Как найти значение градиента в точке

Уважаемые студенты!
Заказать решение задач можно у нас всего за 10 минут.

Градиент функции

Как найти?

Постановка задачи

Найти градиент функции $ f(x,y,z) $ в точке $ M(x_0,y_0,z_0) $

План решения

Градиент функции $ f(x,y,z) $ – это вектор, каждая координата которого является частной производной первого порядка этой функции:

$$ grad f = frac{partial f}{partial x} overline {i} + frac{partial f}{partial y} overline{j} + frac{partial f}{partial z} overline {k} $$

  1. Берём частные производные первого порядка от функции $ f(x,y,z) $:
    $$ frac{partial f}{partial x}, frac{partial f}{partial y}, frac{partial f}{partial z} $$
  2. Вычисляем полученные производные в точке $ M(x_0,y_0,z_0) $:
    $$ frac{partial f}{partial x} bigg |_{M(x_0,y_0,z_0)}, frac{partial f}{partial y} bigg |_{M(x_0,y_0,z_0)}, frac{partial f}{partial z} bigg |_{M(x_0,y_0,z_0)} $$
  3. Подставляем, полученные данные в формулу градиента функции:
    $$ grad f bigg |_M = frac{partial f}{partial x} bigg |_M overline{i} + frac{partial f}{partial y} bigg |_M overline{j} + frac{partial f}{partial z} bigg |_M overline{k} $$

Примеры решений

Пример 1
Найти градиент функции $ u = x + ln (z^2+y^2) $ в точке $ M(2,1,1) $
Решение

Находим частные производные первого порядка функции трёх переменных:
$$ frac{partial f}{partial x} = 1; frac{partial f}{partial y} = frac{2y}{z^2+y^2}; frac{partial f}{partial z} = frac{2z}{z^2+y^2} $$

Вычисляем значение производных в точке $ M(2,1,1) $:

$$ frac{partial f}{partial x} bigg |_{M(2,1,1)} = 1 $$

$$ frac{partial f}{partial y} bigg |_{M(2,1,1)} = frac{2 cdot 1}{1^2+1^2} = frac{2}{2}=1 $$

$$ frac{partial f}{partial z} bigg |_{M(2,1,1)} = frac{2cdot 1}{1^2 + 1^2} = frac{2}{2}=1 $$

Подставляем в формулу градиента функции полученные данные:

$$ grad f = 1 cdot overline{i} + 1 cdot overline{j} + 1 cdot overline{k} = overline{i}+overline{j}+overline{k} $$

Запишем ответ в координатной форме:

$$ grad f = overline{i}+overline{j}+overline{k} = (1,1,1) $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ grad f = (1,1,1) $$
Пример 2
Найти градиент функции $ u = sin(x+2y)+2sqrt{xyz} $ в точке $ M bigg (frac{pi}{2},frac{3pi}{2},3 bigg ) $
Решение

Находим частные производные:

$$ frac{partial f}{partial x} = cos(x+2y) + frac{yz}{sqrt{xyz}} $$

$$ frac{partial f}{partial y} = 2cos(x+2y) + frac{xz}{sqrt{xyz}} $$

$$ frac{partial f}{partial z} = frac{xy}{sqrt{xyz}} $$

Вычисляем значения производных в точке $ M bigg (frac{pi}{2},frac{3pi}{2},3 bigg ) $:

$$ frac{partial f}{partial x} bigg |_{M(frac{pi}{2},frac{3pi}{2},3)} = cos(frac{pi}{2}+3pi)+ frac{frac{9pi}{2}}{sqrt{frac{9pi^2}{4}}} = cos frac{7pi}{2} + sqrt{9} = 3 $$

$$ frac{partial f}{partial y} bigg |_{M(frac{pi}{2},frac{3pi}{2},3)} = 2 cos(frac{pi}{2}+3pi) + frac{frac{3pi}{2}}{sqrt{frac{9pi^2}{4}}} = 2 cos frac{7pi}{2} + 1 = 2 cdot 0 + 1 = 1 $$

$$ frac{partial f}{partial y} bigg |_{M(frac{pi}{2},frac{3pi}{2},3)} = frac{frac{3pi^2}{4}}{sqrt{frac{9pi^2}{4}}} = sqrt{frac{pi^2}{4}} = frac{pi}{2} $$

