Как найти значение единичного отрезка



Для определения размера какой-либо величины (длина, вес, температура и т.д.) мы используем измерительные приборы и инструменты со шкалами для отображения результата.

Шкала – это расположенный в определенной последовательности ряд отметок, которые соответствуют числовому значению измеряемой величины.

Например, в школьном курсе математики и геометрии для измерения длины геометрического объекта, в частности отрезка, используется линейка (рисунок 1).

Шкалы и координаты

Рисунок 1. Измерительная линейка.

Из урока Измерение величин вы уже знаете, что такое единица измерения, а их соотношения можете посмотреть в справочном разделе.

Деления шкалы – это равные части, на которые она разбита. Каждое деление шкалы обозначается отметками (черточками).

Нулевая отметка шкалы – это отметка, которая соответствует нулевому значению измеряемой нами величины.

Цена деления шкалы – это величина значения одного деления шкалы. То есть, это величина значения между двумя соседними отметками на шкале.

Чтобы узнать цену деления шкалы, нужно:
1. взять любые два значения на шкале (лучше брать соседние, обозначенные числами),
2. найти разность между ними,
3. посчитать количество делений шкалы, которые находятся между выбранными нами значениями,
4. результат деления числа, полученного в пункте 2, на число, полученной в пункте 3, и будет ценой деления данной шкалы.

Как мы видим на рисунке 1, деления, обозначенные большими черточками, пронумерованы, и значение каждого такого деления равно 1 см. В этом легко убедиться, если найти разницу между значениями каждого из соседних делений: 1-0=1, 2-1=3, …, 9-8=1, 10-9=1.
Но каждое из больших делений разделено девятью маленькими черточками на 10 делений. Мы знаем, что в 1 см содержится 10 мм, поэтому разделив эти 10 мм на 10 делений, мы получим цену деления линейки, равную 1 мм.

Цена деления может отличаться не только у разных же измерительных приборов, но и у одних и тех же.

Шкалы и координаты

Рисунок 2 Цена деления шкалы

Например, на рисунке 2 изображены два термометра. Как вы думаете, они показывают одинаковую температуру, или нет?

Конечно же разную! Хоть столбик этих двух термометров и находится на высоте двух делений над значением 20, цена этих делений разная. Левый термометр показывает температуру 22°C (читается как двадцать два градуса Цельсия), а правый — 24°C.

Давайте посмотрим, так ли это? На левом термометре разница между двумя соседними пронумерованными отметками равна 10°C: 10-0=10, 20-10=10, и т.д. На правом же термометре эта разница равняется уже 20°C: 20-0=20, 40-20=20, и т.д. На обоих термометрах маленькие черточки делят одно большое пронумерованное деление на 10 частей. Разделив разницу между значениями пронумерованных отметок (10 и 20 соответственно) на количество делений между ними (10), мы получим цену деления каждого из термометров:

  • левый термометр – 10:10=1°C;
  • правый термометр – 20:10=2°C.

Итак, оба термометра показывают 20°C и еще два деления. Но на левом термометре это означает 20°C и еще два раза по 1°C, то есть, 20+2=22°C, а на правом – 20°C и еще два раза по 2°C, то есть, 20+4=24°C.

Координатный луч, единичный отрезок, координаты точки

Различные прямые линии со шкалами играют важную роль в школьной математике. Сейчас я познакомлю вас с одной из них.

Нарисуем точку O и проведем от нее направо луч. Обозначим направление луча стрелкой.

Координатный луч

Рис. 3. Луч с началом в точке O

Отметим на этом луче отрезок произвольной длины OP. Справа от него отметим равный ему отрезок PR, и продолжим отмечать далее подобным образом отрезки, равные отрезку OP, до тех пор, пока не закончится нарисованный нами луч. В итоге у нас получится следующее.

Координатный луч

Рис. 4. Луч с равными отрезками

Поставим возле начала луча (точки O) число 0 (нуль). Возле второго конца отрезка OP (возле точки P) поставим число 1 (один). Таким образом мы обозначаем, что длина отрезка OP равна 1 (единице).

