Как найти значение гиперболы по графику функции

Функция y = k/x и её график. Гипербола

Определение обратной пропорциональности

Допустим, что у нас есть 1000 руб. Спрашивается, сколько тетрадей мы сможем купить, в зависимости от их цены. Составим таблицу:

Цена 1 тетради, руб.

Графическое представление полученных результатов:

Результат вполне ожидаемый: чем больше цена, тем меньше то количество, которое мы можем себе позволить за определённую ограниченную сумму.

Можно привести и другие примеры, где зависимость между величинами будет аналогичной:

  • время, которое придётся потратить на дорогу между двумя городами (при заданном расстоянии), в зависимости от скорости;
  • длина фанерного листа в зависимости от ширины при заданной площади;
  • время заполнения бассейна (заданный объём) в зависимости от количества открытых труб, и т.п.

Если обобщить формулы, описывающие подобные зависимости, то получаем:

$$<left< begin -infty lt x lt +infty – аргумент, quad любое quad действительное quad число \ k = const neq 0-параметр, quad константа \ y = frac – функция end right.>$$

Функция такого вида называется обратной пропорциональностью .

Если $k gt 0$, то чем больше x, тем меньше y – функция убывает.

Если $k lt 0$, то чем больше x, тем больше y – функция возрастает.

(Сравните с прямой пропорциональностью – см. §37 справочника для 7 класса)

График обратной пропорциональности

Графиком обратной пропорциональности является кривая, которую называют гиперболой.

Чтобы построить гиперболу, нужно 1) составить таблицу, в которой рассчитать значения y=k/x для некоторых значений x, 2) отметить полученные точки на координатной плоскости и 3) соединить их плавной кривой.

Гипербола

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Функция заданная формулой (y=frac), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

гипербола, где k y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.

Пример №2:
$$y=frac<1>-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

Дробь (color <frac<1>>) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.



5. Гипербола нечетная функция.

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b – длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы – бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат – каноническое уравнение гиперболы:

Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке “Эллипс” это пример 7.

Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

[spoiler title=”источники:”]

http://tutomath.ru/8-klass/kak-postroit-giperbolu.html

http://function-x.ru/curves_hyperbola.html

[/spoiler]

Добавлено: 9 декабря 2021 в 15:07

Гипербола с примерами

Гипербола — одно из наиболее сложных понятий в школьном курсе математики за 8 класс, точнее уже алгебры. Возможно, играет роль сбивающий с толку «синоним» из курса литературы, возможно, сложно понять смысл слова «асимптота», но школьнику сложно освоить построение и в сравнении с параболой. Чтобы раз и навсегда разобраться с этим вопросом, мы начнем не с школьного определения гиперболы, а с построения графика. Более того, этот график не будет гиперболой.

Прямая пропорциональность

Большинство школьников хорошо понимают понятие «прямая пропорциональность», поскольку оно согласуется с их бытовым опытом. Чем больше вы работаете, тем лучше оценки, то есть уровень оценок прямо пропорционален времени обучения. С математической точки зрения эта зависимость выглядит следующим образом.

Пример: у бога грома Тора есть молот (этот инструмент называется «Мьёльнир»), который, будучи брошенным, всегда возвращается к своему хозяину. Но летает Мьёльнир с постоянной скоростью — за секунду он преодолевает 5 км. В первый раз Тор бросил молот (в Локи) и поймал через 5 секунд (Локи увернулся). Во второй раз Тор бросил молот и поймал через 10 секунд (вновь не попал в бога хитрости). Какое расстояние молот пролетел в первый и второй раз.

Решение

В нашей задаче изменяется время полета молота — обозначим эту величину «х». Расстояние полета Мьёльнира будет «y». В нашем случае эти две величины связаны постоянной скоростью полета молота — то есть коэффициентом пропорциональности k, который для данной задачи равен 5.

Если нанести эти данные на график, где по оси абсцисс будет x, а по оси ординат — y, то получится прямая с определенным наклоном, угол которого относительно оси абсцисс зависит от коэффициента k и для нашего случая составляет 45°. При отрицательном значении k прямая будет наклонена под 135°к оси х.