Подставляем вычисленные недостающие данные в формулу и получаем:

$$ grad f = 3 cdot overline{i}+ 1 cdot overline{j} + frac{pi}{2} cdot overline{k} = 3overline{i}+overline{j}+frac{pi}{2} overline{k} $$

Записываем ответ в координатной форме:

$$ grad f = (3,1,frac{pi}{2}) $$

Ответ
$$ grad f = (3,1,frac{pi}{2}) $$

Приветствую всех. Сегодня на занятии хотелось бы затронуть немало важную тему, связанную одновременно с дифференциальным исчислением и векторной алгеброй. Мы постараемся как можно меньше углубляться в теоретические тезисы и побольше сделаем упор на решение практических задач. Незамедлительно начнём.

Определение слова “градиент” в математике нужно усвоить.

Градиент – это вектор показывающий направление наибольшего возрастания функции. Модуль вектора градиента показывает скорость изменения функции.

Запишем формулу для нахождения вектора градиента:

Функция представлена в нашем случае тремя переменными, имеет место быть и две переменных. "Что за заумный значок?" вы спросите. Этот перевёрнутый треугольничек имеет название "набла" и обозначает сумму частных производных по координатам, иначе его называют оператором Гамильтона. Хотите отдельную статью на эту тему? Пишите об этом в комментариях.
Функция представлена в нашем случае тремя переменными, имеет место быть и две переменных. “Что за заумный значок?” вы спросите. Этот перевёрнутый треугольничек имеет название “набла” и обозначает сумму частных производных по координатам, иначе его называют оператором Гамильтона. Хотите отдельную статью на эту тему? Пишите об этом в комментариях.

При нашем раскладе можно с теорией закончить, этого будет достаточно.

Разберём простенький примерчик для начала.

Действительно не сложно.
Действительно не сложно.

Никто ведь не забыл как брать частные производные? Если подзабыли, ссылочка (на статью) будет в конце урока.

Решается практически в одно действие, взяли частные производные по трём переменным, далее подставили в формулу и получили в формулу.
Решается практически в одно действие, взяли частные производные по трём переменным, далее подставили в формулу и получили в формулу.

Было слишком уж просто для нас, возьмём что-нибудь посложнее.

Уже интереснее.
Уже интереснее.

Такого плана примеры уже устно не решишь, хотя… Нет, всё же возможно.

Берём частные производные, как и в прошлом примере, после подставляем в формулу. Теперь у нас стоит задача найти длину вектора градиента в точке "М", для начала нужно подставить точку в наш вектор, таким образом получим градиент функции в точке. осталось найти длину. Вспоминаем, что длина вектора определяется через модуль, а модуль находится как сумма всех членов в квадрате под корнем квадратным.
Берём частные производные, как и в прошлом примере, после подставляем в формулу. Теперь у нас стоит задача найти длину вектора градиента в точке “М”, для начала нужно подставить точку в наш вектор, таким образом получим градиент функции в точке. осталось найти длину. Вспоминаем, что длина вектора определяется через модуль, а модуль находится как сумма всех членов в квадрате под корнем квадратным.

Не будем перенапрягаться сильно, рассмотрим последний пример и пойдём отдыхать.

Функция не самая простая, это не должно нас пугать.
Функция не самая простая, это не должно нас пугать.

Берёмся за дело.

Сложно было брать только производные, остальное "пошло как по маслу", все синусы нам дали нули, остался только первый член в итоге длина вектора градиента получилась равной 1/3.
Сложно было брать только производные, остальное “пошло как по маслу”, все синусы нам дали нули, остался только первый член в итоге длина вектора градиента получилась равной 1/3.

Не отчаиваемся что уже конец практики, у вас всегда есть возможность найти похожие задачки в интернете или взять в библиотеке задачник по высшей математике. Практикуйтесь, практикуйтесь, и ещё раз практикуйтесь. Спасибо за внимание.

Другие темы:

Градиент функции

Градиент — вектор, своим направлением указывающий направление наискорейшего возрастания некоторой величины u. Другими словами, направление градиента есть направление наибыстрейшего возрастания функции.