Отрезок OR у нас состоит из двух отрезков: OP и PR, то есть OR=OP+PR. А так как по условиям нашего построения PR=OP, то мы можем записать, что OR=OP+OP, или OR=1+1=2.

Поставим возле точки R найденное нами значение длины отрезка OR, то есть, число 2.

Аналогичным образом вы можете легко найти числа, соответствующей каждой поставленной нами на луче точке.

Координатный луч

Рис. 5. Луч с отрезками и цифрами

Покажу еще раз на примере точки S:

OS=OR+RS,

так как RS=OP (по условиям построения данных отрезков),

тогда OS=OR+OP;

подставив известные нам значения длины отрезков OR и OP, получим:

OS=2+1, или OS=3.

Значит, точке S на нашем лучу соответствует число 3.

Оставим на луче только числовые значения, а все буквы кроме O отбросим. В итоге у нас получился вот такой луч с отрезками и числами, которые соответствуют концам этих отрезков.

Координатный луч

Рис. 6. Координатный луч

Глядя на рисунок 6, легко заметить, что отрезки, лежащие на луче, это не что иное, как нанесенная на луч шкала. Действительно, смотрите сами.

Точка O с соответствующим ей числом 0 (нуль) называется точка отсчета, что аналогично нулевой отметке шкалы. Обычно этой буквой всегда помечают в рисунках точку отсчета.

Равные отрезки, на которые мы разбили луч, – это деления шкалы.

Единичный отрезок – это отрезок, длина которого принята нами за единицу длины и равна 1(единице). Точке, обозначающей правый конец единичного отрезка, соответствует число 1.

Другими словами, единичный отрезок можно назвать ценой деления.

Определение

Координатный луч – это луч с отмеченным на нем единичным отрезком, точкой начала отсчета, которой соответствует число 0 (нуль), и указанным направлением отсчета.
Координатный луч еще называют числовой луч.

Координатный луч — это не что иное, как бесконечная шкала.

Длина единичного отрезка может быть любой. Она выбирается каждый раз отдельно и при ее выборе ориентируются на то, чтобы на рисунке поместились все необходимые в данный момент числа. Например, на рисунке 7-а длина единичного отрезка составляет 5 см, а на рисунке 7-б всего 1 см.

Единичный отрезок, координатный луч

Рис. 7. Разные варианты единичного отрезка

Как вы заметили из предыдущего рисунка, для разметки луча отрезками можно вместо кружочков использовать штрихи везде, кроме точки O (начала отсчета). Кружочки рисуют поверх этих штрихов тогда, когда необходимо отметить на числовом луче какое-то натуральное число. В этом случае мы дополнительно обозначаем его заглавной (большой) буквой латинского алфавита (смотрите рисунок 8).

Координатный луч служит для наглядного отображения и сравнения чисел натурального ряда.

Действительно, длина каждого отрезка числового луча отличается от длины предыдущего на единицу, точно так же, как и каждый элемент числового ряда отличается от предыдущего.

На числовом луче можно отобразить какое угодно число n, принадлежащее натуральному ряду. Для этого на нем отмечают точку (к примеру, A) на расстоянии n единичных отрезков от точки отсчета O. При этом число n называют координатой точки A и записывают в виде A(n), что читается как «точка A с координатой n» .

Запомните

Координата точки числового луча – это число, которое соответствует поставленной на числовом луче точке.

Для примера отметим на координатном луче точки A, B, C и определим их координаты.

Координатный луч, координата точки

Рис. 8. Координаты точек

Точке A соответствует число 5 координатного луча, точке B – число 8, точке C – число 13. Запишем полученные координаты точек: A(5), B(8), C(13).

В отдельных случаях для обозначения на координатном луче больших натуральных чисел, допускается не отображать на рисунке точку отсчета и единичный отрезок, показывая только тот участок луча, на котором расположены данные числа.

Координатный луч

Рис. 9. Большие числа на координатном луче.

5.1. Координатный луч. Единичный отрезок

Натуральные числа можно изображать на луче. Построим луч с началом в точке О, направив его слева – направо, направление отметим стрелкой.

