинуса, тангенса и котангенса, а также функции, обратные им. Из значения вычисляются перед выполнением всех остальных арифметических действий. В противном случае, выражение упрощается.

Пример 12. Значение числового выражения

Найдите значение выражения: tg24π3-sin-5π2+cosπ.

Сначала вычисляем значения тригонометрических функций, входящих в выражение.

tg4π3=3

sin-5π2=-1

cosπ=-1.

Подставляем значения в выражение и вычисляем его значение:

tg24π3-sin-5π2+cosπ=32-(-1)+(-1)=3+1-1=3.

Значение выражения найдено.

Часто для того, чтобы найти значение выражения с тригонометрическими функциями, его предварительно нужно преобразовать. Поясним на примере.

Пример 13. Значение числового выражения

Нужно найти значение выражения cos2π8-sin2π8cos5π36cosπ9-sin5π36sinπ9-1.

Для преобразования будем использовать тригонометрические формулы косинуса двойного угла и косинуса суммы.

cos2π8-sin2π8cos5π36cosπ9-sin5π36sinπ9-1=cos2π8cos5π36+π9-1=cosπ4cosπ4-1=1-1=0.

Общий случай числового выражения

В общем случае тригонометрическое выражение может содержать все вышеописанные элементы: скобки, степени, корни, логарифмы, функции. Сформулируем общее правило нахождения значений таких выражений.

Как найти значение выражения
  1. Корни, степени, логарифмы и т.д. заменяются их значениями.
  2. Выполняются действия в скобках.
  3. Оставшиеся действия выполняются по порядку слева направо. Сначала – умножение и деление, затем – сложение и вычитание.

Разберем пример.

Пример 14. Значение числового выражения

Вычислим, чему равно значение выражения -2·sinπ6+2·2π5+3π5+3 lne2+1+39.

Выражение довольно сложное и громоздкое. Мы не случайно выбрали именно такой пример, постаравшись уместить в него все описанные выше случаи. Как найти значение такого выражения?

Известно, что при вычислении значения сложного дробного вида, сначала отдельно находятся значения числителя и знаменателя дроби соответственно. Будем последовательно преобразовывать и упрощать данное выражение. 

Первым делом вычислим значение подкоренного выражения 2·sinπ6+2·2π5+3π5+3. Чтобы сделать это, нужно найти значение синуса, и выражения, которое является аргументом тригонометрической функции. 

π6+2·2π5+3π5=π6+2·2π+3π5=π6+2·5π5=π6+2π

Теперь можно узнать значение синуса:

sinπ6+2·2π5+3π5=sinπ6+2π=sinπ6=12.

Вычисляем значение подкоренного выражения:

2·sinπ6+2·2π5+3π5+3=2·12+3=4

Отсюда:

2·sinπ6+2·2π5+3π5+3=4=2.

Со знаменателем дроби все проще:

lne2=2.

Теперь мы можем записать значение всей дроби:

2·sinπ6+2·2π5+3π5+3 lne2=22=1.

С учетом этого, запишем все выражение:

-1+1+39=-1+1+33=-1+1+27=27.

Окончательный результат:

-2·sinπ6+2·2π5+3π5+3 lne2+1+39=27.

В данном случае мы смогли вычислить точные значения корней, логарифмов, синусов и т.д. Если такой возможности нет, можно попробовать избавиться от них путем математических преобразований.

Вычисление значений выражений рациональными способами

Вычислять значения числовых нужно последовательно и аккуратно. Данный процесс можно рационализировать и ускорить, используя различные свойства действий с числами. К примеру, известно, что произведение равно нулю, если нулю равен хотя бы один из множителей. С учетом этого свойства, можно сразу сказать, что выражение 2·386+5+58941-sin3π4·0 равно нулю. При этом, вовсе не обязательно выполнять действия по порядку, описанному в статье выше.

Также удобно использовать свойство вычитания равных чисел. Не выполняя никаких действий, можно заказать, что значение выражения 56+8-3,789lne2-56+8-3,789lne2 также равно нулю.

Еще один прием, позволяющий ускорить процесс – использование тождественных преобразований таких как группировка слагаемых и множителей и вынесение общего множителя за скобки. Рациональный подход к вычислению выражений с дробями – сокращение одинаковых выражений в числителе и знаменателе. 

Например, возьмем выражение 23-15+3·289·343·23-15+3·289·34. Не выполняя действий в скобках, а сокращая дробь, можно сказать, что значение выражения равно 13.

Нахождение значений выражений с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. 

Нахождение значений выражений с переменными

Чтобы найти значение буквенного выражения и выражения с переменными, нужно в исходное выражение подставить заданные значения букв и переменных, после чего вычислить значение полученного числового выражения.

Пример 15. Значение выражения с переменными

Вычислить значение выражения 0,5x-y при заданных x=2,4 и y=5.

Подставляем значения переменных в выражение и вычисляем:

0,5x-y=0,5·2,4-5=1,2-5=-3,8.

Иногда можно так преобразовать выражение, чтобы получить его значение независимо от значений входящих в него букв и переменных. Для этого от букв и переменных в выражении нужно по возможности избавиться, используя тождественные преобразования, свойства арифметических действий и все возможные другие способы.

Например, выражение х+3-х, очевидно, имеет значение 3, и для вычисления этого значения совсем необязательно знать значение переменной икс. Значение данного выражения равно трем для всех значений переменной икс из ее области допустимых значений. 

Еще один пример. Значение выражения xx равно единице для всех положительных иксов. 

Числовые выражения: что это

Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.

Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения. 

Например:

  • 23 + 5

  • 5 – 2

  • 52 * 3

  • 28 : 7

Это простые числовые выражения.

Более сложные числовые выражения состоят из нескольких чисел и знаков арифметических действий:

  • (5 * 3) – (5 * 2)

  • 6 : (7 – 4)

  • (45 + 45) : 9

  • 11 * (5 * 5)

Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.

Вспомним, какие виды арифметических действий есть.
+  — знак сложения, найти сумму.
–  — знак вычитания, найти разность.
* — знак умножения, найти произведение. 
: —   знак деления, найти частное.

  • 5 + 6 = 11

    11 — значение числового выражения 5 + 6.

    6 * 8 = 48

    48 — значение числового выражения 6 * 8.

При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:

  • Сначала выполняется действие, записанное в скобках.

  • Затем выполняются действия деления и умножения слева направо.

