Вспомним немного об уравнениях, с которыми встречались в начальных классах и в (5) классе.
Известно, что
уравнение — это выражение, в котором есть знак «равно» и латинская буква, которая обозначает переменную и значение которой надо найти.
Корень уравнения — это число, которое можно подставить вместо буквы и при вычислении получить равенство.
Решить уравнение — это отыскать все такие значения, корни уравнения, или доказать, что корней у уравнения нет.
Пример:
Для определения неизвестного уменьшаемого надо к разности прибавить вычитаемое:
3x=6+12;3x=18.
Для определения неизвестного множителя надо произведение разделить на известный множитель:
(x=18:3);
Пример:
Можно рассуждать и иначе, решая уравнение.
Здесь мы имеем равенство двух выражений, значит, их разность равна нулю:
((2x-12) – (6-x)=0).
Раскроем скобки и упростим выражение в левой части уравнения:
(2x-12-6+x=0);
(3x-18=0);
(3x=18);
Можно заметить, что
для решения уравнения надо последовательно выполнить следующие действия:
1) слагаемые, содержащие переменную, перенести в левую часть уравнения,
а числа — в его правую часть, не забывая при переносе менять знаки на противоположные;
2) привести подобные слагаемые в левой и правой частях уравнения;
3) разделить число в правой части уравнения на коэффициент при переменной.
В рассмотренных примерах
уравнения приводились к виду (ax=b), где
a≠0
.
Уравнение, которое можно привести к такому виду с помощью переноса слагаемых и приведения подобных слагаемых, называют линейным уравнением с одним неизвестным.
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа.
Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Решение линейных уравнений. 6-й класс
Разделы: Математика
Класс: 6
Цели урока:
- повторить правила раскрытия скобок и приведения подобных слагаемых;
- ввести определение линейного уравнения с одним неизвестным;
- познакомить учащихся со свойствами равенств;
- научить решать линейные уравнения;
- научить решать задачи на «было − стало».
Оборудование: компьютер, проектор.
Ход урока
I. Проверка предыдущего домашнего задания.
II. Повторение теоретического материала.
- Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
- Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
- Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
- Как найти неизвестный множитель? [Произведение разделить на известный множитель]
- Как найти неизвестное делимое? [Делитель умножить на частное]
- Как найти неизвестный делитель? [Делимое разделить на частное]
- Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
- Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
- Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]
III. Устные задания по слайдам.
(слайд 2, слайд 3).
1) Раскройте скобки:
3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(; 9(; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).
2) Приведите подобные слагаемые:
6b-b; 9,5m+3m; a —a; m-m; -4x-x+3; 7x-6y-3x+8y.
3) Упростите выражение:
IV. Новая тема. Решение линейных уравнений.
До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.
Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (a0), называется линейным уравнением с одним неизвестным.
Линейные уравнения обладают свойствами:
- Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
- Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).
Рассмотрим план решения линейного уравнения:
х-1+(х+2)=-4(-5-х)-5 х-1+х+2=20+4х-5 х+х-4х=20-5+1-2 -2х=14 х=14:(-2) х=-7 Ответ: -7. |
1) раскрыть скобки, если они есть; 2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую; 3) привести подобные слагаемые; 4) найти неизвестный множитель. |
Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)
Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.
х+3=х+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.
(х+3)∙9=(х+5)∙9 Далее − по плану.
Что такое уравнение и корни уравнения? Как решить уравнение?
Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.
Что такое уравнение? Смысл и понятия.
Узнаем сначала все понятия, связанные с уравнением.
Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.
Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.
Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.
Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.
Рассмотрим теперь, все термины на простом примере:
x+1=3
В данном случае x – переменная или неизвестное значение уравнения.
Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.
Получили верное равенство. Значит, правильно нашли корни уравнения.
Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.
Правила уменьшения или увеличения уравнения на определенное число.
Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7
Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.
Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.
Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.
Проверка:
Вместо переменной x подставим 5.
x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.
Разберем следующий пример:
Решите уравнение x-4=12.
Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:
Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.
Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16
Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.