Началу луча (точке О) поставим в соответствие число 0 (ноль). Отложим от точки О отрезок ОА произвольной длины. Точке А поставим в соответствие число 1 (один). Длину отрезка ОА будем считать равной 1 (единице). Отрезок АВ = 1 называется единичным отрезком. Отложим от точки А в направлении луча отрезок АВ = ОА. Поставим точке В в соответствие число 2. Заметим, что точка В находится от точки О на расстоянии  в два раза большем, чем точка А. Значит, длина отрезка ОВ равна 2 (двум единицам). Продолжая откладывать в направлении луча отрезки, равные единичному, будем получать точки, которым соответствуют числа 3, 4, 5, и т.д. Данные точки удалены от точки О соответственно на 3, 4, 5, и т.д. единиц.

Луч, построенный таким способом, называется координатным или числовым. Начало числового луча, точка О, называется точкой отсчета. Числа, поставленные в соответствие точкам на этом луче, называются координатами этих точек (отсюда: координатный луч). Пишут: О(0), А(1), В(2), читают: «точка О с координатой 0 (ноль), точка А с координатой 1 (один), точка В с координатой 2 (два)» и т.д.

Любое натуральное число n можно изобразить на координатном луче, при этом соответствующая ему точка P будет удалена от точки О на n единиц. Пишут: ОP = n и P(n) – точка P (читают: “пэ”) с координатой n (читают: “эн”). Например, чтобы отметить на числовом луче точку К(107), необходимо от точки О отложить 107 отрезков, равных единичному. В качестве единичного можно выбрать отрезок любой длины. Часто длину единичного отрезка выбирают такой, чтобы было возможно в пределах рисунка изобразить на числовом луче необходимые натуральные числа. Рассмотрите пример

5.2. Шкала

Важным применением числового луча являются шкалы и диаграммы. Они используются в измерительных приборах и устройствах, при помощи которых измеряют различные величины. Одним из основных элементов измерительных приборов является шкала. Она представляет собой числовой луч, нанесенный на металлическое, деревянное, пластиковое, стеклянное или другое основание. Часто шкала выполнена в виде окружности или части окружности, которые разделены штрихами на равные части (деления-дуги) подобно числовому лучу. Каждому штриху на прямой или круговой шкале поставлено в соответствие определенное число. Это значение измеряемой величины. Например, числу 0 на шкале термометра соответствует температура 00С, читают: «ноль градусов Цельсия». Это температура, при которой начинает таять лед (или начинает замерзать вода).

Используя измерительные приборы и инструменты со шкалами, определяют значение измеряемой величины по положению указателя на шкале. Чаще всего указателем служат стрелки. Они могут перемещаться вдоль шкалы, отмечая значение измеряемой величины (например, стрелка часов, стрелка весов, стрелка спидометра – прибора для измерения скорости, рисунок 3.1.). Подобна смещающейся стрелке граница столбика ртути или подкрашенного спирта в термометре (рисунок 3.1). В некоторых приборах движется не стрелка вдоль шкалы, а шкала перемещается относительно неподвижной стрелки (метки, штриха), например, в напольных весах. В некоторых инструментах (линейка, рулетка) указателем служат границы самого измеряемого предмета.

Промежутки (части шкалы) между соседними штрихами шкалы называются деления. Расстояние между соседними штрихами, выраженное в единицах измеряемой величины, называется ценой деления (разность чисел, которым соответствуют соседние штрихи шкалы.) Например, цена деления спидометра на рисунке 3.1. равна 20 км/ч (двадцать километров в час), а цена деления комнатного термометра на рисунке 3.1. равна 10С (один градус Цельсия).

      Диаграмма

Для видимого изображения величин используют линейные, столбчатые или круговые диаграммы. Диаграмма состоит из числового луча-шкалы, направленного слева – направо или снизу – вверх. Кроме того на диаграмме помещены отрезки или прямоугольники (столбцы), изображающие сравниваемые величины. При этом длина отрезков или столбцов в единицах шкалы равна соответствующим величинам. На диаграмме возле числового луча-шкалы подписывают название единиц измерения, в которых отложены величины. На рисунке 3.2. изображена столбчатая диаграмма, а на рисунке 3.3 линейная.