  • В последнюю очередь выполняются действия сложения и вычитания слева направо.

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Пример 1. Найдите значение числового выражения: 3 * (2 + 8) – 4 

 

  1. 2 + 8 = 10

  2. 3 * 10 = 30

  3. 30 – 4 = 26

3 * (2 + 8) – 4  = 26.

Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)

 

  1. 6 + 7 = 13

  2. 13 + 2 = 15

  3. 13 * 15 = 195

(6 + 7) * (13 + 2) = 195

Часто бывает нужно сравнить два числовых выражения.

Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их. 

Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2

 

  1. Сначала находим значение первого выражения:

    6 + 8 = 14

  2. Затем находим значение второго выражения:

    2 * 2 = 4

  3. Сравниваем получившиеся результаты:

    14 больше 4

    14 > 4

    6 + 8 > 2 * 2

Пример 2. Сравните следующие числовые выражения:
5 * (12 – 2) – 7 и (115 + 9) –  (7 – 3)

 

  1. Находим значение первого выражения, соблюдая порядок выполнения арифметических действий:

    12 – 2 = 10

    5 * 10 = 50

    50 – 7 = 43

    5 * (12 – 2) – 7 = 43

  2. Затем находим значение:

    115 + 9 = 124

    7 – 3 = 4

    124 – 4 = 120

  3. Сравниваем полученные результаты:

    43 меньше 120

    43 < 120

    5 * (12 – 2) – 7 < (115 + 9) –  (7 – 3).

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Буквенные выражения 

Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.

В буквенном выражение есть цифры, знаки арифметических действия и буквы. 

Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.

  • Например:

    (5 + a) * 7

    7 * (x – 2)

    (6 – 2) + (3 + x)

Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.

У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:

  • Сначала следует прочитать его полностью.

  • Затем оно записывается.

  • Третьим шагом идет подстановка значения неизвестного в выражение.

  • А затем производится вычисление, согласно очередности выполнения арифметических действий.

Пример 1. Найдите значение выражения при x = 4: 5 + x.

  1. Читаем: найдите сумму числа 5 и x.
  2. Подставляем вместо неизвестного x число 4.
  3. Вычисляем: 5 + 4 = 9.

Пример 2. Найдите значение выражения: (4 + a) * (2 + x) при а = 2 и х = 5.

 

  1. Читаем: найдите произведение суммы числа 4 и а и суммы числа 2 и x.

  2. Подставляем вместо неизвестного a число 2.

  3. Вычисляем 4 + 2 = 6.

  4. Подставляем вместо неизвестного x число 5.

  5. Вычисляем 2 + 5 = 7.

  6. Находим произведение 6 * 7 = 42.

  7. Записываем результат: (4 + 2) * (2 + 5) = 42.

Выражения с переменными

Переменная — буквенное обозначение элемента, который может принимать любое числовое значение.

  • Например, в выражении x + a – 8

    x — переменная

    a — переменная

Если вместо переменных подставить числа, то буквенное выражение x + a – 8 станет числовым выражением. Вот так:

  • подставляем вместо переменной x число 5, а вместо переменной a — число 10, получаем  5 + 10 – 8.

Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.

После подстановки значения переменных находим значение  x + a – 8 = 5 + 10 – 8 = 7.

Часто можно встретить буквенные выражения, записанные следующим образом:

5x – 4a

Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение. 

  • 5x – 4a = 5*x – 4*a

5x — это произведение числа 5 и переменной x.

4a — это произведение числа 4 и переменной a.

Числа 4 и 5 называют коэффициентами.

Коэффициент показывает, во сколько раз будет увеличена переменная.

Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике. 

Задание раз.

Запишите выражения:

  1. Сумма 6 и a.

  2. Разность 8 и x.

  3. Сумма x – 2 и 6.

  4. Разность 15 и x – y.

  5. Сумма 45 + 5 и 12 – 6.

Ответ:

  1. 6 + a.

  2. 8 – x.

  3. (x – 2) + 6.

  4. 15 – (x – y).

  5. (45 + 5) + (12 – 6).

Задание два.

Составьте буквенное выражение:

Сумма разности b и 345 и суммы 180 и x.

Ответ: (b – 345) + (180 + x).

Задание три.

Составьте буквенное выражение:

Разность разности 30 и y и разности a и b.

Ответ: (30 – y) – (a – b).

Задание четыре.

Составьте выражение для решения задачи и найдите его значение.

Ролл «Калифорния» стоит 480 рублей — это на 40 рублей меньше, чем ролл «Филадельфия». Сколько будут стоить оба ролла?

Как решаем:

Калифорния — 480 рублей.

Филадельфия — 480 + 40.

Калифорния + Филадельфия = ?

480 + (480 + 40).

Мы помним, что выполнение арифметических действий в числовом выражении имеет строгую последовательность. Сначала — действие в скобках:

480 + 520 = 1 000. 

Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.

Задание пять.

Составьте выражение для решения задачи и найдите его значение.

Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?

Маша — 150 видео.

Лена — 150 + 13 видео.

Маша + Лена = ? видео.

150 + (150 + 13).

Выполняем сначала действие в скобках: 150 + 13 = 163.

150 + 163 = 313.

Ответ: Маша и Лена посмотрели всего 313 видео.

Задание шесть.

Вычислите:

(500 + 300) : a – 15,

при условии, что a = 10.

Как решаем:

Подставляем число 10 (значение переменной) вместо переменной

(500 + 300) : 10 – 15

Затем выполняем сначала арифметическое действие в скобках: 500 + 300 = 800.

Затем выполняем деление 800 : 10 = 80.

Выполняем вычитание 80 – 15 = 65.

Ответ: (500 + 300) : 10 – 15 = 65.

Задание семь.

Вычислите:

(270 – 120) * (x – 10),

при условии, что x = 45.

Как решаем: подставляем число 45 (значение переменной) вместо переменной x

(270 – 120) * (45 – 10).

Затем выполняем сначала арифметическое действие в скобках: 270 – 120 = 150.

Выполняем арифметическое действие во вторых скобках: 45 – 10 = 35.

Затем выполняем умножение 150 * 35 = 5 250.

Ответ: (270 – 120) * (45 – 10) = 5 250.

Задание восемь.

Вычислите:

(50 * x) – (3 * y)

при условии, что x = 2; y = 10

Как решаем:

Подставляем число 2 вместо переменной x

(50 * 2) – (3 * y).

