Как найти значение игрек при икс

Что такое значение функции? Как найти значение функции?

Рассмотрим значение функции в математике на примере.

Значение функции в математике

Значение функции – это значение зависимой переменной.

Часто функцию в общем виде записывают как

y = f(x)

здесь игрек представляет значение функции.

Примеры значений функции

Простой пример значения функции:

y = x + 5

Что такое значение в этой функции?

Значение в этой функции представлено игреком.

Как узнать, что именно игрек, а не икс и не число пять, в этой функции покажет её значение?

Значение функции есть значение зависимой переменной.

Значение функции есть значение переменной, которое получается в результате математического действия.

В нашем случае к переменной икс прибавляется 5. Значит икс есть аргумент.

Значение же игрека получается в результате данного математического действия. Игрек и будет представлять значение функции.

Значение функции – это то, чему равна функция.

Пример. Пусть дана функция:

y = 5x

Функцией здесь является игрек. Чтоб найти значение функции, т.е. значение игрека, нужно подставить допустимое значение аргумента x. Так и сделаем. Пусть икс равен 4, тогда

20 = 5 * 4

откуда получаем, что значение функции при икс = 4 будет равно 20-ти.

Итак, значение функции это х или у? Значение функции это y.

Прежде чем перейти к разбору решения задач с функциями обязательно прочитайте урок
«Что такое функция в математике».

После того, как вы действительно поймете, что такое функция
(возможно, придется прочитать урок не один раз) вы с бóльшей уверенностью сможете решать задания с функциями.

В этом уроке мы разберем, как решать основные типы задач на функцию и графики функций.

Как получить значение функции

Рассмотрим задание.
Функция задана формулой «y = 2x − 1»

  1. Вычислить «y» при «x = 15»
  2. Найти значение «x», при котором
    значение «y» равно «−19».

Для того, чтобы вычислить «y» при
«x = 15» достаточно подставить в функцию вместо «x»
необходимое числовое значение.

Запись решения выглядит следующим образом.

y(15) = 2 · 15 − 1 = 30 − 1 = 29

Для того, чтобы найти «x»
по известному «y», необходимо подставить вместо
«y» в формулу функции числовое значение.

То есть теперь наоборот, для поиска «x»
мы подставляем в функцию «y = 2x − 1» вместо
«y» число «−19» .

−19 = 2x − 1

Мы получили линейное уравнение с неизвестным «x»,
которое решается по правилам решения линейных уравнений.

Запомните!
!

Не забывайте про правило переноса в уравнениях.

При переносе из левой части уравнения в правую (и наоборот) буква или число меняет знак на
противоположный.

−19 = 2x − 1
0 = 2x − 1 + 19
−2x = −1 + 19
−2x = 18

Как и при решении линейного уравнения, чтобы найти неизвестное, сейчас
требуется умножить и левую, и правую часть на «−1» для смены знака.

−2x = 18       | · (−1)
2x = −18                

Теперь разделим и левую, и правую часть на «2», чтобы найти «x» .

2x = −18     | (: 2)
x = −9                

Как проверить верно ли равенство для функции

Рассмотрим задание.
Функция задана формулой «f(x) = 2 − 5x».

Верно ли равенство
«f(−2) = −18»?


Чтобы проверить верно ли равенство, нужно подставить в функцию «f(x) = 2 − 5x»
числовое значение «x = −2» и сопоставить с тем, что получится при расчетах.

Важно!
Галка

Когда подставляете отрицательное число вместо «x», обязательно заключайте его в скобки.

Не забывайте использовать
правило знаков.

Неправильно

неверная подставновка отрицательного числа в функцию

Правильно

верная подставновка отрицательного числа в функцию

С помощью расчетов мы получили
«f(−2) = 12».

Это означает, что «f(−2) = −18»
для функции «f(x) = 2 − 5x» не является верным равенством.

Как проверить, что точка принадлежит графику функции

Рассмотрим функцию «y = x2 −5x + 6»

Требуется выяснить, принадлежит ли графику этой функции точка с координатами
(1; 2).


Для этой задачи нет необходимости, строить график заданной функции.

Запомните!
!

Чтобы определить, принадлежит ли точка функции,
достаточно подставить её координаты в функцию (координату по оси
«Ox» вместо
«x» и координату по оси «Oy»
вместо «y»).