3.2.1. Величины и приборы для их измерения

В таблице приведены названия некоторых величин, а также  приборов и инструментов, предназначенных для их измерения. (Жирным шрифтом выделены основные единицы Международной системы единиц).

5.2.2. Термометры. Измерение температуры

На рисунке 3.4 приведены термометры, в которых использованы разные температурные шкалы: Реомюра (°R), Цельсия (°С) и Фаренгейта (°F).В них использован один и тот же температурный интервал – разность температур кипения воды и плавления льда. Этот интервал разделён на различное число частей: в шкале Реомюра – на 80 частей, шкале Цельсия – на 100 частей, в шкале Фаренгейта – на 180 частей. При этом в шкалах Реомюра и Цельсия температуре таяния льда соответствует число 0 (ноль), а в шкале Фаренгейта –          число 32. Единицы температуры в этих термометрах: градус по Реомюру, градус по Цельсию, градус по Фаренгейту. В устройстве термометров используется свойство жидкостей (спирта, ртути) расширяться при нагревании. При этом различные жидкости по-разному расширяются при нагревании, что видно на рисунке 3.5, где штрихи для столбика спирта и ртути не совпадают при одинаковой температуре.

5.2.3. Измерение влажности воздуха

Влажность воздуха зависит от количества в нём водяных паров. Например, летом в пустыне воздух сухой, влажность его низкая, так как в нём содержится мало паров воды. В субтропиках, например, в Сочи влажность высокая, в воздухе много водяных паров. Измерить влажность можно с помощью двух термометров. Один из них обычный (сухой термометр). У второго шарик обёрнут влажной тканью (влажный термометр). Известно, что при испарении воды температура тела понижается. (Вспомните озноб при выходе из моря после купания). Поэтому влажный термометр показывает более низкую температуру. Чем суше воздух, тем больше разность показаний двух термометров. Если показания термометров одинаковы (разность равна нулю), то влажность воздуха равна 100 %. В этом случае выпадает роса. Прибор, измеряющий влажность воздуха, называется психрометром (рисунок 3.6). Он снабжён таблицей, в которой приведены: показания сухого термометра, разность показаний двух термометров, влажность воздуха в процентах. Чем ближе влажность к 100%, тем более влажный воздух. Нормальная влажность в помещениях должна быть равна около 60%.

               

Блок 3.3. Самоподготовка

5.3.1. Заполните таблицу

Отвечая на вопросы таблицы, заполняйте свободную колонку («Ответ»). При этом используйте рисунки приборов в блоке «Дополнительный».

 

760 мм. рт. ст. считается нормальным. На рисунке 3.11 показано изменение атмосферного давления при подъёме на самую высокую гору Эверест.

Постройте линейную диаграмму изменения давления, отложив на вертикальном луче высоту над уровнем моря, а по горизонтали давление.

Блок 5.4. Проблемный

Построение числового луча с единичным отрезком заданной длины

Для решения этой учебной проблемы работайте по плану, приведенному в левой колонке таблицы, при этом правую колонку рекомендуется закрыть листом бумаги. Ответив на все вопросы, сопоставьте свои выводы с приведёнными решениями.

Блок 5.5. Фасетный тест

Числовой луч, шкала, диаграмма

В задачах фасетного теста использованы рисунки из таблицы. Все задачи начинаются так: «ЕСЛИ числовой луч представлен на рисунке …., то…»   

ЕСЛИ: числовой луч представлен на рисунке…                               Таблица

ТО:

  1. Количество единиц между соседними штрихами числового луча.
  2. Координаты точек А, В, С, D.
  3. Длина (в сантиметрах) отрезков АВ, ВС, АD, ВD соответственно.
  4. Длина (в метрах) отрезков АВ, ВС, АD, ВD соответственно.
  5. Натуральные числа, расположенные на числовом луче левее точки D.
  6. Натуральные числа, расположенные на числовом луче между точками А и С.
  7. Количество натуральных чисел, лежащих на числовом луче между точками А и D.
  8. Количество натуральных чисел, лежащих на числовом луче между точками В и С.
  9. Цена деления шкалы прибора.
  10. Скорость автомобиля в км/ч, если стрелка спидометра указывает на точки А, В, С, D соответственно.
  11. Величина (в км/ч), на которую увеличилась скорость автомобиля, если стрелка спидометра переместилась из точки В в точку С.
  12. Величина скорости автомобиля после того, как водитель уменьшил скорость на        84 км/ч (перед уменьшением скорости стрелка спидометра указывала на точку D).
  13. Масса груза на весах в центнерах, если стрелка – указатель весов – расположена напротив  точек А, В, С соответственно.
  14. Масса груза на весах в килограммах, если стрелка – указатель весов – расположена напротив точек А, В, С соответственно.
  15. Масса груза на весах в граммах, если стрелка – указатель весов – расположена напротив  точек А, В, С соответственно.
  16. Количество учеников в 5 классе.
  17. Разность между количеством учеников, успевающих на «4», и количеством учеников, успевающих на «3».
  18. Отношение количества учеников, успевающих на «4» и «5», к количеству учеников, успевающих на «3».

РАВНО (равна, равны, это):

 а) 10   б) 6,12,3,3     в) 1   г) 99,102,106,104   д) 2   е) 201,202    ж) 49   з) 3500,3000,8000,4500

 и) 5,2,1,4   к) 599   л) 6,3,3,9   м) 10,4,16,7   н) 100   о) 4 км/ч   п) 65,85,105,115   р) 7,2,4,6      с) 20,20,50,30   т) 0   у) 700,600,1600,900   ф) 1,2,3,4,5,6   х) 25,10,5,20   ц) 3,4,5,2   ч) 203,197,200,206   ш) 15,20,25,10   щ) 1599   ы) 11,12,13,14,15   э) 30,60,15,15  ю) 0,700,1300,1600   я) 100,100,250,150   аа) 30,15,15,45  бб) 4   вв) 1,2,3,4,5   гг) 17  дд) 500 кг   ее) 19    жж) 80   зз) 100,101,102,103,104,105   ии)5,6   кк) 28,64,100,164   лл) 1500000,3000000,4500000   мм) 11   нн) 36   оо) 1500,3000,4500   пп) 7   рр) 24  сс) 15,30,45

Блок 5.6. Учебная мозаика

В заданиях мозаики использованы приборы из блока «Дополнительный». Ниже приведено поле мозаики. На нём указаны названия приборов. Кроме того для каждого прибора обозначены: измеряемая величина (В), единица измерения величины (Е), показание прибора (П), цена деления шкалы (Ц). Далее помещены ячейки мозаики. Прочитав ячейку, вы должны сначала определить прибор, к которому она относится, и поставить в окружность ячейки номер прибора. Затем надо догадаться, о чём эта ячейка. Если речь идёт об измеряемой величине, надо к номеру приписать букву В. Если это единица измерения – поставить букву Е, если показание прибора – букву П, если цена деления – букву Ц. Таким образом надо обозначить все ячейки мозаики. Если ячейки вырезать и расположить так, как на поле, то можно систематизировать сведения о приборе. В компьютерном варианте мозаики при правильном расположении ячеек создаётся рисунок.

 

Координатный луч изображается по той же схеме, но существенно отличается. Мы ставим точку отсчета и отмеряем единичный отрезок.

Данная статья посвящена разбору таких понятий, как координатный луч и координатная прямая. Мы остановимся на каждом понятии и подробно рассмотрим примеры. Благодаря этой статье вы сможете освежить свои знания или ознакомиться с темой без помощи преподавателя.

Координатный луч

Для того, чтобы определить понятие координатного луча, следует иметь представление о том, что такое луч.

Определение 1

Луч – это геометрическая фигура, которая имеет начало отсчета координатного луча и направление движения. Прямую обычно изображают горизонтально, указывая направление направо.