Подставляем число 10 вместо переменной y

(50 * 2) – (3 * 10).

Затем выполняем сначала арифметическое действие в скобках: 50 * 2 = 100.

Выполняем арифметическое действие во вторых скобках: 3 * 10 = 30.

Затем выполняем вычитание 100 – 30 = 70

Ответ: (50 * 2) – (3 * 10) = 70.

Поиск значений выражений — основное математическое действие. Им сопровождается каждый пример, задача. Поэтому чтобы вам было проще работать с различными математическими выражениями, подробно разберем способы и правила их решения в данной статье. Правила представлены в порядке увеличения сложности: от простейших выражений до выражений с функциями. Для лучшего понимания каждый пункт сопровождается подробным пояснением и расписанными примерами.

Поиск значения числовых выражений

Числовые выражения представляют собой математические задачи, состоящие, преимущественно, из чисел. Они подразделяются на несколько групп в зависимости от своей сложности: простейшие, со скобками, корнями, дробями и т.д. Каждый тип выражений подразумевает свои правила нахождения значения, порядок действий. Рассмотрим каждый случай подробнее.

Простейшие числовые выражения. К простейшим числовым выражениям относятся примеры, состоящие из двух элементов:

  • Числа (целые, дробные и т.д.);
  • Знаки: «+», «—», «•» и «÷».

Чтобы найти значение выражения в данном случае, необходимо выполнить все арифметические действия (которые подразумевают конкретные знаки). В случае отсутствия скобок решение примера производится слева направо. Первыми выполняются действия деления и умножения. Вторыми — сложение и вычитание.

Пример 1. Решение числового выражения

Задача. Решить:

20 — 2 • 10 ÷ 5 — 4 = ?

Решение. Чтобы решить выражение, нам необходимо выполнить все арифметические действия в соответствии с установленными правилами. Поиск значения начинается с решения деления и умножения. В первую очередь находим произведение цифр 2 и 10 (если рассматривать с левой стороны, данное действие является первым по значимости). Получаем 20. Теперь это число делим на 5. Итог — 4. Когда известно значение основных действий, можем подставить его в наш пример:

20 — 4 — 4 = ?

Упрощенный пример также решаем слева направо: 20 — 4 = 16. Второе действие: 16 — 4 = 12. Ответ 12.

Решение без пояснений. 20 — 2 • 10 ÷ 5 — 4 = 20 — (2 • 10 ÷ 5) — 4 = 20 — 4 — 4 = 12.

Ответ. 12

Пример 2. Решение числового выражения

Задача. Решить:

0,2 — 5 • (— 4) + 1/2 • 5 • 4 = ?

Решение. Начинаем решение с умножения и деления. Умножая 5 на (— 4) получаем (— 20), т.к. производное сохраняет знак множителя. Далее умножаем 1/2 на 5. Для этого преобразуем дробь: 1/2 = 5/10 = 0,5. 0,5 умножаем на 5. Ответ — 2,5. Далее умножаем полученное число на 4. 2,5 • 4 = 10. Получаем следующее выражение:

0,2 — (— 20) + 10

Теперь нам остается решить сложение и вычитание. В первую очередь раскрываем скобку и получаем:

0,2 + 20 + 10 = 30,2

Решение без пояснений. 0,2 — 5 • (— 4) + 1/2 • 5 • 4 = 0,2 — (— 20) + 10 = 0,2 + 20 + 10 = 30,2

Ответ. 30,2

Находим значение выражения со скобками

Скобки определяют порядок действий при решении примера. Выражения, находящиеся внутри скобок «()» имеют первостепенную значимость, независимо от того, какое математическое действие в них выполняется.

Пример 3. Значение числового выражения со скобками

Задача. Решить:

5 + (7 — 2 • 3) • (6 — 4) ÷ 2 = ?

Решение. Начинаем нахождение значения выражения с решения скобок. Порядок действий определяется слева направо. При этом не забываем, что после раскрытия скобок в первую очередь решаем умножение и деление и лишь потом — вычитание и сложение:

  • 7 — 2 • 3 = 7 — 6 = 1
  • 6 — 4 = 2

Когда скобки решены, подставляем полученные значения в наш пример:

5 + 1 • 2 ÷ 2

Снова решаем все по порядку, не забывая о том, что деление и умножение выполняется в первую очередь:

  • 1 • 2 = 2
  • 2 ÷ 2 = 1

Упрощенное выражение выглядит следующим образом:

5 + 1 = 6

Решение без пояснений. 5 + (7 — 2 • 3) • (6 — 4) ÷ 2 = 5 + (7 — 6) • 2 ÷ 2 = 5+ 1 • 2 ÷ 2 = 5 + 1 = 6

Ответ. 6

Значение числового выражения со скобками

Задача. Решить:

4 + (3 + 1 + 4 • (2+3)) = ?

Решение. Подобные примеры решаются поэтапно. Помним, что поиск выражения со скобками начинается с решения скобок. Поэтому в первую очередь решаем:

3 + 1 + 4 • (2+3)

В уже упрощенном примере снова встречаются скобки. Их будем решать в первую очередь:

2 + 3 = 5

Теперь можем подставить определенное значение в общую скобку:

3 + 1 + 4 • 5

Начинаем решение с умножения и далее слева направо:

  • 4 • 5 = 20
  • 3 + 1 = 4
  • 4 + 20 = 24

Далее подставляем полученный ответ вместо большой скобки и получаем:

4 + 24 = 28

Решение без пояснений. 4 + (3 + 1 + 4 • (2+3)) = 4 + (3 + 1 + 4 • 5) = 4 + (3 + 1 + 20) = 4 + 24 = 28

Ответ. 28

Важно: Чтобы правильно определить значение числового выражения с множественными скобками, необходимо выполнять все действия постепенно. Скобки читаются слева направо. Приоритет в решении внутри скобок остается за делением и умножением.

Поиск значения выражения с корнями

Часто алгебраические задания основываются на нахождении значений из-под корня. И если определить √4 несложно (напомним, это будет 2), то с примерами, которые полностью расположены под корнем, возникает ряд вопросов. На самом деле в таких заданиях нет ничего сложного. В данном случае порядок действий следующий:

  • Решаем все выражение, которое находится под корнем (не забываем о правильной последовательности: сперва скобки, деление и умножение, а лишь потом — сложение и вычитание);
  • Извлекаем корень из числа, которое получили в результате решения обычного примера.