Если экстраполировать (продлить по тому же закону) обе стороны прямой, то можно сделать простой вывод: чем дольше летит молот, тем больше он пролетает.

Гипербола с примерами

Гипербола с примерами

Обратная пропорциональность

Внимательный читатель уже понял, что если есть прямая пропорциональность, то должна быть и обратная, при которой с возрастанием х будет убывать у (чем больше траты, тем меньше денег). Правильно, такая зависимость существует и выражается следующим образом:

Проанализируем указанное выше выражение:

  • х может быть любым, кроме 0 (потому что НА 0 ДЕЛИТЬ НЕЛЬЗЯ);
  • при k = 0 при любом значении х у = 0.

Рассмотрим все остальные случаи, то есть условие при k≠0. Примем коэффициент пропорциональности k = 5 (как в предыдущем примере) и подставив значения х от -10 до 10, нанесем полученные точки на график.

х -10 -5 -4 -2 -1 1 2 4 5 10
у -0,5 -1 -1,25 -2,5 -5 5 2,5 1,25 1 0,5

Гипербола с примерами

Гипербола с примерами

Полученная совокупность точек и называется гиперболой.

Чем примечательна гипербола?

Гипербола с примерами

Гипербола с примерами

Если мы проанализируем полученный график, то увидим, что гипербола состоит из двух ветвей с достаточно характерными особенностями:

  • ветви симметричны;
  • каждая ветвь симметрична относительно прямой, лежащей под углом 45° к оси абсцисс;
  • ветви находятся в I и III четвертях.

Если мы продолжим подставлять значения х в уравнение , то заметим, что ветви приближаются к осям х и у, но не пересекают их. Вот почему так происходит:

  • х не может принимать значение 0 по математическим соображениям;
  • k не может принимать значение 0 (мы сами исключили этот вариант);
  • у не может обращаться в 0.

Внимание: исключение значения k = 0 является неким самообманом, поэтому каноническое уравнение гиперболы отличается от школьного.

Оси абсцисс и ординат выполняют для гиперболы роль асимптоты — линии, к которой кривая бесконечно приближается, но не может коснуться. Говорят, что ветви гиперболы асимптотически приближаются к осям x и y. Асимптоты есть и у других кривых.

Попробуем рассмотреть нашу обратную пропорциональность пристальней — поменяем знак коэффициента k.

Подставим значения х от -10 до 10, нанесем полученные точки на график.

х -10 -5 -4 -2 -1 1 2 4 5 10
у 0,5 1 1,25 2,5 5 -5 -2,5 -1,25 -1 -0,5

Теперь ветви гиперболы располагаются во II и IV координатных четвертях.

Гипербола с примерами

Гипербола с примерами

Отметим несколько закономерностей:

  • гипербола имеет две асимптоты;
  • ветви гиперболы симметричны относительно друг друга;
  • для всех положительных вариантов х ветви размещаются в I или II четвертях;
  • для всех отрицательных вариантов х ветви размещаются в III или IV четвертях;
  • для всех положительных вариантов k ветви размещаются в I и III четвертях;
  • для всех отрицательных вариантов k ветви размещаются во II и IV четвертях;
  • чем меньше |x|, тем больше |y|;
  • если точка (х, у) принадлежит одной из ветвей гиперболы, точка (-х, -у) будет принадлежать второй его ветви (так как они симметричны).

Занимайтесь на курсах ЕГЭ и ОГЭ в паре TwoStu и получите максимум баллов на экзамене:

Владислав Барышников

Эксперт по подготовке к ЕГЭ, ОГЭ и ВПР

Задать вопрос

Закончил Московский физико-технический институт (Физтех) по специальности прикладная физика и математика. Магистр физико-математических наук. Преподавательский стаж более 13 лет. Соучредитель курсов ЕГЭ и ОГЭ в паре TwoStu.

Занимайтесь на курсах подготовки к ЕГЭ и ОГЭ (ГИА) в паре TwoStu и получите максимум баллов на ЕГЭ и ОГЭ!

09
Янв 2022

Категория: 10 Графики функций

2022-01-09
2022-09-11

Задача 1. На рисунке изображён график функции f(x)=frac{k}{x}+a.  Найдите f(50). 

Решение: + показать


Задача 2. На рисунке изображён график функции вида f(x)=frac{a}{x+b}+c,  где числа a,b и c — целые. Найдите значение x, при котором f(x)=2,5.

Решение: + показать


Задача 3. На рисунке изображён график функции  вида f(x)=frac{a}{x+b}+c, где a,b,c – целые числа.  Найдите f(frac{8}{3}).

Решение: + показать


Задача 4. На рисунке изображён график функции f(x)=frac{kx+a}{x+b}.  Найдите a.

Решение: + показать


Задача 5. На рисунке изображены графики функций f(x)=frac{k}{x}  и g(x)=ax+b и  которые пересекаются в точках A и B. Найдите ординату точки B.

Решение: + показать


Вы можете пройти тест “Гиперболы”

Автор: egeMax |

Нет комментариев

Определение

Графиком функции у=kx, где k0 число, а х – переменная, является кривая, которую называют гиперболой.

Гипербола имеет две ветви и может располагаться в 1 и 3 координатных четвертях, либо во 2 и 4. Это зависит от знака числа k. Рассмотрим данную кривую на рисунке, где показано ее расположение в зависимости от знака k.

C:UsersУчительDesktop1.jpg

Свойства гиперболы (у=kx)

График функции симметричен относительно начала координат (0;0). Поэтому функцию еще называют – обратная пропорциональность.

  1. Область определения – любое число, кроме нуля.
  2. Область значения – любое число, кроме нуля.
  3. Функция не имеет наибольших или наименьших значений.

Построение графика функции

Для построения графика функции необходимо подбирать несколько положительных и несколько отрицательных значений переменной х, затем подставлять их в заданную функцию для вычисления значений у. После этого по найденным координатам построить точки и соединить их плавной линией. Рассмотрим построение графиков на примерах.


Построить график функции у=10x.

Для этого построим две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число 10 на них делилось

х 1 2 4 5 10
у
х –1 –2 –4 –5 –10
у

Теперь делим на эти числа 10, получим значения у:

х 1 2 4 5 10
у 10 5 2,5 2 1
х –1 –2 –4 –5 –10
у –10 –5 –2,5 –2 –1

Выполняем построение точек, они будут располагаться в первой и третьей координатных четвертях, так как число k положительное.

Теперь для построения гиперболы соединим точки плавной линией.


Построить график функции у=5x.

Для этого построим также две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число минус 5 на них делилось. Выполняем деление и получаем значения у. При делении обращаем внимание на знаки, чтобы не допускать ошибок.

х 1 2 5 10
у –5 –2,5 –1 –0,5
х –1 –2 –5 –10
у 5 2,5 1 0,5

Теперь отмечаем точки во 2 и 4 координатных четвертях (число k отрицательное) и соединяем их для получения ветвей гиперболы.

Задание OM1104o

Установите соответствие между графиками функций и формулами, которые их задают.

5oge1) y = x²

2) y = x/2

3) y = 2/x


Для решения данной задачи необходимо знать вид графиков функций, а именно:

y = x² – парабола, в общем виде это y = ax²+bx+c, но в нашем случае b = c = 0, а а = 1

x/2 – прямая, в общем виде график прямой имеет вид y = ax + b, в нашем случае b = 0,  а = 1/2

y = 2/x – гипербола, в общем виде график функции y = a/x + b, в данном примере b = 0, a = 2

Парабола изображена на рисунке А, гипербола на рисунке Б, а прямая – В.

Ответ:

А 1

Б 3

В 2

Ответ: 132

pазбирался: Даниил Романович | обсудить разбор

Задание OM1102o

Установите соответствие между функциями и их графиками.

Функции:

A) y = -3/x

Б) y = 3/x

В) y = 1/(3x)

Графики:

Графики функций огэ по математике 5 задание


В данной ситуации можно воспользоваться двумя подходами — можно руководствоваться общими соображениями, а можно просто решить задачу подстановкой. Я рекомендую решать задачу общими соображениями, а проверять подстановкой.