На примере мы видим, что O является началом луча.

Пример 1

Координатный луч

Координатный луч изображается по той же схеме, но существенно отличается. Мы ставим точку отсчета и отмеряем единичный отрезок. 

Пример 2

Координатный луч

Определение 2

Единичный отрезок – это расстояние от 0 до точки, выбранной для измерения.

Пример 3

Координатный луч

От конца единичного отрезка нужно отложить несколько штрихов и сделать разметку. 

Благодаря манипуляциям, которые мы проделали с лучом, он стал координатным. Подпишите штрихи натуральными числами в последовательности от 1 – например, 2, 3, 4, 5… 

Пример 4

Координатный луч

Определение 3

Координатный луч – это шкала, которая может длиться до бесконечности.

Зачастую его изображают лучом с началом в точке O, и откладывают единственный единичный отрезок. Пример указан на рисунке.

Пример 5

Координатный луч

 Мы в любом случае сможем продолжить шкалу до того числа, которое нам необходимо. Вы можете записывать числа как удобно – под лучом или над ним.

Пример 6

Координатный луч

Для отображений координат луча могут использоваться как заглавные, как и строчные буквы.

Координатная прямая

Принцип изображения координатной прямой практически не отличается от изображения луча. Все просто – прочертите луч и дополните до прямой, придав положительное направление, которое указывается стрелочкой.

Пример 7

Координатная прямая

Проведите луч в противоположную сторону, дополнив его до прямой 

Пример 8

Координатная прямая

Отложите единичные отрезки по примеру, указанному выше

С левой стороны запишите натуральные числа 1, 2, 3, 4, 5… с противоположным знаком. Обратите внимание на пример.

Пример 9

Координатная прямая

Вы можете отметить только начало отсчета и единичные отрезки. Смотрите на примере, как это будет выглядеть.

Пример 10

Координатная прямая

Определение 4

Координатная прямая – это прямая, которая изображается с определенной точкой отсчета, которая принимается за 0, единичным отрезком и заданным направлением движения.

Соответствие между точками координатной прямой и действительными числами

Координатная прямая может содержать множество точек. Они напрямую связаны с действительными числами. Это можно определить, как взаимно однозначное соответствие.

Определение 5

Каждой точке на координатной прямой соответствует единственное действительное число, а каждому действительному числу соответствует единственная точка на координатной прямой.

Для того, чтобы лучше понять правило, следует отметить точку на координатной прямой и посмотреть, какое натуральное число соответствует отметке. Если эта точка совпадает с началом отсчета, она будет отмечена нулем. Если точка не совпадает с началом отсчета, мы откладываем нужное количество единичных отрезков до тех пор, пока не достигнем указанной отметки. Число, записанное под ней, и будет соответствовать данной точке. На примере, указанном внизу, мы покажем вам это правило наглядно.

Пример 11

Координатная прямая

Если мы не можем найти точку, откладывая единичные отрезки, следует отмечать также точки, составляющие одну десятую, сотую или тысячную долю единичного отрезка. На примере можно подробно рассмотреть данное правило.

Отложив несколько подобных отрезков, мы сможем получить не только целое, но и дробное число – как положительное, так и отрицательное.

Отмеченные отрезки помогут нам отыскать на координатной прямой необходимую точку. Это могут быть как целые, так и дробные числа. Однако на прямой существуют точки, которые очень сложно найти с помощью единичных отрезков. Этим точкам соответствуют десятичные дроби. Для того, чтобы искать подобную точку, придётся откладывать единичный отрезок, десятую, сотую, тысячную, десятитысячную и другие его доли. Одной точке координатной прямой отвечает иррациональное число π (=3,141592…).

Множество действительных чисел включается в себя все числа, которые можно записать в виде дроби. Это позволяет выявить правило.

Определение 6

Каждой точке координатной прямой соответствует конкретное действительное число. Разные точки определяют разные действительные числа.