Если же и под корнем имеется корень (например: √ 4 + 8 — √4), то начинаем решение примера с его извлечения (в нашем примере это будет: √ 4 + 8 — 2). Если подкоренные числа возведены во вторую степень, то их квадратный корень будет равняться модулю подкоренного выражения.

Значение числового выражения с корнями

Задача. Решить:

√ 2² • 2² • 3² = ?

Решение. Все действия под корнем одинаковы — умножение. Это дает нам право разделить выражение на множители. Получаем:

√2² • √2² • √3² = ?

Т.к. под квадратным корнем у нас числа, возведенные во вторую степень, получаем:

2 • 2 • 3 = 12

Решение без пояснений. √ 2² • 2² • 3² = √2² • √2² • √3² = 2 • 2 • 3 = 12

Ответ. 12

Нет времени решать самому?

Наши эксперты помогут!

Находим значение числовых выражений со степенями

Следующий математический знак, который имеет приоритет в процессе решения, — степени. Они представляют собой результат многократного умножения числа на себя. Само число является основанием степени. А количество операций умножения — ее показателем. Причем выражен он может быть не только целым числом, но и дробью, полноценным числовым выражением.

Начинается решение выражения со степенями с вычисления самих степеней. Если они представляют собой полноценное выражение (например: [3^{3 cdot 4-10}]), то его необходимо решить в нашем примере это будет: [3^{12-10}=3^{2}=9].

Задача. Решите:

[ 3^{1 / 3} cdot 7^{1 / 3} cdot 21^{2 / 3}=? ]

Решение. Чтобы решить это выражение со степенями, воспользуемся равенством:

[(a cdot b)^{r}=a^{r} cdot b^{r}]

Рассматривая пример слева направо, видим, что у первых двух множителей одинаковые степени. Это позволяет нам упростить выражение:

[ (3 cdot 7)^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3} cdot 21^{2 / 3} ]

Зная, что при умножении степени с одинаковыми показателями складываются, получаем следующее выражение:

[ 21^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3+2 / 3}=21^{1}=21 ]

Решение без пояснений: [3^{1 / 3} cdot 7^{1 / 3} cdot 21^{2 / 3}=(3 cdot 7)^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3+2 / 3}=21^{1}=21]

Ответ. 21

Интересно: Этот же пример можно решить и другим способом, преобразовав число 21 в степени ⅔ в два множителя. В данном случае решение будет выглядеть следующим образом:

[3^{1 / 3} cdot 7^{1 / 3} cdot 21^{2 / 3}=3^{1 / 3} cdot 7^{1 / 3} cdot(3 cdot 7)^{2 / 3}=3^{1 / 3} cdot 7^{1 / 3} cdot 3^{2 / 3} cdot 7^{2 / 3}=3^{1 / 3+2 / 3} cdot 7^{1 / 3+2 / 3}=3^{1}+7^{1}=21]

Ответ. 21

Задача. Решить:

[ 2^{-2 sqrt{5}} cdot 4^{sqrt{5}-1}+left((sqrt{3})^{1 / 3}right)^{6} ]

Решение. В данном случает получить точные числовые значения показателей степеней не удастся. Поэтому искать значение выражения с дробями в виде степени будем снова через упрощение:

Пример решения задач 1

Ответ. 3,25

Выражения с дробями

Поиск значения выражения дробей начинается с их приведения к общему виду. В большинстве случаев проще представить все значения в виде обыкновенной дроби с числителем и знаменателем. После преобразования всех чисел необходимо привести все дроби к общему знаменателю.

Важно: Прежде чем найти выражение дробей, необходимо провести вычисления в их знаменателе и числителе отдельно. В данном случае действуют стандартные правила решения.

Когда дроби приведены к единому знаменателю можно переходить к решению. Вычисление значений верхней строки (числителя) и нижней (знаменателя) производятся параллельно.

Задача. Решить:

[ 6 frac{2}{13}+4 frac{1}{13}=? ]

Решение. Действуя по главному правилу, прежде чем найти значение числового выражения, преобразуем всего его части в простую дробь. Получаем:

[ frac{6 cdot 13+2}{13}+frac{4 cdot 13+1}{13} ]

Теперь выполняем вычисления в знаменателе и числителе и находим ответ:

[ frac{6 cdot 13+2}{13}+frac{4 cdot 13+1}{13}=frac{80}{13}+frac{53}{13}=frac{133}{13}=10 frac{3}{13} ]

Ответ. [10 frac{3}{13}]

Примеры(2):

Пример решения задач 2

Задача. Решить:

[ frac{2}{sqrt{5}-1}-frac{2 sqrt{5}-7}{4}-3=? ]

Решение. В данном примере мы не можем извлечь корень из пятерки. Но мы можем воспользоваться формулой разложения корней:

[ frac{2}{sqrt{5}-1}=frac{2(sqrt{5}+1)}{(sqrt{5}-1)(sqrt{5}+1)}=frac{2(sqrt{5}+1)}{5-1}=frac{2 sqrt{5}+2}{4} ]

Теперь можем придать нашему первоначальному выражению следующий вид:

[ frac{2 sqrt{5}+2}{4} frac{2 sqrt{5}-7}{4}-3=frac{2 sqrt{5}+2-2 sqrt{5}+7}{4}-3=frac{9}{4} 3=-frac{3}{4} ]

Ответ. [-frac{3}{4}].

Выражения с логарифмами

Как и степени, логарифмы (log), имеющиеся в выражении, вычисляются (если это возможно) в первую очередь. К примеру, зная, что [log _{2} 4=2] мы можем сразу упростить выражение  [log _{2} 4+5 cdot 6] до простого и понятного 2 + 5*6 = 32.

Со степенями логарифмы объединяет и порядок выполнения действий. Прежде чем искать значение выражения логарифмов, необходимо вычислить его основание (если оно представлено математическим выражением).

В случаях, когда полное вычисление логарифма невозможно, производится упрощение примера.

Задача. Решить:

[log _{27} 81+log _{27} 9=?]

Решение. Чтобы найти логарифм выражения, воспользуемся свойствами логарифмов и представим значение логарифмов со степенями:

Пример решения задач 3

Это позволит нам решить пример следующим образом:

Пример решения задач 4

Ответ. 2

Решаем выражения с тригонометрической функцией

Часто в выражениях встречаются тригонометрические функции. Всего их в математике шесть:

  • Синус;
  • Косинус;
  • Котангенс;
  • Тангенс;
  • Секанс;
  • Косеканс.