Рассмотрим пример:
Решите уравнение 4+3x=2x-5
Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.
4+3x= 2x -5
4+3x -2x =-5
Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4 +3x-2x=-5
3x-2x=-5 -4
Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9
Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅ (-9) =2⋅ (-9) -5
4-27=-18-5
-23=-23
Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.
Правила уменьшения или увеличения уравнения в несколько раз.
Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.
Рассмотрим пример:
Решите уравнение 5x=20.
Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.
5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4
Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.
Рассмотрим следующий пример:
Найдите корни уравнения .
Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.
Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.
7=7 получено верное равенство.
Ответ: корень уравнения равен x=21.
Следующий пример:
Найдите корни уравнения
Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.
Далее делим все уравнение на 3.
3x :3 =45 :3
(3:3)x=15
Сделаем проверку. Подставим в уравнение найденный корень.
Как решать уравнения? Алгоритм действий.
Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:
- Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
- Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
- Избавиться от коэффициента при переменной если нужно.
- В итоге всех действий получаем корень уравнение. Выполняем проверку.
Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.
источники:
http://urok.1sept.ru/articles/627069
http://tutomath.ru/6-klass/chto-takoe-uravnenie-i-korni-uravneniya-kak-reshit-uravnenie.html
В данной статье рассмотрено, как находить значения математических выражений. Начнем с простых числовых выражений и далее будем рассматривать случаи по мере возрастания их сложности. В конце приведем выражение, содержащее буквенные обозначения, скобки, корни, специальные математические знаки, степени, функции и т.д. Всю теорию, по традиции, снабдим обильными и подробными примерами.
Как найти значение числового выражения?
Числовые выражения, помимо прочего, помогают описывать условие задачи математическим языком. Вообще математические выражения могут быть как очень простыми, состоящими из пары чисел и арифметических знаков, так и очень сложными, содержащими функции, степени, корни, скобки и т.д. В рамках задачи часто необходимо найти значение того или иного выражения. О том, как это делать, и пойдет речь ниже.
Простейшие случаи
Это случаи, когда выражение не содержит ничего, кроме чисел и арифметических действий. Для успешного нахождения значений таких выражений понадобятся знания порядка выполнения арифметических действий без скобок, а также умение выполнять действия с различными числами.
Если в выражении есть только числа и арифметические знаки “+”, “·”, “-“, “÷”, то действия выполняются слева направо в следующем порядке: сначала умножение и деление, затем сложение и вычитание. Приведем примеры.
Пусть нужно найти значения выражения 14-2·15÷6-3.
Выполним сначала умножение и деление. Получаем:
14-2·15÷6-3=14-30÷6-3=14-5-3.
Теперь проводим вычитание и получаем окончательный результат:
14-5-3=9-3=6.
Вычислим: 0,5-2·-7+23÷234·1112.
Сначала выполняем преобразование дробей, деление и умножение:
0,5-2·-7+23÷234·1112=12-(-14)+23÷114·1112
12-(-14)+23÷114·1112=12-(-14)+23·411·1112=12-(-14)+29.
Теперь займемся сложением и вычитанием. Сгруппируем дроби и приведем их к общему знаменателю:
12-(-14)+29=12+14+29=14+1318=141318.
Искомое значение найдено.
Выражения со скобками
Если выражение содержит скобки, то они определяют порядок действий в этом выражении. Сначала выполняются действия в скобках, а потом уже все остальные. Покажем это на примере.
Найдем значение выражения 0,5·(0,76-0,06).
В выражении присутствуют скобки, поэтому сначала выполняем операцию вычитания в скобках, а уже потом – умножение.
0,5·(0,76-0,06)=0,5·0,7=0,35.
Значение выражений, содержащих скобки в скобках, находится по такому же принципу.
Вычислим значение 1+2·1+2·1+2·1-14.
Выполнять действия будем начиная с самых внутренних скобок, переходя к внешним.
1+2·1+2·1+2·1-14=1+2·1+2·1+2·34
1+2·1+2·1+2·34=1+2·1+2·2,5=1+2·6=13.