Градиент функции

Назначение сервиса. Онлайн калькулятор используется для нахождения градиента функции нескольких переменных. (см. пример) При этом решаются следующие задачи:

  • нахождение частных производных функции, запись формулы градиента, вычисление наибольшой скорости возрастания функции в указанной точке;
  • вычисление градиента в точке A, нахождение производной в точке A по направлению вектора a;
  • нахождение полного дифференциала функции.
  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Решение со всеми исходными формулами сохраняется в формате Word.

Полный дифференциал для функции двух переменных:

Полный дифференциал для функции трех переменных равен сумме частных дифференциалов: d f(x,y,z)=dxf(x,y,z)dx+dyf(x,y,z)dy+dzf(x,y,z)dz

Алгоритм нахождения градиента

  1. Вычисление частных производных по формуле:

    Градиент функции

  2. Вычисление частных производных в точке A.
  3. Нахождение направляющих углов вектора a.
  4. Вычисление производной в точке A по направлению вектора a по формуле;

    Производная в точке по направлению вектора

  5. Наибольшая скорость возрастания функции в указанной точке равна модулю градиента функции в этой точке.

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Пусть F(x,y,z)F(x,y,z) – функция трех переменных, (x,y,z)(x,y,z) – декартовы координаты.

Градиентом функции F(x,y,z)F(x,y,z) называется векторное поле

∇F(x,y,z)=∂F∂xi+∂F∂yj+∂F∂zk,
nabla F(x,y,z)=frac{partial F}{partial x}mathbf{i}+frac{partial F}{partial y}mathbf{j}+frac{partial F}{partial z}mathbf{k},

где ∂F∂xfrac{partial F}{partial x}, ∂F∂yfrac{partial F}{partial y} и ∂F∂zfrac{partial F}{partial z} – частные производные функции F(x,y,z)F(x,y,z), а imathbf{i}, jmathbf{j} и kmathbf{k} – базис декартовой системы координат (x,y,z)(x,y,z).

Иногда градиент обозначается так: grad⁡F(x,y,z)operatorname{grad} F(x,y,z).

Градиент функции в данной точке показывает направление наибольшего роста функции.

Пример 1

Найти градиент функции F(x,y,z)=ln⁡(x2+y2+z2)F(x,y,z)=ln(x^2+y^2+z^2) в точке M(1,2,3)M(1,2,3).

Вычислим частные производные:
∂F∂x=∂∂xln⁡(x2+y2+z2)=2xx2+y2+z2,
frac{partial F}{partial x}=frac{partial }{partial x}ln(x^2+y^2+z^2)=frac{2x}{x^2+y^2+z^2},

∂F∂y=∂∂yln⁡(x2+y2+z2)=2yx2+y2+z2,
frac{partial F}{partial y}=frac{partial }{partial y}ln(x^2+y^2+z^2)=frac{2y}{x^2+y^2+z^2},

∂F∂z=∂∂zln⁡(x2+y2+z2)=2zx2+y2+z2.
frac{partial F}{partial z}=frac{partial }{partial z}ln(x^2+y^2+z^2)=frac{2z}{x^2+y^2+z^2}.

Градиент в точке M(1,2,3)M(1,2,3) (подставляем в формулы для частных производных значения x=1x=1, y=2y=2, z=3z=3):

∇F(M)=17  i+27  j+37  k=17  OM→.
nabla F(M)=frac{1}{7},,mathbf{i}+frac{2}{7},,mathbf{j}+frac{3}{7},,mathbf{k}=frac{1}{7},,overrightarrow{OM}.

Производная по направлению

Пусть FF – функция на плоскости или в пространстве.

Производной функции FF по направлению вектора amathbf{a} в точке MM называется число

∂F∂a(M)=1∥a∥ddεF(M+εa)∣ε=0,
frac{partial F}{partialmathbf{a}}(M)=frac{1}{|mathbf{a}|}left.frac{d}{dvarepsilon}Fleft(M+varepsilon mathbf{a}right)right|_{varepsilon=0},

если производная в правой части существует.

Пример 2

Найдем производную функции F(x,y,z)=x2y−y2z+z2xF(x,y,z)=x^2y-y^2z+z^2x по направлению вектора a=i−2j+2kmathbf{a}=mathbf{i}-2mathbf{j}+2mathbf{k} в точке M(−1,0,1)M(-1,0,1).

Вычисляем значение функции в точке M+εaM+varepsilon mathbf{a} с координатами (−1+ε,−2ε,1+2ε)(-1+varepsilon,-2varepsilon,1+2varepsilon):

F(M+εa)=(−1+ε)2(−2ε)−(−2ε)2(1+2ε)+(1+2ε)2(−1+ε)=−6ε3−5ε−1.
Fleft(M+varepsilon mathbf{a}right)=(-1+varepsilon)^2(-2varepsilon)-(-2varepsilon)^2(1+2varepsilon)+(1+2varepsilon)^2(-1+varepsilon)=-6{varepsilon^{3}}-5varepsilon-1.

Длина вектора amathbf{a}:

∥a∥=a12+a22+a32=12+(−2)2+22=9=3.
|mathbf{a}|=sqrt{a_1^2+a_2^2+a_3^2}=sqrt{1^2+(-2)^2+2^2}=sqrt{9}=3.

Производная по направлению:
∂F∂a(M)=1∥a∥ddεF(M+εa)∣ε=0=13ddε(−6ε3−5ε−1)∣ε=0=−53
frac{partial F}{partialmathbf{a}}(M)=frac{1}{|mathbf{a}|}left.frac{d}{dvarepsilon}Fleft(M+varepsilon mathbf{a}right)right|_{varepsilon=0}=frac{1}{3}left.frac{d}{dvarepsilon}left(-6{varepsilon^{3}}-5varepsilon-1right)right|_{varepsilon=0}=-frac{5}{3}

Выражение производной по направлению через градиент

Используя формулу Тейлора для функций нескольких переменных, легко получить выражение производной по направлению через градиент. Действительно, из равенства

F(M+εa)=F(M)+ε(∇F(M),a)+o(ε2)Fleft(M+varepsilon mathbf{a}right)=F(M)+varepsilonleft(nabla F(M),mathbf{a}right)+oleft(varepsilon^2right)

следует, что

ddεF(M+εa)∣ε=0=(∇F(M),a).
left.frac{d}{dvarepsilon}Fleft(M+varepsilon mathbf{a}right)right|_{varepsilon=0}=left(nabla F(M),mathbf{a}right).

Таким образом,

∂F∂a(M)=(∇F(M),a)∥a∥.
frac{partial F}{partialmathbf{a}}(M)=frac{left(nabla F(M),mathbf{a}right)}{|mathbf{a}|}.

Пример 2′2′

Найдем производную функции F(x,y,z)=x2y−y2z+z2xF(x,y,z)=x^2y-y^2z+z^2x по направлению вектора a=i−2j+2kmathbf{a}=mathbf{i}-2mathbf{j}+2mathbf{k} в точке M(−1,0,1)M(-1,0,1) используя градиент.

Частные производные:

∂F∂x(M)=2xy+z2∣(x,y,z)=(−1,0,1)=1,
frac{partial F}{partial x}(M)=left.2xy+z^2right|_{(x,y,z)=(-1,0,1)}=1,

∂F∂y(M)=x2−2yz∣(x,y,z)=(−1,0,1)=1,
frac{partial F}{partial y}(M)=left.x^2-2yzright|_{(x,y,z)=(-1,0,1)}=1,

∂F∂z(M)=−y2+2zx∣(x,y,z)=(−1,0,1)=−2.
frac{partial F}{partial z}(M)=left.-y^2+2zxright|_{(x,y,z)=(-1,0,1)}=-2.

Градиент:

∇F(M)=i+j−2k.
nabla F(M)=mathbf{i}+mathbf{j}-2mathbf{k}.

Скалярное произведение:

(∇F(M),a)=(i+j−2k,i−2j+2k)=1−2−4=−5.
left(nabla F(M),mathbf{a}right)=left(mathbf{i}+mathbf{j}-2mathbf{k},mathbf{i}-2mathbf{j}+2mathbf{k}right)=1-2-4=-5.

Производная по направлению:

∂F∂a(M)=(∇F(M),a)∥a∥=−53.
frac{partial F}{partialmathbf{a}}(M)=frac{left(nabla F(M),mathbf{a}right)}{|mathbf{a}|}=-frac{5}{3}.

Тест по теме “Градиент функции. Производная по направлению”

 Пусть Z=F(M) – функция, определенная в некоторой окрестности точки М(у; х); L={Cos; Cos} – единичный вектор (на рис. 33 1=, 2=); L – направленная прямая, проходящая через точку М; М1(х1; у1), где х1=х+х и у1=у+у – точка на прямой L; L – величина отрезка ММ1; Z=F(х+х, у+у)-F(X, Y) – приращение функции F(M) в точке М(х; у).

Определение. Предел отношения , если он существует, называется Производной функции Z=F(M) в точке M(X; Y) по направлению вектора L .

Обозначение.

Если функция F(M) дифференцируема в точке М(х; у), то в точке М(х; у) существует производная по любому направлению L, исходящему из М; вычисляется она по следующей формуле:

  (8)

Где Cos И Cos – направляющие косинусы вектора L.

Пример 46. Вычислить производную функции Z=X2+Y2X в точке М(1; 2) по направлению вектора ММ1, где М1 – точка с координатами (3; 0).

Решение. Найдем единичный вектор L, имеющий данное направление:

Откуда Cos=; Cos=-.

Вычислим частные производные функции в точке М(1; 2):

По формуле (8) получим

Пример 47. Найти производную функции U = Xy2Z3 в точке М(3; 2; 1) В направлении вектора MN, где N(5; 4; 2).

Решение. Найдем вектор  и его направляющие косинусы:

Вычислим значения частных производных в точке М:

Следовательно,

Определение. Градиентом Функции Z=F(M)  в точке М(х; у) называется вектор, координаты которого равны соответствующим частным производным  и, взятым в точке М(х; у).

Обозначение.

Пример 48. Найти градиент функции Z=X2+2Y2-5 в точке М(2; -1).

Решение. Находим частные производные:  и их значения в точке М(2; -1):

Пример 49. Найти величину и направление градиента функции  в точке

Решение. Найдем частные производные и вычислим их значения в точке М:

Следовательно,

Аналогично определяется производная по направлению для функции трех переменных U=F(X, Y, Z), выводятся формулы

Вводится понятие градиента

Подчеркнем, что Основные свойства градиента функции важнее для анализа экономических оптимизационных задач: в направлении градиента функция возрастает. В экономических задачах находят применение следующие свойства градиента:

1) Пусть задана функция Z=F(X, Y), имеющая частные производные в области определения. Рассмотрим некоторую точку М0(х0, у0) из области определения. Значение функции в этой точке пусть равно F(X0, Y0). Рассмотрим график функции. Через точку (X0, Y0, F(X0, Y0)) трехмерного пространства проведем плоскость, касательную к поверхности графика функции. Тогда градиент функции, вычисленный в точке (х0, у0), рассматриваемый геометрически как вектор, приложенный в точке (X0, Y0, F(X0, Y0)), будет перпендикулярен касательной плоскости. Геометрическая иллюстрация приведена на рис. 34.

2)  Градиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого возрастания функции в точке М0. Кроме того, любое направление, составляющее с градиентом острый угол, является направлением роста функции в точке М0. Другими словами, малое движение из точки (х0, у0) по направлению градиента функции в этой точке ведет к росту функции, причем в наибольшей степени.

Рассмотрим вектор, противоположный градиенту. Он называется Антиградиентом. Координаты этого вектора равны:

Антиградиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого убывания функции в точке М0. Любое направление, образующее острый угол с антиградиентом, является направлением убывания функции в этой точке.

3)  При исследовании функции часто возникает необходимость нахождения таких пар (х, у) из области определения функции, при которых функция принимает одинаковые значения. Рассмотрим множество точек (X, Y) из области определения функции F(X, Y), таких, что F(X, Y)=Const, где запись Const означает, что значение функции зафиксировано и равно некоторому числу из области значений функции.

Определение. Линией уровня функции U=F(X, Y) называется линия F(X, Y)=С на плоскости XOy, в точках которой функция сохраняет постоянное значение U=C.

Линии уровня геометрически изображаются на плоскости изменения независимых переменных в виде кривых линий. Получение линий уровня можно представить себе следующим образом. Рассмотрим множество С, которое состоит из точек трехмерного пространства с координатами (X, Y, F(X, Y)=Const), которые, с одной стороны, принадлежат графику функции Z=F(X, Y), с другой  – лежат в плоскости, параллельной координатной плоскости ХОУ, и отстоящей от неё на величину, равную заданной константе. Тогда для построения линии уровня достаточно поверхность графика функции пересечь плоскостью Z=Const и линию пересечения спроектировать на плоскость ХОУ. Проведенное рассуждение является обоснованием возможности непосредственно строить линии уровня на плоскости ХОУ.

Определение. Множество линий уровня называют Картой линий уровня.

Хорошо известны примеры линий уровня – уровни одинаковых высот на топографической карте и линии одинакового барометрического давления на карте погоды.


Определение. Направление, вдоль которого скорость увеличения функции максимальна, называется «предпочтительным» направлением, или Направлением наискорейшего роста.

«Предпочтительное» направление задается вектором-градиентом функции. На рис. 35 изображены максимум, минимум и седловая точка в задаче оптимизации функции двух переменных при отсутствии ограничений. В нижней части рисунка изображены линии уровня и направления наискорейшего роста.

Пример 50. Найти линии уровня функции U=X2+Y2.

Решение. Уравнение семейства линий уровня имеет вид X2+Y2=C (C>0). Придавая С различные действительные значения, получим концентрические окружности с центром в начале координат.

Построение линий уровня. Их анализ находит широкое применение в экономических задачах микро – и макроуровня, теории равновесия и эффективных решений. Изокосты, изокванты, кривые безразличия – это все линии уровня, построенные для разных экономических функций.

Пример 51. Рассмотрим следующую экономическую ситуацию. Пусть производство продукции описывается Функцией Кобба-Дугласа F(X, Y)=10х1/3у2/3, где Х – количество труда, У – количество капитала. На приобретение ресурсов выделено 30 у. ед., цена труда составляет 5 у. ед., капитала – 10 у. ед. Зададимся вопросом: какой наибольший выпуск можно получить в данных условиях? Здесь под «данными условиями» имеются в виду заданные технологии, цены на ресурсы, вид производственной функции. Как уже отмечалось, функция Кобба-Дугласа является монотонно возрастающей по каждой переменной, т. е. увеличение каждого вида ресурса ведет к росту выпуска. В данных условиях ясно, что увеличивать приобретение ресурсов можно до тех пор, пока хватает денег. Наборы ресурсов, стоимость которых составляет 30 у. ед., удовлетворяют условию:

5х + 10у = 30,

Т. е. определяют линию уровня функции:

G(X, Y) = 5х + 10у.

С другой стороны, с помощью линий уровня Функции Кобба-Дугласа (рис. 36) можно показать возрастание функции: в любой точке линии уровня направление градиента – это направление наибольшего возрастания, а для построения градиента в точке достаточно провести касательную к линии уровня в этой точке, построить перпендикуляр к касательной и указать направление градиента. Из рис. 36 видно, что движение линии уровня функции Кобба-Дугласа вдоль градиента следует производить до тех пор, пока она не станет касательной к линии уровня  5х + 10у = 30. Таким образом, с помощью понятий линии уровня, градиента, свойств градиента можно выработать подходы к наилучшему использованию ресурсов с точки зрения увеличения объемов выпускаемой продукции.

Определение. Поверхностью уровня функции U=F(X, Y, Z) называется поверхность F(X, Y, Z)=С, в точках которой функция сохраняет постоянное значение U=C.

Пример 52. Найти поверхности уровня функции U=X2+Z2Y2.

Решение. Уравнение семейства поверхностей уровня имеет вид X2+Z2Y2. Если С=0, то получаем X2+Z2Y2=0 – конус; если  C<0, то X2+Z2Y2=С – Семейство двуполостных гиперболоидов.

< Предыдущая   Следующая >

Добавить комментарий