Изучение тригонометрии начинается в 9-м классе, когда ученики уже подготовлены к сложным задачам. Большинство заданий представляются с sin и cos. Остальные функции встречаются значительно реже.

В математических примерах, которые содержат sin, cos, tg и др. функции, вычисление тригонометрической функции производится в первую очередь. Если это невозможно — осуществляется упрощение выражения до получения краткой формулы.

Задача. Решить:

[ frac{24}{sin ^{2} 127+1+sin ^{2} 217} ]

Решение. Разложим 217 на 90 и 127. Т.к. по формуле приведения sin(90 + a) = cosa, получаем:

sin217 — sin (90 + 127) = cos127

Теперь заменяем полученной формулой наше слагаемое в знаменателе дроби:

[ frac{24}{sin ^{2} 127+cos ^{2} 127+1} ]

Вспоминаем, что по тригонометрическому тождеству sin2a+ cos2 a= 1 (независимо от значения угла a). Поэтому одну часть слагаемого знаменателя (sin2127+ cos2127) преобразуем в единицу и получаем:

[ frac{24}{sin ^{2} 127+cos ^{2} 127+1}=frac{24}{1+1}=frac{24}{2}=2 ]

Ответ. 2

Пример решения задач 5

Важно: Не стоит бояться буквенных тригонометрических значений. Большинство примеров построено таким образом, чтобы функции можно было заменить более удобной для вычисления формулой. Поэтому вместо того, чтобы пытаться сразу решить пример, стоит обратить внимание на особенности функций и возможность их приведения к подходящей формуле.

Задача. Решить:

[ sqrt{4} 8-sqrt{1} 92 sin ^{2} frac{19 pi}{12}=? ]

Решение. Начинаем решение с разбора второй дроби. Обращаем внимание, что 192 = 48 • 2. А значит, корень этого числа можно представить в виде 2√48. Зная это и используя формулу косинуса двойного угла, преобразим наше выражение:

Пример решения задач 6

Теперь по формуле приведения решаем наш пример:

[ sqrt{4} 8 cos left(3 pi+frac{pi}{6}right)=sqrt{4} 8left(-cos frac{pi}{6}right)=-sqrt{4} 8 cdot frac{sqrt{3}}{2}=-4 sqrt{3} cdot frac{sqrt{3}}{2}=-6 ]

Ответ. — 6.

Общий случай: находим значения выражений с дробями, функциями, степенями и не только

Самым сложным считается поиск числовых выражений общих случаев. Они представляют собой тригонометрические примеры, которые могут содержать:

  • Степени;
  • Скобки;
  • Корни;
  • Функции и т.д.

Общие числовые выражения сложны только длительностью решения. В остальном же они ничуть не сложнее, чем решение каждого примера (со скобкой, степенями, функциями и т.д.) по отдельности.

Чтобы найти значение выражения с логарифмами, тригонометрическими функциями, скобками и/или другими действиями, необходимо помнить три основных правила:

  • Упрощение. Прежде чем приступать к решению внимательно изучите выражение. Особенно — его степени, корни, логарифмы, функции. В большинстве случаев их можно сократить или заменить простым числовым значением еще до решения.
  • Скобки. Независимо от типа выражения, действий, начинать решение всегда необходимо со скобок. Часто именно игнорирование этого правила приводит к получению неверного ответа или отсутствию решения в принципе.
  • Общий вид. Старайтесь привести выражение к общему виду. Особенно это касается дробей. Смешанные и десятичные дроби преобразуйте в обычные.
  • Последовательность. Действия в скобках и действия после их решения выполняются слева направо. В первую очередь необходимо совершать умножение и деление. Когда все произведения и частные найдены, можно переходить к сложению и вычитанию.

Для удобства решения и устранения возможных ошибок рекомендуем расставлять порядок действий непосредственно над математическими знаками.

Задача. Решить:

[ -frac{sqrt{2} sin left(frac{pi}{6}+2left(frac{2 pi}{5}+frac{3 pi}{5}right)right)+3}{operatorname{Ln} e^{2}}+left(1+3^{sqrt{9}}right)=? ]

Решение. Чтобы решить этот пример, сначала найдем значение выражения числителя дроби, а точнее — подкоренного выражения. Для этого необходимо вычислить значение sin и общего выражения. Начинаем с раскрытия скобок в числителе:

Пример решения задач 7

Полученное значение можем подставить в подкоренное выражение для вычисления числителя дроби:

[ sqrt{2} sin cdotleft(frac{pi}{6}+2left(frac{2 pi}{5}+frac{3 pi}{5}right)+3=sqrt{4}=2right. ]

Со знаменателем дела обстоят куда проще:

[ ln e^{2}=2 ]

Числитель и знаменатель у нас одинаковые, что позволяет нам их сократить:

Пример решения задач 8

Теперь остается решить следующее выражение:

Пример решения задач 9

Ответ. 27

Как видите, при последовательном решении примеров с большим количеством действий нет ничего сложного. Главное — верно обозначить последовательность шагов и четко ей следовать.

Как найти значение выражения числителя дроби, подкорневого значения рационально?

Независимо от типа выражения решать его необходимо последовательно, руководствуясь стандартными правилами (описаны ранее). Но не стоит забывать, что во многих случаях поиск ответа может быть значительно упрощен за счет рационального подхода к решению. Основывается он на нескольких правилах.

Правило 1. Когда произведение равно нулю

Производное равно нулю в том случае, если хотя бы один из его сомножителей равен нулю. Если вы решаете пример из нескольких сомножителей, одним из которых является «0», то проводить многочисленные вычислительные действия не стоит.

Например, выражение [3 cdotleft(451+4+frac{18}{3}right)left(1-sin left(frac{3 pi}{4}right)right) cdot 0] будет равняться нулю.

Правило 2. Группировка и вынесение чисел

Ускорить процесс поиска ответа можно за счет группировки множителей, слагаемых или вынесения единого множителя за скобки. Также не стоит забывать о возможности сокращения дроби.

Например, выражение [frac{left(451+4+frac{18}{3}right)}{4left(451+4+frac{18}{3}right)}] решать не надо. Достаточно сократить скобки, чтобы получить ответ [=frac{1}{4}]

Решение примеров с переменными

Примеры с переменными отличаются от числовых только формой предоставления. В данном случае значения предоставляются дополнительно к выражению.

Пример задания: Найдите значение выражения 2x — y, если x = 2,5, а y = 2. В данном случае решение будет выглядеть следующим образом:

2x — y = 2 • 2,5 — 2 = 3

При этом в таких примерах сохраняются все описанные выше правила. Касается это и советов по рациональному решению примеров. Так, решать дробь [frac{sqrt{y}}{sqrt{y}}] бессмысленно, т.к. при любых значениях «y» ответ будет одинаковым — 1.

  1. Главная
  2. Справочники
  3. Справочник по математике для начальной школы
  4. Числовые и буквенные выражения

Числовые выражения

В этом разделе мы узнаем, что называют числовым выражением и значением выражения, научимся читать выражения.

Числовое выражение – это запись , состоящая из чисел и знаков действий между ними.

Например, 44 + 32

Значение выражения – это результат выполненных действий.

Например, в записи 44 + 32 = 76, значение выражения – это 76.


Чтение числовых выражений

12 + 9 – сумма

49 – 20 – разность

34 – (8 + 21) – из 34 вычесть сумму чисел 8 и 21

13 + (26 – 8) – к 13 прибавить разность чисел 26 и 8


Решение числовых выражений

45 – (30 + 2) = …
Сначала выполняем действие, записанное в скобках. К 30 прибавляем 2.
30 + 2 = 32
Теперь нужно из 45 вычесть 38.
45 – 32 = 13
45 – (30 + 2) = 13


Сравнение значений числовых выражений

 Сравнить числовое выражение – найти значение каждого из выражений и их сравнить.

Давай сравним значения двух выражений: 14 – 6 и 18 – 9.

Для этого найдем значения каждого из них:

14 – 6 = 8

18 – 9 = 9

8 < 9, значит, 

14 – 6 < 18 – 9


Буквенные выражения

Буквенным называется математическое выражение, в котором используются цифры, знаки действий и буквы. Например, (47 + d) – 11.

В этих выражениях буквы могут обозначать различные числа. Число, которым заменяют букву, называют значением.

Для записи буквенных выражений необходимо знать некоторые буквы латинского алфавита. Мы приводим его полностью, чтобы ты знал, с какими буквами можешь встретиться при составлении, решении или чтении буквенных выражений.

Чаще всего используются буквы:

a, b, c, d, x, y, k, m, n


Алгоритм решения буквенного выражения

Алгоритм – значит, порядок, план выполнения команд.

1.   Прочитать буквенное выражение

2.   Записать буквенное выражение

3.   Подставить значение неизвестного в выражении

4.   Вычислить результат

Например, 28 – с

Читаем выражение: Из 28 вычесть с или Найти разность числа 28 и с

Подставим вместо неизвестного «с» число 4.

У нас получается выражение: 28 – 4 

Вычисляем результат:

28 – 4 = 24


Переменные

Буквы, которые содержатся в буквенных выражениях называются переменными. Например, в выражении с + x + 2 переменными являются буквы c и x. Если вместо этих переменных подставить любые числа, то буквенное выражение с + x + 2 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных c и x. Для изменения значений используется знак равенства

c = 2, x = 3

Мы изменили значения переменных c и x. Переменной присвоили значение 2, переменной x присвоили значение 3, тогда выражение с + х + 2 будет выглядеть так:

2 + 3 + 2

Теперь мы можем найти значение этого выражения:

с + х + 2 = 2 + 3 + 2 = 5 + 2 = 7

Советуем посмотреть:

Уравнения


Правило встречается в следующих упражнениях:

1 класс

Страница 18. Урок 11,
Петерсон, Учебник, часть 1

Страница 10. Урок 6,
Петерсон, Учебник, часть 2

Страница 43. Урок 22,
Петерсон, Учебник, часть 2

Страница 45. Урок 23,
Петерсон, Учебник, часть 2

Страница 57. Урок 29,
Петерсон, Учебник, часть 2

Страница 22. Урок 12,
Петерсон, Учебник, часть 3

Страница 29. Урок 15,
Петерсон, Учебник, часть 3

Страница 31. Урок 16,
Петерсон, Учебник, часть 3

Страница 35. Урок 18,
Петерсон, Учебник, часть 3

Страница 43. Урок 22,
Петерсон, Учебник, часть 3

2 класс

Страница 55,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 35. ПР 4. Вариант 2,
Моро, Волкова, Проверочные работы

Страница 10,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 34,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 48,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 8. Урок 2,
Петерсон, Учебник, часть 2

Страница 74. Урок 30,
Петерсон, Учебник, часть 2

Страница 108. Урок 44,
Петерсон, Учебник, часть 2

Страница 6. Урок 2,
Петерсон, Учебник, часть 3

Страница 70. Урок 26,
Петерсон, Учебник, часть 3

3 класс

Страница 39,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 19. ПР 4. Вариант 2,
Моро, Волкова, Проверочные работы

Страница 20,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 71,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 17,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 30. Урок 10,
Петерсон, Учебник, часть 1

Страница 69. Урок 23,
Петерсон, Учебник, часть 1

Страница 42. Урок 16,
Петерсон, Учебник, часть 2

Страница 91. Урок 40,
Петерсон, Учебник, часть 2

Страница 51. Урок 23,
Петерсон, Учебник, часть 3

4 класс

Страница 19,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 34,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 21,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 22,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 67,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 83,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 84,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 94,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 34,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 5. Урок 2,
Петерсон, Учебник, часть 1

5 класс

Задание 423,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 496,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 567,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 939,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1291,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1398,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1803,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Номер 259,
Мерзляк, Полонский, Якир, Учебник

Номер 643,
Мерзляк, Полонский, Якир, Учебник

Номер 929,
Мерзляк, Полонский, Якир, Учебник

6 класс

Номер 331,
Мерзляк, Полонский, Якир, Учебник

Номер 361,
Мерзляк, Полонский, Якир, Учебник

Номер 982,
Мерзляк, Полонский, Якир, Учебник

Номер 1345,
Мерзляк, Полонский, Якир, Учебник

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Задание 705,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1122,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1127,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1511,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1564,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Номер 259,
Мерзляк, Полонский, Якир, Учебник

Номер 315,
Мерзляк, Полонский, Якир, Учебник

Номер 316,
Мерзляк, Полонский, Якир, Учебник

Номер 481,
Мерзляк, Полонский, Якир, Учебник

Номер 906,
Мерзляк, Полонский, Якир, Учебник

Номер 1040,
Мерзляк, Полонский, Якир, Учебник

Номер 1071,
Мерзляк, Полонский, Якир, Учебник

Номер 1,
Мерзляк, Полонский, Якир, Учебник

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 4,
Мерзляк, Полонский, Якир, Учебник

8 класс

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

Номер 4,
Мерзляк, Полонский, Якир, Учебник

Номер 46,
Мерзляк, Полонский, Якир, Учебник

Номер 47,
Мерзляк, Полонский, Якир, Учебник

Номер 229,
Мерзляк, Полонский, Якир, Учебник

Номер 391,
Мерзляк, Полонский, Якир, Учебник

Номер 392,
Мерзляк, Полонский, Якир, Учебник


Эта информация доступна зарегистрированным пользователям

Любые математические задачи и примеры записываются с помощью математического языка.