Если получится верное равенство, значит, точка принадлежит функции.

Вернемся к нашему заданию. Подставим в функцию «y = x2 − 5x + 6»
координаты точки (1; 2).

Вместо «x» подставим «1».
Вместо «y» подставим «2».

2 = 12 − 5 · 1 + 6
2 = 1 − 5 + 6
2 = −4 + 6
2 = 2 (верно)

У нас получилось верное равенство, значит, точка с координатами
(1; 2) принадлежит заданной функции.

Теперь проверим точку с координатами (0; 1).
Принадлежит ли она
функции «y = x2 − 5x + 6»?

Вместо «x» подставим «0».
Вместо «y» подставим «1».

1 = 02 − 5 · 0 + 6
1 = 0 − 0 + 6
1 = 6 (неверно)

В этом случае мы не получили верное равенство.
Это означает, что точка с координатами (0; 1) не принадлежит функции
«y = x2 − 5x + 6»

Как получить координаты точки функции

С любого графика функции можно снять координаты точки. Затем необходимо убедиться, что при подстановке координат
в формулу функции получается верное равенство.

Рассмотрим функцию «y(x) = −2x + 1». Её график
мы уже
строили
в предыдущем уроке.

график функции y = 2x + 1

Найдем на графике функции «y(x) = −2x + 1», чему равен «y»
при x = 2.

Для этого из значения «2» на оси «Ox» проведем перпендикуляр к графику функции.
Из точки пересечения перпендикуляра и графика функции проведем еще один перпендикуляр к оси «Oy».

получение координаты y с графика функции

Полученное значение «−3» на оси «Oy» и будет искомым значением «y».

Убедимся, что мы правильно сняли координаты точки для x = 2
в функции «y(x) = −2x + 1».

Для этого мы подставим x = 2 в формулу функции
«y(x) = −2x + 1». Если мы правильно
провели перпендикуляр, мы также должны получить в итоге y = −3.

y(2) = −2 · 2 + 1 = −4 + 1 = −3

При расчетах мы также получили y = −3.

Значит, мы правильно получили координаты с графика функции.

Важно!
Галка

Все полученные координаты точки с графика функции обязательно проверяйте
подстановкой значений «x» в функцию.

При подстановке числового значения «x» в функцию в результате должно получиться
то же значение «y», которое вы получили на графике.

При получении координат точек с графика функции высока вероятность, что вы ошибетесь, т.к. проведение перпендикуляра к осям выполняется «на глазок».

Только подстановка значений в формулу функции дает точные результаты.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

11 ноября 2018 в 15:46

Веточка Сакуры
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Веточка Сакуры
Профиль
Благодарили: 0

Сообщений: 1

Функция y=f(x) является нечётной и при x ⩽0 задаётся формулой y= –  x² — 8x.Найдите значение фун. в т. минимума (y min).

0
Спасибоthanks
Ответить

12 ноября 2018 в 3:25
Ответ для Веточка Сакуры

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


ymin = y(4) = -16.

0
Спасибоthanks
Ответить

17 сентября 2018 в 13:28

Alesger Mammedov
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Alesger Mammedov
Профиль
Благодарили: 0

Сообщений: 1

Добрый день помогите пожалуйста с задачкой
f(x2-3x)=3x2+5x-4
f(3)=?

0
Спасибоthanks
Ответить

17 сентября 2018 в 23:01
Ответ для Alesger Mammedov

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


f(3) = 26 ± 7√21 

0
Спасибоthanks
Ответить

13 ноября 2016 в 6:43

Роман Безбородов
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Роман Безбородов
Профиль
Благодарили: 0

Сообщений: 1

определите вид графика

0
Спасибоthanks
Ответить

14 ноября 2016 в 17:30
Ответ для Роман Безбородов

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


y =  ax; a > 1. 

0
Спасибоthanks
Ответить

7 сентября 2016 в 22:08

Иван Баранов
(^-^)
Профиль
Благодарили: 0

Сообщений: 3

(^-^)
Иван Баранов
Профиль
Благодарили: 0

Сообщений: 3

у=Х2+2Х-3 найдите значение функции, если значение аргумента равно -2
у=3х-5 при каком значении аргумента значение функции раво 10

0
Спасибоthanks
Ответить

8 сентября 2016 в 15:26
Ответ для Иван Баранов

Юлия Анарметова
(^-^)
Профиль
Благодарили: 0

Сообщений: 11

(^-^)
Юлия Анарметова
Профиль
Благодарили: 0

Сообщений: 11


аргумент это х значит у=(-2)2+2 · (-2)-3=4-4-3=-3
у=3х-5 значит 10=3х-5
                          10+5=3х
                           15=3х
                           х=15:3=5

0
Спасибоthanks
Ответить


На чтение 4 мин Просмотров 5.3к.