Общие правила:

  • если уравнение гиперболы положительное (то есть не стоит знак -, как во втором и третьем случае), то график функции лежит в первой и третьей координатной четверти
  • если перед уравнением гиперболы стоит знак — (как в первом случае), то график лежит во второй и четвертой четвертях

Таким образом можно сразу определить, что первое уравнение соответствует графику под номером 2.

Второе правило, которым я пользуюсь, звучит так:

  • чем больше число в знаменателе гиперболы (рядом с x), тем сильнее гипербола жмется к осям координатной плоскости

и наоборот:

  • чем больше число в числителе уравнения гиперболы, тем слабее и медленнее график функции прижимается к осям

Следовательно, функция Б слабее прижимается к осям и ей соответствует график 3, а функции В соответствует график 1, так как она сильнее прижимается к осям.

Ответ:

A) 2

Б) 3

В) 1

Ответ: 231

pазбирался: Даниил Романович | обсудить разбор

Даниил Романович | Просмотров: 11.4k

В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.

  • Определение и функция гиперболы

  • Алгоритм построения гиперболы

    • Пример 1

    • Пример 2

Определение и функция гиперболы

Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:

Функция обратной пропорциональности

Здесь:

  • x – независимая переменная;
  • k ≠ 0;
  • при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
  • при k < 0 график находится во II и IV четвертях.

На рисунке ниже изображен пример гиперболы.

Пример гиперболы

  • Линии графика (зеленым цветом) называются его ветвями.
  • Оси абсцисс и ординат (Ox и Oy) являются асимптотами гиперболы, т.е. ветви бесконечно к ним приближаются, но никогда их не коснутся и не пересекут.
  • Ось симметрии (синим цветом) – это прямая:
    • y = x (при k > 0)
    • y = -x (при k < 0)

Смещение асимптот

Допустим у нас есть функция, заданная формулой:

Пример функции обратной пропорциональности

В этом случае:

  • x = a – это вертикальная асимптота графика (при a ≠ 0) вместо оси Oy;
  • y = b – горизонтальная асимптота (при b ≠ 0) вместо оси Ox.

Канонический вид уравнения гиперболы (координатные оси совпадают с осями графика):

Каноническое уравнение гиперболы

Алгоритм построения гиперболы

Пример 1

Дана функция y = 4/x. Построим ее график.

Решение

Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.

Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.

x y Расчет y
0,5 8 4 / 0,5 = 8
1 4 4 / 1 = 4
2 2 4 / 2 = 2
4 1 4 / 4 = 1
8 0,5 4 / 8 = 0,5

Теперь отмечаем найденные точки на координатной плоскости и соединяем их плавной линией, которая будет стремиться к осям координат. В итоге получится ветвь гиперболы, расположенная в первой четверти.

Ветвь гиперболы

Чтобы построить ветвь в третьей четверти, вместо x в формулу подставляем -x. Так мы вычислим значения y.

x y Расчет y
-0,5 -8 4 / -0,5 = -8
-1 -4 4 / -1 = -4
-2 -2 4 / -2 = -4
-4 -1 4 / -4 = -1
-8 -0,5 4 / -8 = -0,5

Соединив полученные точки получаем следующий результат. На этом построение гиперболы завершено.

Пример гиперболы в 1 и 3 четвертях координатной плоскости

Пример 2

Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:

Пример функции обратной пропорциональности

Решение

Так как k < 0, график будет располагаться во второй и четвертой четвертях.

Теперь определяемся с асимптотами, в нашем случае это x = 3 и y = 4 (см. информацию выше про их смещение).

Составим таблицу соответствия значений x и y.

x II четв. y II четв. x IV четв. y IV четв.
-1 4,5 3,5 0
1 5 4 2
2 6 5 3
2,5 8 7 3.5

Остается только нанести рассчитанные точки на координатную плоскость и соединить их плавными линиями.

Пример гиперболы во 2 и 4 четвертях координатной плоскости

Добавить комментарий