Математический язык- это язык, не требующий перевода, универсальный и понятный всем, имеющий четкую структуру и грамматику.

Верная математическая запись всегда точна, логична, компактна, удобна для понимания, однозначно отражает действие, операцию, понятие.

Определенная осмысленная последовательность знаков (чисел, букв), связанных между собой знаками арифметических операций, называют математическим выражением.

Математические выражения делят на числовые и буквенные.

На этом уроке вы познакомитесь с числовыми и буквенными выражениями.

Узнаете, какое выражение называют числовым, а какое буквенным.

Научитесь составлять числовые и буквенные выражения к задачам.

Эта информация доступна зарегистрированным пользователям

Выясните, как правильно записывать, читать и находить значение математических выражений.

Числовые выражения вам уже хорошо знакомы.

В начальных классах на уроках математики, решая задачи и примеры, вы составляли и записывали числовые выражения и находили значения этих выражений.

Числовое выражение- это запись, состоящая из чисел, арифметических операций, скобок и иных специальных математических символов.

Эта информация доступна зарегистрированным пользователям

Числовым выражением можно назвать только такую запись, которая является осмысленной и составлена согласно математическим правилам.

Рассмотрим примеры числовых выражений.

4 – является числовым выражением.

2 + 17 – является числовым выражением.

247 + 13 – 3 – является числовым выражением.

84 + (273 – 16) – является числовым выражением.

Не каждую математическую запись из символов и знаков можно считать числовым выражением.

Числовое выражение всегда ориентировано на то, чтобы операции, входящие в него, могли быть выполнены.

Если числовое выражение невозможно вычислить, то оно не имеет смысла.

Пример.

45 + ( – + 1 – не является числовым выражением, данная запись представляет собой бессмысленный набор символов и знаков.

Существуют такие математические записи, которые на первый взгляд можно принять за числовые выражения, но вычислить их невозможно.

Пример.

15 : (37 – 22 – 15)

Число 15 необходимо разделить на результат операции в скобках, а он равен нулю.

Так как деление на нуль в математике запрещено, данную математическую операцию совершить невозможно, следовательно, запись 15 : (37 – 22 – 15) не вычислить, она не является числовым выражением.

Математические равенства и неравенства выражениями не являются, но равенства и неравенства состоят из математических выражений.

Два числовых выражения, соединенные знаком равно «=», называют числовым равенством.

Два числовых выражения, соединенные знаками больше «>» или меньше «<», называют неравенством.

Несмотря на то, что в записи равенств и неравенств присутствуют математически верно построенные комбинации из чисел и арифметических операций, они не являются математическими выражениями.

Например,

Запись вида 26 – 5 > 4 не является числовым выражением, это неравенство.

Запись вида 24 – 6 = 18 также не является числовым выражением, данная запись является равенством.

Смысл решения любой задачи, любого примера заключается в том, чтобы найти значение выражения, которое превращает его в верное равенство.

Число, которое получается после выполнения всех арифметических операций, называют значением числового выражения.

Следовательно, чтобы найти значение числового выражения, необходимо выполнить в определенном порядке все арифметические операции, указанные в выражении.

У числового выражения значение только одно.

Например, значение числового выражения (45 – 3) + (12 + 2) всегда равно 56, и только это значение является единственно верным.

Эта информация доступна зарегистрированным пользователям

Важно уметь не только верно записывать числовые выражения, но и уметь их правильно читать.

Чтобы прочитать числовое выражение нужно определить, какая арифметическая операция является последней при вычислении значения этого выражения.

Так, например, если последнее по порядку действие было сложение, то выражение называют «суммой».

Если последним действием является вычитание, то выражение называют «разностью».

Следовательно, если последним действием является умножение, то выражение называют «произведением», если деление- «частным».

Например, выражение (10 – 3) + (6 – 4) читается так: «Сумма разности чисел 10 и 3 и разности чисел 6 и 4».

Выражение (10 – 3)∙(6 – 4) читается так: «Произведение разности чисел 10 и 3 и разности чисел 6 и 4».

Умение составлять математические выражения и находить их значение используют при решении как простых, так и составных задач.

Рассмотрим пример решения составной задачи и выясним особенности процесса составления числовых выражений.

Известно, что любая составная задача содержит несколько простых.

Существуют различные способы оформления решения текстовых задач.

Чаще всего используют такие формы записи решения задач:

1. По действиям с пояснениями.

2. Выражением.

При решении составных задач важно выделить главное, сделать краткую запись, разделить задачу на простые, составить план решения.

Задача 1.

В первый день собрали 12 кг клубники, а во второй день на 2 кг больше.

Сколько килограммов клубники собрали за эти два дня?

Эта информация доступна зарегистрированным пользователям

Решение:

Запишем кратко условие задачи:

В I день – 12 кг клубники.

Во II день – на 2 кг больше, чем в I день.

Общее количество клубники в I и во II день- ?

Изобразим к задаче рисунок в виде схемы.

Эта информация доступна зарегистрированным пользователям

Чтобы определить, сколько собрали клубники за два дня, необходимо знать, какое количество клубники было собрано в первый и во второй день.

Из условия задачи известно количество клубники, собранной в первый день.

Неизвестно количество клубники, собранной во второй день.

Когда будет известно сколько собрали клубники во второй день, можно узнать какое количество ягод собрали за два дня.

Задачу решаем в два действия (каждое действие поясним).

1. Выясним сколько килограммов ягод собрали во второй день.

Известно, что в первый день собрали 12 кг клубники. Так как во второй день собрали на 2 кг больше, то во второй день собрали столько же, как в первый, и еще 2 кг.

Выполним сложение чисел 12 и 2, получим выражение 12 + 2.

Найдем значение данного числового выражения:

12 + 2 = 14 (кг) клубники собрали во второй день.

2. Вторым действием определим общее количество ягод, собранных за два дня.

Необходимо сложить все ягоды, который собрали в первый и во второй день, получим следующее выражение: 12 + 14.

Найдем значение данного числового выражения:

12 + 14 = 26 (кг) клубники собрали за два дня.

Ответ: 26 кг.

Как нам уже известно, решение задачи можно записать не только по действиям, но и в форме выражения.

Запись решения составной задачи с помощью составления по ней итогового числового выражения позволяет увидеть ход решения в целом, и такая запись сокращает время оформления задачи.

Составим числовое выражение для решения нашей задачи.

Согласно рассуждениям, изложенным выше, имеем следующие данные:

12 кг – клубники собрали в первый день.

12 + 2 кг – клубники собрали во второй день.

Определим общее количество ягод, собранных за два дня.

Сложив все ягоды, собранные в первый и во второй день, получим следующее числовое выражение:

12 + (12 + 2).

Вычислим значение данного выражения, выполнив последовательно все действия в нем.

Тогда запись решения задачи будет выглядеть так:

12 + (12 + 2) = 12 + 14 = 26 (кг) клубники собрали за два дня.

Ответ: 26 кг.

Попробуем решить вторую задачу.

Задача 2.

В первый день собрали 12 кг клубники, а во второй день на 5 кг больше.

Сколько килограммов клубники собрали за эти два дня?

Скорее всего вы заметили, что первая и вторая задачи отличаются только одним числом, а именно число 2 заменено на число 5.

Остальные условия задачи остались прежние.

Все логические рассуждения во второй задаче аналогичны рассуждениям первой.

Таким образом, имеем следующие данные:

12 кг – клубники собрали в первый день.

12 + 5 кг – клубники собрали во второй день.

Определим общее количество ягод, собранных за два дня.

Сложив все ягоды, собранные в первый и во второй день, получим следующее выражение:

12 + (12 + 5).

Вычислим значение данного выражения, выполнив последовательно все действия в нем.

Тогда запись решения задачи будет выглядеть так:

12 + (12 + 5) = 12 + 17 = 29 (кг) клубники собрали за два дня.

Ответ: 29 кг.

Эта информация доступна зарегистрированным пользователям

Рассмотрим еще одну такую же задачу, как первая и вторая, рассмотренные выше, но число, которое менялось в первой и во второй задаче заменим на ☐ пустое окошко, в которое можно вписать любое значение.

Тогда получим следующую задачу:

В первый день собрали 12 кг клубники, а во второй день на ☐ кг больше.

Сколько килограммов клубники собрали за эти два дня?

В математике принято обозначать переменное число не пустым окошком, а буквой.

Для нашей задачи вместо пустого окошка поставим латинскую букву «а».

По аналогии с уже решенными задачами математическое выражение для данной задачи будет следующее: 12 + (12 + а).

Если вместо буквы а подставлять различные числа, то каждый раз будем получать различные числовые выражения и, как следствие, различные значения.

Числовое выражение, в котором числа обозначены цифрами и буквами, называют буквенным выражением.

Соответственно, буквенное выражение отличается от числового тем, что содержит букву.

Буквы, которые содержатся в буквенных выражениях, называются переменными.

Для обозначения чисел буквами используют строчные буквы латинского алфавита.

Эта информация доступна зарегистрированным пользователям

Например, в выражении а + 3 – b буквы а и b являются переменными.

Буквенные выражения должны быть составлены согласно математическим правилам и по такому же принципу, как числовые выражения.

Буквенные выражения является таковым, если в их записи отсутствуют знаки больше «>», меньше «<», равно «=».

Приведем примеры нескольких буквенных выражений:

а + + с – является буквенным выражением.

4а – 5а – является буквенным выражением.

(15 – а) + 26 – является буквенным выражением.

12 + (3 – 1) – не является буквенным выражением, это числовое выражение (в составе выражения нет букв).

3 + d = 19 – не является буквенным выражением, это равенство (равенство, в записи которого есть буква, называется уравнением).

Буквенное выражение должно содержать хотя бы одну букву.

Эта информация доступна зарегистрированным пользователям

Из приведенных выше примеров можно заметить, что буквенное выражение может содержать несколько одинаковых и (или) разных букв, может состоять только из одних букв.

Разные числа в выражении обозначаются разными буквами.

Если в выражении упоминается одна и та же буква несколько раз, то во всех случаях она имеет одно и то же значение.

Числа, которые заменяют буквы в буквенном выражении, называют значением этих букв.

Вычисления в буквенных выражениях выполняют после подстановки вместо букв их численных значений.

Для буквенного выражения характерно не просто значение выражения, а значение выражения при заданном значении переменной.

Рассмотрим алгоритм решения буквенного выражения.

Эта информация доступна зарегистрированным пользователям

Пример.

1. Пусть число а = 5, число b = 6.

Найдем значение буквенного выражения а + b.

Решение:

Подставим вместо а и b соответствующие им числовые значения.

Получим числовое выражение 5 + 6.

Найдем значение числового выражения: 5 + 6 = 11.

Ответ: 11.

2. Пусть число а = 5, число d = 10.

Найдем значение буквенного выражения (а + а) – (d – а).

Подставим вместо а и d соответствующие им числовые значения.

Получим числовое выражение (5 + 5) – (10 – 5).

Найдем значение числового выражения: (5 + 5) – (10 – 5) = 10 – 7 = 3.

Ответ: 3.

Буквенное выражение, в отличие от числового, может иметь много значений, так как вместо буквы можно подставить любое число.

Пример.

Определите значение выражение 218 – b, если b = 28, b = 13, b = 5.

1. Подставим вместо b число 28.

Получим числовое выражение 218 – 28.

Найдем значение полученного числового выражения: 218 – 28 = 190.

2. Подставим вместо b число 13.

Получим числовое выражение 218 – 13.

Найдем значение полученного числового выражения: 218 – 13 = 205.

3. Подставим вместо b число 5.

Получим числовое выражение 218 – 5.

Найдем значение полученного числового выражения: 218 – 5 = 213.

Ответ: 190, 205, 213.

Эта информация доступна зарегистрированным пользователям

Читайте также

Добавить комментарий