Как найти значение аргумента по значению функции? Это можно сделать с помощью формулы функции.

Если формула задана формулой вида y=f(x), чтобы найти значение аргумента по значению функции, надо в формулу вместо y подставить заданное значение функции и решить получившееся уравнение относительно икса.

1) Линейная функция задана формулой y=5x-8. Найти значение аргумента, при котором значение функции равно 7; -38;0.

Поменяем местами левую и правую часть, чтобы запись выглядела в привычном виде (знаки при этом менять не надо):

Это — линейное уравнение. Неизвестное — в одну сторону, известные — в другую (при переносе слагаемых из одной части в другую знаки меняются на противоположные):

Обе части уравнения делим на число, стоящее перед иксом:

2) При каком значении аргумента значение функции

Решаем квадратное уравнение.

При y=0 x=3 и x=0,5.

Это — неполное квадратное уравнение. Общий множитель x выносим за скобки

При y=3 x=0 и x=3,5.

Значение аргумента по заданному значению функции можно также найти с помощью графика. О том, как это сделать, мы будем говорить в следующий раз.

В прошлый раз мы находили значение функции по значению аргумента с помощью формулы.

Рассмотрим, как по данному графику функции найти y по x.

1) Пользуясь графиком линейной функции, изображенной на рисунке 1, найдите значение функции,если значение аргумента равно 1; 3; -3, -1; 0.

Аргумент — это x, функция — y.

Найти значение функции по значению аргумента — значит, по данному значению x найти, чему равен y.

Начнём с x=1. На оси абсцисс Ox находим x=1. Чтобы найти соответствующее значение y, надо из точки на Ox идти либо вверх, либо вниз, чтобы попасть на график.

От x=1 идём вверх. От полученной точки на графике надо двигаться либо влево, либо вправо, чтобы попасть на ось Oy. В данном случае идем влево и попадаем с ординатой y=2 (стрелочки помогают увидеть направление движения).

Следовательно, при x=1 y=2.

Аналогично, если x=3, идем вверх до пересечения с графиком, затем влево до пересечения с осью ординат Oy.

Получаем, что при x=3 y=4.

Если x=-3, чтобы попасть на график функции, нужно идти вниз, затем — вправо, до пересечения с осью Oy.

При x=-1 ни вверх, ни вниз двигаться не надо — эта точка уже на графике функции. Следовательно, y=0.

Записываем: при x=-1 y=0.

При x=0 идем до графика вверх и попадаем в точку с ординатой y=2.

2) На рисунке 2 изображен график функции y=f(x).

Пользуясь графиком, найдите значение функции, если значение аргумента равно 1; 3; 5; 7; -1; -5.

Чтобы по графику функции найти y по x, сначала надо от точки с данной абсциссой попасть на график, двигаясь вверх либо вниз, а затем от точки на графике идти к оси Oy, двигаясь влево или вправо.

При x=1 идем до графика функции вверх, затем влево — на ось Oy. Попадаем в точку с ординатой y=2.

Пишем: при x=1 y=2.

При x равном -1 и -5 идем сначала вверх, затем — вправо.

При иксах равных 3; 5 и 7 идём вниз и влево.

Обратите внимание: различным значениям икса может соответствовать одно значение y:

Дана следующая функция y=f(x) :
y = 2x – 10, если x > 0
y = 0, если x = 0
y = 2 * |x| – 1, если x

Требуется найти значение функции по переданному x .

  1. Получить с клавиатуры значение x .
  2. Если x больше 0, то вычислить выражение 2*x-10 , результат присвоить переменной y .
  1. Иначе если x равен 0, то присвоить y значение 0.
  1. Иначе присвоить y результат выражения 2*|x|-1 .
  • Вывести значение y на экран.
  • var x , y : integer ;
    begin
    readln ( x ) ;
    if x > 0 then y : = 2 * x – 10
    else
    if x = 0 then y : = 0
    else y : = 2 * abs ( x ) – 1 ;

    writeln ( y ) ;
    end .

    main ( ) <
    int x , y ;
    scanf ( “%d” , & x ) ;
    if ( x > 0 ) y = 2 * x – 10 ;
    else
    if ( x == 0 ) y = 0 ;
    else
    y = 2 * abs ( x ) – 1 ;

    printf ( “%d
    ” , y ) ;
    >

    x = input ( )
    x = int ( x )

    if x > 0 :
    y = 2 *x – 10
    elif x == 0 :
    y = 0
    else :
    y = 2 * abs ( x ) – 1

    В КуМир функция взятия модуля от числа возвращает вещественное значение. Поэтому используется функция int(), чтобы привести к целому, иначе присвоение невозможно.

    График линейной функции, его свойства и формулы

    О чем эта статья:

    Понятие функции

    Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

    Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

    Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

    Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

    Словесный способ.

    Графический способ — наглядно. Его мы и разберем в этой статье.

    График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

    Понятие линейной функции

    Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

    Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

    Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

    Если известно конкретное значение х, можно вычислить соответствующее значение у.

    Нам дана функция: у = 0,5х – 2. Значит:

    если х = 0, то у = -2;

    если х = 2, то у = -1;

    если х = 4, то у = 0 и т. д.

    Для удобства результаты можно оформлять в виде таблицы:

    Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

    Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

    k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

    Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

    Функция Коэффициент k Коэффициент b
    y = 2x + 8 k = 2 b = 8
    y = −x + 3 k = −1 b = 3
    y = 1/8x − 1 k = 1/8 b = −1
    y = 0,2x k = 0,2 b = 0

    Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

    Свойства линейной функции

    Область определения функции — множество всех действительных чисел.

    Множеством значений функции является множество всех действительных чисел.

    График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

    Функция не имеет ни наибольшего, ни наименьшего значений.

    Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

    b ≠ 0, k = 0, значит, y = b — четная;

    b = 0, k ≠ 0, значит, y = kx — нечетная;

    b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

    b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

    Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

    График функции пересекает оси координат:

    ось абсцисс ОХ — в точке (−b/k; 0);

    ось ординат OY — в точке (0; b).

    x = −b/k — является нулем функции.

    Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

    Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

    При k 0, то этот угол острый, если k

    Построение линейной функции

    В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

    Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

    В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

    если k > 0, то график наклонен вправо;

    если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

    если b 0, то график функции y = kx + b выглядит так:

    0″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png” style=”height: 600px;”>

    Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

    0 и b > 0″ src=”https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png” style=”height: 600px;”>

    Если k > 0 и b

    В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

    Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

    Например, график уравнения х = 3:

    Условие параллельности двух прямых:

    График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

    Условие перпендикулярности двух прямых:

    График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

    Точки пересечения графика функции y = kx + b с осями координат:

    С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

    Координаты точки пересечения с осью OY: (0; b).

    С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

    Координаты точки пересечения с осью OX: (−b/k; 0).

    Решение задач на линейную функцию

    Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

    Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

    В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.

    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:

    Таким образом, нам надо построить график функции y = -4x – 10

    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).

    Поставим эти точки в координатной плоскости и соединим прямой:

    Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

    Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

    Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

    Вычтем из второго уравнения системы первое, и получим k = 3.

    Подставим значение k в первое уравнение системы, и получим b = -2.

    Ответ: уравнение прямой y = 3x – 2.

    Как найти вершину параболы: три формулы

    Парабола присутствует в мире математики, физики и других наук. По траектории параболы передвигаются искусственные спутники, которые стремятся покинуть пределы Солнечной системы, мяч при игре в волейбол тоже описывает её траекторию. Нужно уметь строить параболу. А чтобы это не составляло труда, надо знать, как найти вершину параболы.

    Нахождение вершины параболы: способы, примеры, советы

    График функции y = ax 2 + bx + c, где a — первый коэффициент, b – второй коэффициент, c – свободный член, называется параболой. Но обратите внимание на тот факт, что a ≠0.

    У каждой точки параболы есть симметричная ей, кроме одной точки, и эта точка называется вершиной. Для того чтобы найти точку, которая является вершиной, нужно определиться, что такое точка на графике. Точка на графике – это определённая координата по оси абсцисс и по оси ординат. Она обозначается как (x; y). Давайте разбираться, как найти заветные числа.

    Первый способ

    Если вы хотите знать, как необходимо правильно вычислять координаты вершины, то нужно только выучить формулу x0 = -b/2a. Подставляя полученное число в функцию, получим y0.

    Например, y =x 2 –8 x +15;

    находим первый, второй коэффициенты и свободный член;

    подставляем значения a и b в формулу;

    вычисляем значения y;

    Значит, вершина находится в точке (4;-1).

    Ветви параболы симметричны относительно оси симметрии, которая идёт через вершину параболы. Зная корни уравнения, можно без особых трудностей посчитать абсциссу вершины параболы. Предположим, что k и n – корни квадратичного уравнения. Тогда точка x0 равноудалена от точек k и n, и её можно вычислить по формуле: x0 = (k + n)/2.

    Рассмотрим на примере y =x 2 –6x+5

    1) Приравниваем к нулю:

    2) Находим дискриминант, используя формулу: D = b 2 –4 ac:

    3) Находим корни уравнения по формуле (-b±√ D)/2a:

    • 1 – первый корень;
    • 5 – второй корень.

    Второй способ

    Дополнение до полного квадрата – отличный способ узнать, где располагается вершина. Используя этот способ, вы сможете вычислить точки x и y одновременно, без нужды подставлять x в начальный пример. Рассмотрим этот метод на примере функции: y=x 2 +8 x +10.

    1. Сначала нужно приравнять выражение с переменной к 0. Потом перенести c в правую сторону с противоположным знаком, то есть у нас получается выражение x 2 + 8x = -10.

    2. Теперь в левой части нужно сделать полный квадрат. Для этого посчитайте (b/2) 2 и увеличьте обе части уравнения результат. В этом случае нужно подставит 8 вместо b.

    У нас получается 16. Теперь прибавьте это число к обеим частям уравнения:

    3. Видно, что полученное выражение – полный квадрат. Его можно представить в форме: (x + 4) 2 = 6.

    4. Используйте это выражение для поиска координат вершины параболы. Чтобы посчитать x, нужно приравнять его к 0. Получаем, x =-4. Координата y равна тому, что находится в правой части, то есть y =6. Вершина параболы этого уравнения (-4, 6).

    Третий способ

    Если вы знаете, что такое производная, то для вас есть другая формула. Несмотря на то, куда смотрят «рога» параболы, её вершина — точка экстремума. Для этого способа надо применить следующий алгоритм:

    1. Нахождение первой производной по формуле f'(x) = (ax² + bx + c)’ = 2ax + b.

    2. Приравнивание производной к 0. В итоге вы получите 0 = 2ax + b, отсюда можно найти то, что нас интересует.

    Рассмотрим этот способ подробнее.

    Дана функция y = 4x²+16x-17;

    • Записываем производную и приравниваем к нулю.

    f'(x) = (4x²+16x-17)’ = 8x+16 =0

    Построение параболы

    Самое трудное при построении – это верно найти точки функции. Для подробного построения нужно просчитать 5–7 точек (для школьного курса хватит этого). Для этого выбираем какое-либо значение x и подставляем его в данную функцию. Итогом подсчётов будет число точки по оси ординат. После этого ставим на координатную плоскость полученные нами точки. В итоге у нас получается парабола.

    Рассмотрим подробнее вопрос о нахождении точек, которые нужно отметить. Для примера возьмём функцию y =-x 2 +11 x -24 с вершиной в точке (5,5;-6,25).

    1) Строим таблицу

    2) Заполняем таблицу

    Так как парабола имеет осевую симметрию, то можно считать только значения справа или слева от вершины. Лучше считать те значения, которые ближе к 0, так удобнее. В нашем случае эти значения 4 и 5.

    X 4 5 5,5 6 7
    Y -4 -6 -6,25 -6 -4

    Советы

    Правильно находите коэффициенты.

    Пишите промежуточные вычисления на бумаге. Это не только облегчит нахождение вершины, но и поможет найти свои ошибки.

    Делайте всё поэтапно. Следуйте алгоритму.

    Обратите ваше внимание на то, что:

    • Нужно проверять правильно ли ваше решение.
    • Необходимо успокоиться. Решение любых задач по математике требует опыта. Просто нужно отработать данную тему, и тогда непременно у вас всё получится.