Это соответствие однозначно –каждой точке соответствует определенное действительное число. Но это работает также и в обратном направлении. Мы также можем указать определенную точку на координатной прямой, которая будет относиться конкретному действительному числу. Если число не является целым, то нам необходимо отметить несколько единичных отрезков, а также десятых, сотых долей в заданном направлении. Например, числу 400350 отвечает точка на координатной прямой, в которую из начала отсчета можно попасть, отложив в положительном направлении 400 единичных отрезков, 3 отрезка, составляющих десятую долю единичного, и 5 отрезков – тысячную долю.

Согласно правилу,

Определение 7

Каждой точке на координатной прямой отвечает действительное число, и каждое действительное число отмечается в виде точки на координатной прямой.

Благодаря этому утверждению координатную прямую зачастую определяют как числовую.

Следует отметить, что знак, стоящий перед числом, зависит от размещения точки на прямой. Точкам, лежащим правее начала отсчета, соответствуют положительные числа, а точкам, лежащим левее, – отрицательные.

Координаты точек на координатной прямой

Определение 8

Число, соответствующее точке на координатной прямой, называется координатой этой точки.

Ранее было отмечено, что к каждому числу относится единственная точка на прямой. Можно сказать, что координата точки определяет ее положение на прямой. Именно координата задает эту точку.

Перед тем, как завершить статью, следует упомянуть о принятых обозначениях координаты точки. Координату принято записывать в круглых скобках справа от буквы, которой обозначена точка. Например, если точка M имеет координату – 6, то можно записать как M(-6) , а запись вида M(53+7) значит, что координатой является 53+7

Математика

5 класс

Урок № 79

Координатный луч

Перечень рассматриваемых вопросов:

– координатный луч;

– единичный отрезок;

– соотношение единичного отрезка со знаменателем дроби;

– координата точки.

Тезаурус

Единичный отрезок – это расстояние от 0 до точки, выбранной для измерения.

Отрезок – часть прямой, ограниченная с двух сторон точками.

Луч – это часть прямой линии, расположенная по одну сторону от любой точки, лежащей на этой прямой.

Обязательная литература

  1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

Зададим прямую, на которой указано направление. Отметим на ней точку О. Примем её за начало отсчета.

Отложим на прямой вправо от точки О единичные отрезки.

Единичный отрезок – это расстояние от О до точки, выбранной для измерения.

Обозначим конец первого отрезка числом 1, второго – числом 2 и т. д.

Сформулируем определение.

Прямую с заданными на ней началом отсчёта, единичным отрезком и направлением отсчёта называют координатной осью или координатным лучом.

С помощью координатной прямой натуральные числа изображаются точками.

Точке О на координатной прямой соответствует число 0. Обозначают: О (0).

Число, которое соответствует данной точке на координатной оси, называют координатой данной точки.

Например, точка А имеет координату 5.

Обозначают А (5).

Таким образом, на координатной прямой можно найти точку, соответствующую натуральному числу. Также с помощью натуральных чисел и числа ноль можно указать положение любой точки на прямой.

А теперь рассмотрим, как отметить на координатном луче дробь.

Чтобы удобно было изображать дробные числа, нужно правильно выбрать длину единичного отрезка.

Удобный вариант – взять единичный отрезок из стольких клеточек, каков знаменатель дробей. Например, если требуется изобразить на координатном луче дроби со знаменателем 7, единичный отрезок лучше взять длиной в 7 клеточек. В этом случае изображение дробей на координатном луче будет несложным.

можно изобразить одним единичным отрезком и ещё двумя клеточками.

Если требуется отметить на координатном луче дроби с разными знаменателями, желательно, чтобы число клеточек в единичном отрезке делилось на все знаменатели. Например, для изображения на координатном луче дробей со знаменателями 6, 4 и 12 удобно взять единичный отрезок длиной в двенадцать клеточек. Чтобы отметить на координатном луче нужную дробь, единичный отрезок разбиваем на столько частей, каков знаменатель, и берём таких частей столько, каков числитель.

Возьмём единичный отрезок, разделим на шесть частей и возьмём одну из них.

Тренировочные задания

№ 1. Подберите правильные названия к числам. Разместите нужные подписи под изображениями.