В нахождении значений выражений со скобками главное – соблюдать последовательность действий.
Выражения с корнями
Математические выражения, значения которых нам нужно найти, могут содержать знаки корня. Причем, само выражение может быть под знаком корня. Как быть в таком случае? Сначала нужно найти значение выражения под корнем, а затем извлечь корень из числа, полученного в результате. По возможности от корней в числовых выражениях нужно лучше избавляться, заменяя из на числовые значения.
Вычислим значение выражения с корнями -2·3-1+60÷43+3·2,2+0,1·0,5.
Сначала вычисляем подкоренные выражения.
-2·3-1+60÷43=-6-1+153=83=2
2,2+0,1·0,5=2,2+0,05=2,25=1,5.
Теперь можно вычислить значение всего выражения.
-2·3-1+60÷43+3·2,2+0,1·0,5=2+3·1,5=6,5
Часто найти значение выражения с корнями часто нужно сначала провести преобразование исходного выражения. Поясним это на еще одном примере.
Сколько будет 3+13-1-1
Как видим, у нас нет возможности заменить корень точным значением, что усложняет процесс счета. Однако, в данном случае можно применить формулу сокращенного умножения.
3+13-1=3-1.
Таким образом:
3+13-1-1=3-1-1=1.
Выражения со степенями
Если в выражении имеются степени, их значения нужно вычислить прежде, чем приступать ко всем остальным действиям. Бывает так, что сам показатель или основание степени являются выражениями. В таком случае, сначала вычисляют значение этих выражений, а затем уже значение степени.
Найдем значение выражения 23·4-10+161-123,5-2·14.
Начинаем вычислять по порядку.
23·4-10=212-10=22=4
16·1-123,5-2·14=16*0,53=16·18=2.
Осталось только провести операцию сложение и узнать значение выражения:
23·4-10+161-123,5-2·14=4+2=6.
Также часто целесообразно бывает провести упрощение выражения с использованием свойств степени.
Вычислим значение следующего выражения: 2-25·45-1+3136.
Показатели степеней опять таковы, что их точные числовые значения получить не удастся. Упростим исходное выражение, чтобы найти его значение.
2-25·45-1+3136=2-25·225-1+313·6
2-25·225-1+313·6=2-25·22·5-2+32=22·5-2-25+32
22·5-2-25+32=2-2+3=14+3=314
Выражения с дробями
Если выражение содержит дроби, то при вычислении такого выражения все дроби в нем нужно представить в виде обыкновенных дробей и вычислить их значения.
Если в числителе и знаменателе дроби присутствуют выражения, то сначала вычисляются значения этих выражений, и записывается финальное значение самой дроби. Арифметические действия выполняются в стандартном порядке. Рассмотрим решение примера.
Найдем значение выражения, содержащего дроби: 3,22-3·7-2·36÷1+2+39-6÷2.
Как видим, в исходном выражении есть три дроби. Вычислим сначала их значения.
3,22=3,2÷2=1,6
7-2·36=7-66=16
1+2+39-6÷2=1+2+39-3=66=1.
Перепишем наше выражение и вычислим его значение:
1,6-3·16÷1=1,6-0,5÷1=1,1
Часто при нахождении значений выражений удобно бывает проводить сокращение дробей. Существует негласное правило: любое выражение перед нахождением его значения лучше всего упростить по максимуму, сводя все вычисления к простейшим случаям.
Вычислим выражение 25-1-25-74-3.
Мы не можем нацело извлечь корень из пяти, однако можем упростить исходное выражение путем преобразований.
25-1=25+15-15+1=25+15-1=25+24
Исходное выражение принимает вид:
25-1-25-74-3=25+24-25-74-3.
Вычислим значение этого выражения:
25+24-25-74-3=25+2-25+74-3=94-3=-34.
Выражения с логарифмами
Когда в выражении присутствуют логарифмы, их значение, если это возможно, вычисляется с самого начала. К примеру, в выражении log24+2·4 можно сразу вместо log24 записать значение этого логарифма, а потом выполнить все действия. Получим: log24+2·4=2+2·4=2+8=10.
Под самим знаком логарифма и в его основании также могут находится числовые выражения. В таком случае, первым делом находятся их значения. Возьмем выражение log5-6÷352+2+7. Имеем:
log5-6÷352+2+7=log327+7=3+7=10.
Если же вычислить точное значение логарифма невозможно, упрощение выражения помогает найти его значение.
Найдем значение выражения log2log2256+log62+log63+log5729log0,227.
log2log2256=log28=3.
По свойству логарифмов:
log62+log63=log6(2·3)=log66=1.
Вновь применяя свойства логарифмов, для последней дроби в выражении получим:
log5729log0,227=log5729log1527=log5729-log527=-log27729=-log27272=-2.
Теперь можно переходить к вычислению значения исходного выражения.
log2log2256+log62+log63+log5729log0,227=3+1+-2=2.
Выражения с тригонометрическими функциями
Бывает, что в выражении есть тригонометрические функции синуса, косинуса, тангенса и котангенса, а также функции, обратные им. Из значения вычисляются перед выполнением всех остальных арифметических действий. В противном случае, выражение упрощается.
Найдите значение выражения: tg24π3-sin-5π2+cosπ.
Сначала вычисляем значения тригонометрических функций, входящих в выражение.
tg4π3=3
sin-5π2=-1
cosπ=-1.
Подставляем значения в выражение и вычисляем его значение:
tg24π3-sin-5π2+cosπ=32-(-1)+(-1)=3+1-1=3.
Значение выражения найдено.
Часто для того, чтобы найти значение выражения с тригонометрическими функциями, его предварительно нужно преобразовать. Поясним на примере.
Нужно найти значение выражения cos2π8-sin2π8cos5π36cosπ9-sin5π36sinπ9-1.
Для преобразования будем использовать тригонометрические формулы косинуса двойного угла и косинуса суммы.
cos2π8-sin2π8cos5π36cosπ9-sin5π36sinπ9-1=cos2π8cos5π36+π9-1=cosπ4cosπ4-1=1-1=0.
Общий случай числового выражения
В общем случае тригонометрическое выражение может содержать все вышеописанные элементы: скобки, степени, корни, логарифмы, функции. Сформулируем общее правило нахождения значений таких выражений.
- Корни, степени, логарифмы и т.д. заменяются их значениями.
- Выполняются действия в скобках.
- Оставшиеся действия выполняются по порядку слева направо. Сначала – умножение и деление, затем – сложение и вычитание.
Разберем пример.
Вычислим, чему равно значение выражения -2·sinπ6+2·2π5+3π5+3 lne2+1+39.
Выражение довольно сложное и громоздкое. Мы не случайно выбрали именно такой пример, постаравшись уместить в него все описанные выше случаи. Как найти значение такого выражения?
Известно, что при вычислении значения сложного дробного вида, сначала отдельно находятся значения числителя и знаменателя дроби соответственно. Будем последовательно преобразовывать и упрощать данное выражение.
Первым делом вычислим значение подкоренного выражения 2·sinπ6+2·2π5+3π5+3. Чтобы сделать это, нужно найти значение синуса, и выражения, которое является аргументом тригонометрической функции.
π6+2·2π5+3π5=π6+2·2π+3π5=π6+2·5π5=π6+2π
Теперь можно узнать значение синуса:
sinπ6+2·2π5+3π5=sinπ6+2π=sinπ6=12.
Вычисляем значение подкоренного выражения:
2·sinπ6+2·2π5+3π5+3=2·12+3=4
Отсюда:
2·sinπ6+2·2π5+3π5+3=4=2.
Со знаменателем дроби все проще:
lne2=2.
Теперь мы можем записать значение всей дроби:
2·sinπ6+2·2π5+3π5+3 lne2=22=1.
С учетом этого, запишем все выражение:
-1+1+39=-1+1+33=-1+1+27=27.
Окончательный результат:
-2·sinπ6+2·2π5+3π5+3 lne2+1+39=27.
В данном случае мы смогли вычислить точные значения корней, логарифмов, синусов и т.д. Если такой возможности нет, можно попробовать избавиться от них путем математических преобразований.
Вычисление значений выражений рациональными способами
Вычислять значения числовых нужно последовательно и аккуратно. Данный процесс можно рационализировать и ускорить, используя различные свойства действий с числами. К примеру, известно, что произведение равно нулю, если нулю равен хотя бы один из множителей. С учетом этого свойства, можно сразу сказать, что выражение 2·386+5+58941-sin3π4·0 равно нулю. При этом, вовсе не обязательно выполнять действия по порядку, описанному в статье выше.
Также удобно использовать свойство вычитания равных чисел. Не выполняя никаких действий, можно заказать, что значение выражения 56+8-3,789lne2-56+8-3,789lne2 также равно нулю.
Еще один прием, позволяющий ускорить процесс – использование тождественных преобразований таких как группировка слагаемых и множителей и вынесение общего множителя за скобки. Рациональный подход к вычислению выражений с дробями – сокращение одинаковых выражений в числителе и знаменателе.
Например, возьмем выражение 23-15+3·289·343·23-15+3·289·34. Не выполняя действий в скобках, а сокращая дробь, можно сказать, что значение выражения равно 13.
Нахождение значений выражений с переменными
Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных.
Чтобы найти значение буквенного выражения и выражения с переменными, нужно в исходное выражение подставить заданные значения букв и переменных, после чего вычислить значение полученного числового выражения.
Вычислить значение выражения 0,5x-y при заданных x=2,4 и y=5.
Подставляем значения переменных в выражение и вычисляем:
0,5x-y=0,5·2,4-5=1,2-5=-3,8.
Иногда можно так преобразовать выражение, чтобы получить его значение независимо от значений входящих в него букв и переменных. Для этого от букв и переменных в выражении нужно по возможности избавиться, используя тождественные преобразования, свойства арифметических действий и все возможные другие способы.
Например, выражение х+3-х, очевидно, имеет значение 3, и для вычисления этого значения совсем необязательно знать значение переменной икс. Значение данного выражения равно трем для всех значений переменной икс из ее области допустимых значений.
Еще один пример. Значение выражения xx равно единице для всех положительных иксов.
Сегодня на уроке вспомним, что такое уравнение и что называют корнем уравнения. Рассмотрим один из видов уравнений: линейное уравнение с одним неизвестным, определим его общий вид и узнаем, как называются составные части такого равенства.
Разберем способы и приемы решения линейных уравнений с одним неизвестным.
Рассмотрим алгоритм и пример решения задач с помощью линейных уравнений.
Эта информация доступна зарегистрированным пользователям
В реальной жизни нам часто приходится решать множество различных примеров и задач.
Эта информация доступна зарегистрированным пользователям
Связать реальную жизнь и математическое описание любой ситуации нам позволяет математическая модель.
Составив математическую модель жизненной задачи, мы можем превратить слова в формулы, неравенства, равенства, уравнения и т.п.
Математическая модель задачи в виде уравнения позволяет установить связи между всеми данными задачи, а также применить эту модель-уравнение для решения огромного множества подобного типа задач.
Вам уже хорошо известно, что уравнение – это математическое равенство, содержащее неизвестное число, которое необходимо определить.
Неизвестное число, входящее в уравнение, называют неизвестным членом данного уравнения.
Принято обозначать неизвестный член уравнения маленькими латинскими буквами.
Чаще всего в математике используют буквы x, y, z.
Найти неизвестное число, при котором из уравнения получается верное равенство, – это значит решить уравнение, т.е. найти корни уравнения или убедиться, что корней нет.
Эта информация доступна зарегистрированным пользователям
Корень уравнения – это значение неизвестного числа в уравнении, при котором уравнение обращается в верное равенство.
Уравнения могут иметь разное количество корней.
Существуют уравнения, имеющие один единственный корень, и уравнения, вообще не имеющие корней.
Встречаются уравнения, решением которых являются несколько значений (два, три и более), а в некоторых случаях уравнение может иметь бесконечное множество решений.
Уравнение, в котором находится одна неизвестная, называют уравнением с одной неизвестной.
Пример:
х + 3 = 6 (уравнение с одной неизвестной х)
3 ∙ у = 15 (уравнение с одной неизвестной y).
Существуют уравнения с большим количеством неизвестных: с двумя, тремя и т. д.
Рассмотрим, что представляют собой линейные уравнения с одной неизвестной.
Линейные уравнения с одной неизвестной называют уравнения вида a ∙ x = b, где a ≠ 0
Эта информация доступна зарегистрированным пользователям
х– неизвестное число
a и b– некоторые числа:
а– это коэффициент уравнения.
b– это свободный член уравнения.
Линейное уравнение с одной неизвестной может быть представлено в виде a ∙ x + b = 0, оно является равнозначным уравнению вида a ∙ x = ax = b.
Эта информация доступна зарегистрированным пользователям
Решить линейное уравнение с одним неизвестным вида a ∙ x = b – это значит найти все его корни или доказать, что корней нет.
Наличие и количество корней линейного уравнения зависит от значений коэффициента а и значения свободного члена уравнения b.
1. Линейное уравнение при a ≠ 0 и b – любое число, будет иметь один единственный корень; это значит, что неизвестная имеет единственное верное решение, при котором уравнение обращается в верное равенство.
Известно, что деление – это обратное действие умножению (т.е. по известному множителю и произведению можно определить неизвестный множитель).
Следовательно, решение уравнения a ∙ x = b, где a ≠ 0 выглядит так:
x = b ÷ a
или (mathbf{x = frac{b}{a}}) (это корень линейного уравнения).
2. Линейное уравнение при a = 0 и b ≠ 0 не имеет корней.
Если коэффициент а равен нулю, линейное уравнение запишется, как
0 ∙ x = b
Свойство умножения числа на нуль дает право утверждать, что при любом значении неизвестной х уравнение обращается в неверное равенство 0 = b.
Равенство 0 = b при b ≠ 0 неверно, а это значит, что в таком случае решения уравнения нет, т.е. уравнение не имеет корней.
3. Линейное уравнение при а = 0 и b = 0 имеет бесконечное множество корней, т.е. при любом значении неизвестной х уравнение обращается в верное равенство.
0 ∙ x = 0
0 = 0 (верное равенство)
Чтобы решить линейное уравнение необходимо выполнить ряд математических преобразований.
Эта информация доступна зарегистрированным пользователям
Линейные уравнения обладают свойствами, которые позволяют совершать равносильные преобразования с различными уравнениями и сводить их к линейному уравнению с одной неизвестной стандартного вида, решать которое мы уже умеем.
Известно, что уравнение – это математическое равенство.
Если это равенство верно при определенных значениях неизвестной, то уравнение имеет верное решение.
Попробуем провести аналогию между уравновешенными весами и уравнением ax = b.
Как нам известно, уравновешенные весы нам показывают, что на каждой чаше весов находятся грузы равной массы.
Эта информация доступна зарегистрированным пользователям
Если весы были уравновешены, то добавив груз на одну чашу весов, необходимо добавить такой же по массе груз на вторую чашу, чтобы равновесие весов не было нарушено.
Аналогично, если убрать часть груза с одной чаши весов, то такую же часть груза нужно убрать со второй чаши, чтобы весы оставались уравновешенными.
А сейчас представим, что левая чаша весов – это левая часть линейного уравнения (ах), правая чаша весов – свободный член этого уравнения (b).
В таком случае получается, что если к левой и правой части уравнения прибавим (отнимем) одно и тоже число, то верное равенство не нарушится – получается уравнение равносильное исходному.
Добавлять к исходному можно любые числа, но необходимо выбирать то, которое упростит уравнение.
Рассмотрим пример:
Дано линейное уравнение 5х + 12 = 37
Для того, чтобы привести данное уравнение к стандартному виду: ax = b, прибавим к левой и правой части равенства –12 (противоположное числу 12, которое находится в правой части равенства, чтобы избавится в правой части от свободного члена уравнения),
5х + 12 + (-12) = 37 + (-12)
5х + 12 – 12 = 37 – 12
5х = 37 – 12
Если посмотреть внимательно на решение, то можно заметить, что число +12 исчезло из левой части исходного уравнения и появилось в правой части полученного после преобразований, при этом сменило знак и стало равным –12.
5х = 25 получили уравнение вида ax = b, так как a ≠ 0 и b ≠ 0 уравнение имеет единственный корень, найдем его:
х = 25/5
х = 5
Ответ: х = 5
Первое свойство равносильного преобразования уравнения
Любое слагаемое можно перенести из одно части уравнения в другую, при этом сменив знак этого слагаемого на противоположный, в результате получится новое уравнение, равносильное исходному.
Обычно слагаемые с неизвестным переносят в левую часть уравнения, а все остальные слагаемые в правую часть.
Эта информация доступна зарегистрированным пользователям
Рассмотрим второе свойство равносильного преобразования уравнения.
Снова обратимся к аналогии с весами.
Для того, чтобы весы оставались в равновесии, увеличивая массу груза в 1,5 раза в одной из чаш, необходимо увеличить массу груза в 1,5 раза в другой чаше весов.
Увеличивая или уменьшая массу грузов на каждой чаше весов в одинаковое количество раз, равновесие весов будет сохраняться.
Эта информация доступна зарегистрированным пользователям
Так же происходит и с уравнением. Сформулируем второе свойство равносильного преобразования уравнения:
Разделив (или умножив) обе части на одно и тоже ненулевое число, равенство остается верным, получится уравнение равносильное исходному.
Рассмотрим пример
Дано уравнение 4 ∙ (2х – 1) = 16
Приведем данное уравнение к стандартному виду: ax =b
Раскрытие скобок только усложнит исходное уравнение.
Заметим, что левую и правую часть можем разделить на 4 (это наименьшее общее кратное чисел 4 и 16).
4 ∙ (2х – 1) = 16 |÷4
(mathbf{frac{4 cdot (2x – 1)}{4} = 16 div 4})
2х – 1 = 4
Слагаемые с неизвестным оставляем в левой часть уравнения, а слагаемое -1 переносим в правую часть уравнения, сменив знак числа на противоположный, т.е. на «+».
2x = 4 + 1
2x = 5 получили уравнение вида ax = b
х = 5/2
x = 2,5
Ответ: х = 2,5
Решение линейных уравнений происходит с помощью нескольких преобразований, которые могут быть выполнены в любом порядке.
1. Освобождение от дробных членов уравнения (если такие есть) с помощью умножения левой и правой части уравнения на одно и тоже ненулевое число
2. Деление левой и правой части уравнения на одно и тоже ненулевое число
3. Раскрытие скобок (если они есть и это необходимо)
4. Перенос членов уравнения из одной части в другую со сменой их знаков на противоположные
5. Приведение подобных слагаемых
Завершая решение уравнения, стоит выполнить проверку, подставив в исходное уравнение найденное значение неизвестного. Если уравнение обратилось в верное равенство, значит, корень уравнения найден верно.
Итогом решения уравнения является ответ, в котором перечисляются все найденные корни уравнения.
Эта информация доступна зарегистрированным пользователям
Решение текстовых задач часто сводится к решению уравнений.
Уравнения позволяют записать информацию в таком виде, чтобы с ней можно было выполнить любые математические действия и преобразования, известные нам.
Решение задачи обычно сводится к тому, чтобы путем некоторых рассуждений и вычислений составить математическую модель задачи и найти значение неизвестной величины.
Эта информация доступна зарегистрированным пользователям
Этапы решения задач с помощью уравнения.
- Искомое значение обозначить через неизвестную (за неизвестную принимают наименьшее значение по условию задачи)
- Выразить через неизвестную другие величины
- Составить математическую модель задачи – уравнение
- С помощью равносильных преобразований решить уравнение
- Найти ответ на вопрос задачи
- Решив задачу, выполнить проверку найденных корней уравнения
- Записать ответ
Рассмотрим пример.
У Миши и Гриши было одинаковое количество денег.
Миша купил 4 одинаковые шоколадки, и у него осталось 30 рублей.
Гриша купил 2 такие же шоколадки, и у него осталось 120 рублей.
Сколько стоит шоколадка?
Решение:
Пусть х руб. стоит одна шоколадка.
4х руб. заплатил Миша за 4 шоколадки.
2х руб. заплатил Гриша за 2 шоколадки.
У Миши было денег (руб).: 4х + 30
У Гриши было денег (руб).: 2х + 120
Составим уравнение.
Так как денег у мальчиков было поровну, получим равенство:
4х + 30 = 2х + 120
Перенесем члены уравнения из одно части уравнения в другую, при этом сменив их знак на противоположный: члены уравнения, содержащие неизвестную, влево, известные члены вправо.
4х – 2х = 120 – 30
Приведем подобные:
2х = 90
Получили уравнение вида ax =b, решим его.
х = 90/2
х = 45 (руб.) стоит одна шоколадка.
Выполним проверку найденного корня уравнения, подставив в исходное уравнение полученное значение х:
4 ∙ 45 + 30 = 2 ∙ 45 + 120
180 + 30 = 90 + 120
210 = 210
Получили верное равенство, следовательно, корень уравнения был найден верно.
Ответ: х = 45 (руб.)
Эта информация доступна зарегистрированным пользователям
Американский математик в 1939, будучи аспирантом Калифорнийского университета, однажды опоздал на занятие и ошибочно подумал, что изображенное на доске уравнение – это домашнее задание.
Уравнение ему показалось трудно решаемым, но через несколько дней ему удалось его решить.
Позже выяснилось, что на доске было записано не задание на дом, а две «нерешаемые» проблемы в статистике, решение которых уже много лет пытались найти многие ученые того времени.
Читайте также
Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.
Что такое уравнение? Смысл и понятия.
Узнаем сначала все понятия, связанные с уравнением.
Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.
Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.
Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.
Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.
Рассмотрим теперь, все термины на простом примере:
x+1=3
В данном случае x – переменная или неизвестное значение уравнения.
Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.
2+1=3
Получили верное равенство. Значит, правильно нашли корни уравнения.
Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.
Правила уменьшения или увеличения уравнения на определенное число.
Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7
Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.
x+2-2=7-2
x+0=7-2
x=7-2
Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.
x=5
Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.
Проверка:
Вместо переменной x подставим 5.
x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.
Разберем следующий пример:
Решите уравнение x-4=12.
Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:
x-4+4=12+4
x=12+4
Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.
x=16
Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16
Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.
Рассмотрим пример:
Решите уравнение 4+3x=2x-5
Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.
4+3x=2x-5
4+3x-2x=-5
Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4+3x-2x=-5
3x-2x=-5-4
Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9
Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅(-9)=2⋅(-9)-5
4-27=-18-5
-23=-23
Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.
Правила уменьшения или увеличения уравнения в несколько раз.
Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.
Рассмотрим пример:
Решите уравнение 5x=20.
Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.
5x=20
5x:5=20:5
5:5x=4
1x=4 или x=4
Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅4=20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.
Рассмотрим следующий пример:
Найдите корни уравнения .
Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.
1x=21 или x=21
Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.
7=7 получено верное равенство.
Ответ: корень уравнения равен x=21.
Следующий пример:
Найдите корни уравнения
Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.
3x=45
Далее делим все уравнение на 3.
3x:3=45:3
(3:3)x=15
1x=15 или x=15
Сделаем проверку. Подставим в уравнение найденный корень.
5=5
Ответ: x=15
Как решать уравнения? Алгоритм действий.
Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:
- Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
- Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
- Избавиться от коэффициента при переменной если нужно.
- В итоге всех действий получаем корень уравнение. Выполняем проверку.
Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.