    Видео

    Это видео поможет вам научиться находить вершину параболы

    Прямые на координатной плоскости

    Линейная функция

    Линейной функцией называют функцию, заданную формулой

    где k и b – произвольные (вещественные) числа.

    При любых значениях k и b графиком линейной функции является прямая линия .

    Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .

    График линейной функции

    При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.

    Рис.1
    Рис.2
    Рис.3

    При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.

    Рис.4
    Рис.5
    Рис.6

    При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.

    k y = kx + b1 и y = kx + b2 ,

    имеющие одинаковые угловые коэффициенты и разные свободные члены , параллельны .

    имеющие разные угловые коэффициенты , пересекаются при любых значениях свободных членов.

    y = kx + b1 и

    перпендикулярны при любых значениях свободных членов.

    Угловой коэффициент прямой линии

    равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).

    Рис.10
    Рис.11
    Рис.12

    Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .

    При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле

    Прямые, параллельные оси ординат

    Прямые, параллельные оси Oy , задаются формулой

    где c – произвольное число, и изображены на рис. 13, 14, 15.

    Рис.13
    Рис.14
    Рис.15

    Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;

    Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

    где p, q, r – произвольные числа.

    В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .

    что и требовалось.

    В случае, когда получаем:

    откуда вытекает, что уравнение (4) задает прямую линию вида (3).

    В случае, когда q = 0, p = 0, уравнение (4) имеет вид

    и при r = 0 его решением являются точки всей плоскости:

    В случае, когда уравнение (5) решений вообще не имеет.

    Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением

    параллельна прямой, заданной уравнением (4) .

    Замечание 3 . При любом значении r2 прямая линия, заданная уравнением

    перпендикулярна прямой, заданной уравнением (4) .

    Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и

    1. параллельной к прямой
    2. перпендикулярной к прямой (8).

    В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

    где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство

    Итак, уравнение прямой, параллельной к прямой

    В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

    где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство

    [spoiler title=”источники:”]

    http://liveposts.ru/articles/education-articles/matematika/kak-najti-vershinu-paraboly-tri-formuly

    http://www.resolventa.ru/spr/algebra/degree1.htm

    [/spoiler]

    Вычисление значений функции

    Онлайн калькулятор поможет найти значения функции в заданном интервале, построить таблицу значений функции онлайн, табулировать функцию.
    Вычисляет значения функции одной переменной y для заданных значений переменной x. Функция задается при помощи формулы, пример:
    Построить таблицу значений функции f(x)=x/(x+1) на отрезке от 0 до 6 с шагом в единицу.

    Синтаксис
    основных функций:

    xa: x^a
    |x|: abs(x)
    √x: Sqrt[x]
    n√x: x^(1/n)
    ax: a^x
    logax: Log[a, x]
    ln x: Log[x]
    cos x: cos[x] или Cos[x]

    sin x: sin[x] или Sin[x]
    tg: tan[x] или Tan[x]
    ctg: cot[x] или Cot[x]
    sec x: sec[x] или Sec[x]
    cosec x: csc[x] или Csc[x]
    arccos x: ArcCos[x]
    arcsin x: ArcSin[x]
    arctg x: ArcTan[x]
    arcctg x: ArcCot[x]
    arcsec x: ArcSec[x]

    arccosec x: ArcCsc[x]
    ch x: cosh[x] или Cosh[x]
    sh x: sinh[x] или Sinh[x]
    th x: tanh[x] или Tanh[x]
    cth x: coth[x] или Coth[x]
    sech x: sech[x] или Sech[x]
    cosech x: csch[x] или Csch[е]
    areach x: ArcCosh[x]
    areash x: ArcSinh[x]
    areath x: ArcTanh[x]

    areacth x: ArcCoth[x]
    areasech x: ArcSech[x]
    areacosech x: ArcCsch[x]
    конъюнкция “И” ∧: &&
    дизъюнкция “ИЛИ” ∨: ||
    отрицание “НЕ” ¬: !
    импликация =>
    число π pi : Pi
    число e: E
    бесконечность ∞: Infinity, inf или oo

    ×

    Пожалуйста напишите с чем связна такая низкая оценка:

    ×

    Для установки калькулятора на iPhone – просто добавьте страницу
    «На главный экран»

    Для установки калькулятора на Android – просто добавьте страницу
    «На главный экран»

    Добавить комментарий