Варианты ответов: смешанное число; правильная дробь; неправильная дробь.

Чтобы правильно выполнить задание, необходимо вспомнить, какую дробь называют правильной, а какую неправильной. А также, что называют смешанным числом.

Правильный ответ:

Варианты ответа: 9; 6; 4; 3; 2

Мы знаем, что удобный вариант – взять единичный отрезок из стольких клеточек, каков знаменатель дробей. Знаменатель равен 9, значит, единичный отрезок следует выбирать в 9 клеток.

Правильный ответ: 9.

Понятие
длины отрезка и ее измерения были уже
использованы неоднократно, в частности,
когда рассматривали натуральное число
как меру величины. В этом пункте мы
только обобщим представле­ния о длине
отрезка как геометрической величине.

В
геометрии длина – это величина,
характеризующая протяженность отрезка,
а также других линий (ломаной, кривой).
В нашем курсе будет рассмотрено только
понятие длины отрезка. При его определении
будем использовать введенное в теме 18
понятие «отрезок состоит из отрезков».

Определение.
Длиной
отрезка называется положительная
величина, обладающая следующими
свойствами: 1) равные отрезки имеют
равные длины; 2) если отрезок состоит из
двух отрезков, то его длина равна сумме
длин его частей.

Эти
свойства длины отрезка используются
при ее измерении. Чтобы измерить длину
отрезка, нужно иметь единицу длины. В
геометрии такой единицей является длина
произвольного отрезка.

Как
показано в теме 18, результатом измерения
длины отрезка является положительное
действительное число – его называют
численным
значением

длины
отрезка

при выбранной единице длины или мерой
длины

данного отрезка. Если обозначить длину
отрезка буквой X, единицу длины – Е, а
получаемое при измерении действительное
число – буквой а, то можно записать: а=mЕ
(Х)
или Х = а∙Е.

Получаемое
при измерении длины отрезка положительное
действительное число должно удовлетворять
ряду требований:

1.
Если два отрезка равны, то численные
значения их длин тоже равны.

2.
Если отрезок х состоит из отрезков х1
и х2,
то численное значение его длины равно
сумме численных значений длин отрезков
х1
и х2.

3.
При замене единицы длины численное
значение длины данного отрезка
увеличивается (уменьшается) во столько
раз, во сколько новая единица меньше
(больше) старой.

4.
Численное значение длины единичного
отрезка равно единице.

Доказано,
что положительное действительное число,
являющееся мерой длины заданного
отрезка, всегда существует и единственно.
Доказано также, что для каждого
положительного действительного числа
существует отрезок, длина которого
выражается этим числом.

Заметим,
что часто, ради краткости речи, численное
значение длины отрезка называют просто
длиной. Например, в задании «Найдите
длину данного отрезка» под словом
«длина» подразумевается числен­ное
значение длины отрезка. Не менее часто
допускают и другую вольность – говорят:
«Измерь отрезок» вместо «Измерь длину
отрезка».

Задача.
Построить отрезок, длина которого 3,2Е.
Каким будет численное значение длины
этого отрезка, если единицу длины Е
увеличить в 3 раза ?

Решение.
Построим произвольный отрезок и будем
считать его единичным. Затем построим
прямую, отметим на ней точку А и отложим
от нее 3 отрезка, длины которых равны Е.
Получим отрезок АВ, длина которого 3Е
(рис. 1).

Чтобы
получить отрезок длиной 3,2Е, надо ввести
новую единицу длины. Для этого единичный
отрезок надо разбить либо на 10 равных
частей, либо на 5, поскольку 0,2 =
.
Если от точки В отложить отрезок, равныйединичного, то длина отрезка АС будет
равна 3,2Е.

Чтобы
выполнить второе требование за­дачи,
воспользуемся свойством 3, согласно
которому при увеличении единицы длины
в 3 раза численное значение длины данного
отрезка уменьшается в 3 раза. Разделим
3,2 на 3, получим:

3,2
: 3 == 3:
3 == 1.
Таким образом, при единице длины 3Е
численное значение длины построенного
отрезка АС будет равно 1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий