Приветствую вас дорогие учащиеся!
Рекомендуем подписаться на канал на youtube нашего сайта TutoMath.ru, чтобы быть в курсе всех новых видео уроков.
Для начала вспомним основные формулы степеней и их свойства.
Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a•a•…•a=an
1. a0 = 1 (a ≠ 0)
2. a1 = a
3. an • am = an + m
4. (an)m = anm
5. anbn = (ab)n
6. a-n= 1/an
7. an/am= an — m
Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.
Примеры показательных уравнений:
6x=36
В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.
Приведем еще примеры показательных уравнений.
2x*5=10
16x — 4x — 6=0
Теперь разберем как решаются показательные уравнения?
Возьмем простое уравнение:
2х = 23
Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:
2х = 23
х = 3
Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.
Теперь подведем итоги нашего решения.
Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.
Теперь прорешаем несколько примеров:
Начнем с простого.
2х+2 = 24
Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.
x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2
В следующем примере видно, что основания разные это 3 и 9.
33х — 9х+8 = 0
Для начала переносим девятку в правую сторону, получаем:
33х = 9х+8
Теперь нужно сделать одинаковые основания. Мы знаем что 9=32 . Воспользуемся формулой степеней (an)m = anm.
33х = (32)х+8
Получим 9х+8 =(32)х+8 =3 2х+16
33х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.
3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.
Смотрим следующий пример:
22х+4 — 10•4х = 24
В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (an)m = anm.
4х = (22)х = 22х
И еще используем одну формулу an • am = an + m:
22х+4 = 22х•24
Добавляем в уравнение:
22х•24 — 10•22х = 24
Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 22х ,вот и ответ — 22х мы можем вынести за скобки:
22х(24 — 10) = 24
Посчитаем выражение в скобках:
24 — 10 = 16 — 10 = 6
6•22х = 24
Все уравнение делим на 6:
22х = 4
Представим 4=22:
22х = 22 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.
Решим уравнение:
9х – 12*3х +27= 0
Преобразуем:
9х = (32)х = 32х
Получаем уравнение:
32х — 12•3х +27 = 0
Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены. Число с наименьшей степенью заменяем:
3х = t
Тогда 32х = (3х)2 = t2
Заменяем в уравнении все степени с иксами на t:
t2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t1 = 9
t2 = 3
Возвращаемся к переменной x.
Берем t1:
t1 = 9 = 3х
Стало быть,
3х = 9
3х = 32
х1 = 2
Один корень нашли. Ищем второй, из t2:
t2 = 3 = 3х
3х = 31
х2 = 1
Ответ: х1 = 2; х2 = 1.
На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.
Вступайте в группу ВКОНТАКТЕ
Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Он поможет решить задания №4, 12 и 14 из профильного уровня математики.
Одна из их разновидностей уравнений – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие степеней и переменной (х) не в основании степени, а в самом показателе. Как это выглядит:
$$ a^{f(x)}=b^{g(x)}; $$
Где (a) и (b) – некоторые числа, а (f(x)) и (g(x)) – какие-то выражения, зависящие от (x). Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:
$$2^x=8;$$
$$ 2^x=2^{2x+1};$$
$$3^{x^2}=2^{x^2-2x+3};$$
Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.
И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:
$$ 7x+2=16;$$
$$x^2-4x+5=0;$$
И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением.
Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.
Простейшие показательные уравнения
Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:
Пример 1
$$ 2^x=8;$$
Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:
$$ 2^3=2*2*2=8; $$
Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.
Решим что-нибудь по-сложнее.
Пример 2
$$ 3^{4x-1}=frac{1}{9};$$
Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:
$$frac{1}{9}=frac{1}{3^2}=3^{-2};$$
Мы применили свойство отрицательной степени по формуле:
$$ a^{-n}=frac{1}{a^n};$$
Теперь наше уравнение будет выглядеть так:
$$ 3^{4x-1}=3^{-2};$$
Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:
$$ 4x-1=-2;$$
Такое мы решать умеем, ведь это обыкновенное линейное уравнение.
$$4х=-2+1;$$
$$4x=-1;$$
$$x=-frac{1}{4}.$$
Поздравляю, мы нашли корень нашего показательного уравнения.
Пример 3
$$125^x=25;$$
Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:
$$ (5^3)^x=5^2;$$
Воспользуемся одним из свойств степеней ((a^n)^m=a^{n*m}):
$$ 5^{3*x}=5^2;$$
И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:
$$ 3*x=2;$$
$$ x=frac{2}{3};$$
И еще один пример:
Пример 4
$$2^x=-4;$$
Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.
Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.
Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.
Общий метод решения показательных уравнений
Пусть у нас есть вот такой пример:
$$ a^x=b;$$
Где (a,b) какие-то положительные числа. ((a>0, ; b>0)).
Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.
Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:
$$ a^x=a^m;$$
Раз основания одинаковые, то мы можем просто приравнять степени:
$$x=m.$$
Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:
Пример 5
$$2^x=16;$$
Замечаем, что (16=2*2*2*2=2^4) это степень двойки:
$$2^x=2^4$$
Основания одинаковые, значит можно приравнять степени:
$$x=4.$$
Пример 6
$$5^{-x}=125 Rightarrow 5^{-x}=5*5*5 Rightarrow 5^{-x}=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7
$$9^{4x}=81 Rightarrow (3*3)^{4x}=3*3*3*3 Rightarrow(3^2)^{4x}=3^4 Rightarrow 3^{8x}=3^4 Rightarrow 8x=4 Rightarrow x=frac{1}{2}.$$
Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).
Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:
Пример 8
$$ 3^x=2;$$
(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):
$$ b=a^{log_{a}(b)};$$
Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):
$$ 2=3^{log_{3}(2)};$$
Подставим данное преобразование в наш пример:
$$3^x=3^{log_{3}(2)};$$
Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:
$$x=log_{3}(2).$$
Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.
Кто забыл, что такое логарифм, можно посмотреть здесь.
Рассмотрим еще несколько аналогичных примеров.
Пример 9
$$ 7^{2x}=5;$$
$$ 7^{2x}=7^{log_{7}(5)};$$
$$2x=log_{7}(5);$$
$$x=frac{1}{2}*log_{7}(5).$$
Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:
$$ x=frac{1}{2}*log_{7}(5)=log_{7}(5^{frac{1}{2}})=log_{7}(sqrt{5});$$
Все эти варианты ответа верные, их можно смело писать в ответ.
И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).
Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:
Решение показательных уравнений при помощи замены
Рассмотрим уравнение:
Пример 10
$$ 9^x-5*3^x+6=0;$$
Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.
Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^{2x}=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^{n*m}). Подставим:
$$(3^x)^2-5*3^x+6=0;$$
Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию – (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.
$$t^2-5t+6=0;$$
Квадратное уравнение, которое решается через дискриминант:
$$D=5^2-4*6=25-24=1; Rightarrow t_{1}=frac{5+sqrt{1}}{2}=3; Rightarrow t_{2}=frac{5-sqrt{1}}{2}=2;$$
Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:
$$ 3^x=3;$$
$$3^x=3^1;$$
$$x=1.$$
И второй корень:
$$ 3^x=2;$$
$$3^x=3^{log_{3}(2)};$$
$$x=log_{3}(2).$$
Ответ: (x_{1}=1; ; x_{2}=log_{3}(2).)
И еще один пример на замену:
Пример 11
$$3^{4x^2-6x+3}-10*3^{2x^2-3x+1}+3=0;$$
Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Преобразуем первое слагаемое. Если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):
$$ 3^{4x^2-6x+3}=3^{4x^2-6x+2+1}=3^{2(2x^2-3x+1)+1}=3^{2*(2x^2-3x+1)}*3^1=3*(3^{2x^2-3x+1})^2;$$
Подставим в исходное уравнение:
$$3*(3^{2x^2-3x+1})^2-10*3^{2x^2-3x+1}+3=0;$$
Теперь показательные функции одинаковы и можно сделать замену:
$$t=3^{2x^2-3x+1}; ; t>0;$$
$$3*t^2-10t+3=0;$$
$$D=100-36=64; Rightarrow t_{1}=3; t_{2}=frac{1}{3};$$
Обратная замена, и наше уравнение сводится к простейшему:
$$ 3^{2x^2-3x+1}=3;$$
$$ 2x^2-3x+1=1;$$
$$x(2x-3)=0;$$
$$x=0; ; x=frac{3}{2}.$$
И второе значение (t):
$$3^{2x^2-3x+1}=frac{1}{3};$$
$$3^{2x^2-3x+1}=3^{-1};$$
$$2x^2-3x+1=-1;$$
$$2x^2-3x+2=0;$$
$$D=9-16=-7<0;$$
Раз дискриминант получился меньше нуля, то вторая ветка решений нам корней не дает.
Ответ: (x_{1}=0; ; x_{2}=frac{3}{2}.)
Однородные показательные уравнения
Иногда встречаются такие показательные уравнения, в которых не сразу видно, как сделать одинаковые функции, а именно одинаковые основания, чтобы произвести замену. Посмотрим на такой пример:
Пример 12
$$ 7^{x+1}+3*7^{x}=3^{x+2}+3^{x};$$
Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):
$$ 7^{x+1}+3*7^{x}=3^{x+2}+3^{x} ; ; :3^x$$
$$ frac{7^{x+1}}{3^x}+frac{3*7^{x}}{3^x}=frac{3^{x+2}}{3^x}+frac{3^{x}}{3^x};$$
Здесь нам придется воспользоваться свойствами степеней:
$$frac{a^n}{a^m}=a^{n-m};$$
$$ a^n*a^m=a^{n+m};$$
$$ frac{a^n}{b^n}=(frac{a}{b})^n;$$
Разберем каждое слагаемое:
$$ frac{7^{x+1}}{3^x}=frac{7*7^x}{3^x}=7*frac{7^x}{3^x}=7*(frac{7}{3})^x;$$
$$ frac{3*7^{x}}{3^x}=3*frac{7^x}{3^x}=3*(frac{7}{3})^x;$$
$$ frac{3^{x+2}}{3^x}=3^2*frac{3^x}{3^x}=3^2*1=9;$$
$$ frac{3^{x}}{3^x}=1;$$
Теперь подставим получившееся преобразования в исходное уравнение:
$$ 7*(frac{7}{3})^x+3*(frac{7}{3})^x=9+1;$$
Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac{7}{3})^x):
$$7t+3t=10;$$
$$10t=10;$$
$$t=1;$$
Сделаем обратную замену:
$$(frac{7}{3})^x=1;$$
Вспоминаем, что (1=(frac{7}{3})^0):
$$(frac{7}{3})^x=(frac{7}{3})^0;$$
$$x=0.$$
Ответ: (x=0).
И последний пример на замену:
Пример 13
$$2^{x+2}+0,5^{-x-1}+4*2^{x+1}=28;$$
Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:
$$ a^n*a^m=a^{n+m};$$
$$a^{-n}=frac{1}{a^n};$$
$${(a^n)}^m=a^{n*m};$$
Разберем каждое слагаемое нашего уравнения:
$$2^{x+2}=2^x*2^2=4*2^x;$$
Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны – отрицательная степень не имеет никакого отношения к знаку показательной функции!
$$0,5^{-x-1}=0,5^{-(x+1)}={(frac{1}{2})}^{-(x+1)}={(2^{-1})}^{-(x+1)}=2^{x+1}=2^x*2^1=2*2^x;$$
И последнее слагаемое со степенью:
$$ 4*2^{x+1}=4*2^x*2^1=8*2^x;$$
Подставим все наши преобразования в исходное уравнение:
$$4*2^x+2*2^x+8*2^x=28;$$
Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):
$$2^x*(4+2+8)=28;$$
$$14*2^x=28;$$
$$2^x=frac{28}{14}=2;$$
$$2^x=2^1;$$
$$x=1.$$
Ответ: (x=1.)
Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера.
Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.
И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут
Пример 14
$$2^{x+1}*5^x=10^{x+1}*5^{x+2};$$
Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:
$$2^{x+1}*5^x=(2*5)^{x+1}*5^{x+2};$$
Воспользуемся формулой ((a*b)^n=a^n*b^n):
$$ 2^{x+1}*5^x=2^{x+1}*5^{x+1}*5^{x+2};$$
И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:
$$frac{2^{x+1}}{2^{x+1}}=frac{5^{x+1}*5^{x+2}}{5^x};$$
Сокращаем и воспользуемся формулами (a^n*a^m=a^{n+m}) и (frac{a^n}{a^m}=a^{n-m}):
$$1=frac{5^{x+1+x+2}}{5^x};$$
$$1=frac{5^{2x+3}}{5^x};$$
$$1=5^{2x+3-x};$$
$$1=5^{x+3};$$
$$5^0=5^{x+3};$$
$$x+3=0;$$
$$x=-3.$$
Ответ: (x=-3).
Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.
Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!
Что такое показательное уравнение? Примеры.
Итак, показательное уравнение… Новый уникальный экспонат на нашей общей выставке самых разнообразных уравнений!) Как это почти всегда бывает, ключевым словом любого нового математического термина является соответствующее прилагательное, которое его характеризует. Так и тут. Ключевым словом в термине «показательное уравнение» является слово «показательное». Что оно означает? Это слово означает, что неизвестное (икс) находится в показателях каких-либо степеней. И только там! Это крайне важно.
Например, такие простые уравнения:
3x+1 = 81
5x + 5x+2 = 130
4·22x-17·2x+4 = 0
Или даже такие монстры:
2sin x = 0,5
И так далее, и тому подобное…
Прошу сразу обратить внимание на одну важную вещь: в основаниях степеней (снизу) — только числа. А вот в показателях степеней (сверху) — самые разнообразные выражения с иксом. Совершенно любые.) Всё от конкретного уравнения зависит. Если, вдруг, в уравнении вылезет икс где-нибудь ещё, помимо показателя (скажем, 3x = 18+x2), то такое уравнение будет уже уравнением смешанного типа. Такие уравнения не имеют чётких правил решения. Поэтому в данном уроке мы их рассматривать не будем. На радость ученикам.) Здесь мы будем рассматривать только показательные уравнения в «чистом» виде.
Вообще говоря, даже чистые показательные уравнения чётко решаются далеко не все и не всегда. Но среди всего богатого многообразия показательных уравнений есть определённые типы, которые решать можно и нужно. Вот именно эти типы уравнений мы с вами и рассмотрим. И примеры обязательно порешаем.) Так что устраиваемся поудобнее и — в путь! Как и в компьютерных «стрелялках», наше путешествие будет проходить по уровням.) От элементарного к простому, от простого — к среднему и от среднего – к сложному. По пути вас также будет ждать секретный уровень — приёмы и методы решения нестандартных примеров. Те, о которых вы не прочитаете в большинстве школьных учебников… Ну, а в конце вас, разумеется, ждёт финальный босс в виде домашки.)
Уровень 0. Что такое простейшее показательное уравнение? Решение простейших показательных уравнений.
Для начала рассмотрим какую-нибудь откровенную элементарщину. С чего-то же надо начинать, верно? Например, такое уравнение:
2х = 22
Даже безо всяких теорий, по простой логике и здравому смыслу ясно, что х = 2. Иначе же никак, верно? Никакое другое значение икса не годится… А теперь обратим наш взор на запись решения этого крутого показательного уравнения:
2х = 22
х = 2
Что же у нас произошло? А произошло следующее. Мы, фактически, взяли и… просто выкинули одинаковые основания (двойки)! Совсем выкинули. И, что радует, попали в яблочко!
Да, действительно, если в показательном уравнении слева и справа стоят одинаковые числа в каких угодно степенях, то эти числа можно отбросить и просто приравнять показатели степеней. Математика разрешает.) И дальше можно работать уже отдельно с показателями и решать куда более простое уравнение. Здорово, правда?
Вот и ключевая идея решения любого (да-да, именно любого!) показательного уравнения: с помощью тождественных преобразований необходимо добиться того, чтобы слева и справа в уравнении стояли одинаковые числа-основания в различных степенях. А дальше можно смело убрать одинаковые основания и приравнять показатели степеней. И работать с более простым уравнением.
А теперь запоминаем железное правило: убирать одинаковые основания можно тогда и только тогда, когда в уравнении слева и справа числа-основания стоят в гордом одиночестве.
Что значит, в гордом одиночестве? Это значит, безо всяких соседей и коэффициентов. Поясняю.
Например, в уравнении
3·3x-5 = 32x+1
тройки убирать нельзя! Почему? Потому что слева у нас стоит не просто одинокая тройка в степени, а произведение 3·3x-5. Лишняя тройка мешает: коэффициент, понимаешь.)
То же самое можно сказать и про уравнение
53x = 52x+5x
Здесь тоже все основания одинаковые — пятёрка. Но справа у нас не одинокая степень пятёрки: там — сумма степеней!
Короче говоря, убирать одинаковые основания мы имеем право лишь тогда, когда наше показательное уравнение выглядит так и только так:
af(x) = ag(x)
Такой вид показательного уравнения называют простейшим. Или, по-научному, каноническим. И какое бы накрученное уравнение перед нами ни было, мы его, так или иначе, будем сводить именно к такому простейшему (каноническому) виду. Или, в некоторых случаях, к совокупности уравнений такого вида. Тогда наше простейшее уравнение можно в общем виде переписать вот так:
f(x) = g(x)
И всё. Это будет эквивалентным преобразованием. При этом в качестве f(x) и g(x) могут стоять совершенно любые выражения с иксом. Какие угодно.
Возможно, особо любознательный ученик поинтересуется: а с какой такой стати мы вот так легко и просто отбрасываем одинаковые основания слева и справа и приравниваем показатели степеней? Интуиция интуицией, но вдруг, в каком-то уравнении и для какого-то основания данный подход окажется неверным? Всегда ли законно выкидывать одинаковые основания? К сожалению, для строгого математического ответа на этот интересный вопрос нужно довольно глубоко и серьёзно погружаться в общую теорию устройства и поведения функций. А чуть конкретнее — в явление строгой монотонности. В частности, строгой монотонности показательной функции y=ax. Поскольку именно показательная функция и её свойства лежат в основе решения показательных уравнений, да.) Развёрнутый ответ на этот вопрос будет дан в отдельном спецуроке, посвящённом решению сложных нестандартных уравнений с использованием монотонности разных функций.)
Объяснять подробно этот момент сейчас — это лишь выносить мозг среднестатистическому школьнику и отпугивать его раньше времени сухой и грузной теорией. Я этого делать не буду.) Ибо наша основная на данный момент задача — научиться решать показательные уравнения! Самые-самые простые! Посему — пока не паримся и смело выкидываем одинаковые основания. Это можно, поверьте мне на слово!) А дальше уже решаем эквивалентное уравнение f(x) = g(x). Как правило, более простое, чем исходное показательное.
Предполагается, конечно же, что решать хотя бы линейные, квадратные и дробные уравнения, уже без иксов в показателях, народ на данный момент уже умеет.) Кто до сих пор не умеет — смело закрывайте эту страницу, гуляйте по соответствующим ссылочкам и восполняйте старые пробелы. Иначе несладко вам придётся, да…
Я уж молчу про иррациональные, тригонометрические и прочие зверские уравнения, которые также могут всплыть в процессе ликвидации оснований. Но не пугайтесь, откровенную жесть в показателях степеней мы с вами пока рассматривать не будем: рано ещё. Будем тренироваться лишь на самых простых уравнениях.)
Теперь рассмотрим уравнения, которые требуют некоторых дополнительных усилий для сведения их к простейшим. Для отличия назовём их простыми показательными уравнениями. Итак, двигаемся на следующий уровень!
Уровень 1. Простые показательные уравнения. Распознаём степени! Натуральные показатели.
Ключевыми правилами в решении любых показательных уравнений являются правила действий со степенями. Без этих знаний и умений ничего не получится. Увы. Так что, если со степенями проблемы, то для начала милости прошу сюда. Кроме того, ещё нам понадобятся базовые тождественные преобразования уравнений. Эти преобразования (целых два!) — основа решения всех уравнений математики вообще. И не только показательных. Так что, кто забыл, тоже прогуляйтесь по ссылочке: я их не просто так ставлю.
Но одних только действий со степенями и тождественных преобразований мало. Необходима ещё личная наблюдательность и смекалка. Нам ведь требуются одинаковые основания, не так ли? Вот и осматриваем пример и ищем их в явном или замаскированном виде!
Например, такое уравнение:
32x — 27x+2 = 0
Первый взгляд на основания. Они… разные! Тройка и двадцать семь. Но паниковать и впадать в отчаяние рано. Самое время вспомнить, что
27 = 33
Числа 3 и 27 — родственнички по степени! Причём близкие.) Стало быть, имеем полное право записать:
27x+2 = (33)x+2
А вот теперь подключаем наши знания о действиях со степенями (а я предупреждал!). Есть там такая очень полезная формулка:
(am)n = amn
Если теперь запустить её в ход, то вообще отлично получается:
27x+2 = (33)x+2 = 33(x+2)
Исходный пример теперь выглядит вот так:
32x — 33(x+2) = 0
Отлично, основания степеней выровнялись. Чего мы и добивались. Полдела сделано.) А вот теперь запускаем в ход базовое тождественное преобразование — переносим 33(x+2) вправо. Элементарных действий математики никто не отменял, да.) Получаем:
32x = 33(x+2)
Что нам даёт такой вид уравнения? А то, что теперь наше уравнение сведено к каноническому виду: слева и справа стоят одинаковые числа (тройки) в степенях. Причём обе тройки – в гордом одиночестве. Смело убираем тройки и получаем:
2х = 3(х+2)
Решаем это линейное уравнение и получаем:
x = -6
Вот и все дела. Это правильный ответ.)
А теперь осмысливаем ход решения. Что нас спасло в этом примере? Нас спасло знание степеней тройки. Как именно? Мы опознали в числе 27 зашифрованную тройку! Этот приёмчик (шифровка одного и того же основания под разными числами) — один из самых популярных в показательных уравнениях! Если только не самый популярный. Да и в логарифмах тоже, кстати. Именно поэтому в показательных уравнениях так важна наблюдательность и умение распознавать в числах степени других чисел!
Практический совет:
Степени популярных чисел надо знать. В лицо!
Конечно, возвести двойку в седьмую степень или тройку в пятую может каждый. Не в уме, так хотя бы на черновике. Но в показательных уравнениях гораздо чаще надо не возводить в степень, а наоборот – узнавать, какое число и в какой степени скрывается за числом, скажем, 128 или 243. А это уже посложнее, чем простое возведение, согласитесь. Почувствуйте разницу, что называется!
Поскольку умение распознавать степени в лицо пригодится не только на этом уровне, но и на следующих, вот вам небольшое задание:
Определить, какими степенями и каких чисел являются числа:
4; 8; 16; 27; 32; 36; 49; 64; 81; 100; 125; 128; 216; 243; 256; 343; 512; 625; 729; 1024.
Ответы (вразброс, естественно):
272; 210; 36; 72; 26; 92; 34; 43; 102; 25; 35; 73; 162; 27; 53; 28; 62; 33; 29; 24; 22; 45; 252; 44; 63; 82; 93.
Да-да! Не удивляйтесь, что ответов побольше, чем заданий. Например, 28, 44 и 162 — это всё 256.
А теперь движемся дальше.)
Уровень 2. Простые показательные уравнения. Распознаём степени! Отрицательные и дробные показатели.
На этом уровне мы уже используем наши знания о степенях на полную катушку. А именно — вовлекаем в сей увлекательный процесс отрицательные и дробные показатели! Да-да! Нам же надо наращивать мощь, верно?
Например, такое страшное уравнение:
Опять первый взгляд — на основания. Основания — разные! Причём на этот раз даже отдалённо не похожие друг на друга! 5 и 0,04… А для ликвидации оснований нужны одинаковые… Что же делать?
Ничего страшного! На самом деле всё то же самое, просто связь между пятёркой и 0,04 визуально просматривается плохо. Как выкрутимся? А перейдём-ка в числе 0,04 к обычной дроби! А там, глядишь, всё и образуется.)
0,04 = 4/100 = 1/25
Ух ты! Оказывается, 0,04 — это 1/25! Ну кто бы мог подумать!)
Ну как? Теперь связь между числами 5 и 1/25 легче углядеть? Вот то-то и оно…
А теперь уже по правилам действий со степенями с отрицательным показателем можно твёрдой рукой записать:
Вот и отлично. Вот мы и добрались до одинакового основания — пятёрки. Заменяем теперь в уравнении неудобное нам число 0,04 на 5-2 и получаем:
Опять же, по правилам действий со степенями, теперь можно записать:
(5-2)x-1 = 5-2(x-1)
На всякий случай, напоминаю (вдруг, кто не в курсе), что базовые правила действий со степенями справедливы для любых показателей! В том числе и для отрицательных.) Так что смело берём и перемножаем показатели (-2) и (х-1) по соответствующему правилу. Наше уравнение становится всё лучше и лучше:
Всё! Кроме одиноких пятёрок в степенях слева и справа больше ничего нет. Уравнение сведено к каноническому виду. А дальше — по накатанной колее. Убираем пятёрки и приравниваем показатели:
x2–6x+5=-2(x-1)
Пример практически решён. Осталась элементарная математика средних классов — раскрываем (правильно!) скобки и собираем всё слева:
x2–6x+5 = -2x+2
x2–4x+3 = 0
Решаем это квадратное уравнение и получаем два корня:
x1 = 1; x2 = 3
Вот и всё.)
А теперь снова поразмышляем. В данном примере нам вновь пришлось распознать одно и то же число в разной степени! А именно – увидеть в числе 0,04 зашифрованную пятёрку. Причём на этот раз — в отрицательной степени! Как же нам это удалось? С ходу — никак. А вот после перехода от десятичной дроби 0,04 к обыкновенной дроби 1/25 всё и высветилось! И дальше всё решение пошло как по маслу.)
Поэтому очередной зелёный практический совет.
Если в показательном уравнении присутствуют десятичные дроби, то переходим от десятичных дробей к обыкновенным. В обыкновенных дробях гораздо проще распознать степени многих популярных чисел! После распознавания переходим от дробей к степеням с отрицательными показателями.
Имейте в виду, что такой финт в показательных уравнениях встречается очень и очень часто! А человек не в теме. Смотрит он, например, на числа 32 и 0,125 и огорчается. Неведомо ему, что это одна и та же двойка, только в разных степенях… Но вы-то ведь уже в теме!)
Дальше — больше! Развлекаться, так развлекаться.)
Решить уравнение:
Во! На вид — тихий ужас… Однако внешность обманчива. Это простейшее показательное уравнение, несмотря на его устрашающий внешний вид. И сейчас я вам это покажу.)
Конечно, возиться да считать побольше придётся, но ведь и наш с вами уровень тоже растёт, не правда ли? Итак, ничего не боимся и приступаем.)
Во-первых, разбираемся со всеми чиселками, сидящими в основаниях и в коэффициентах. Они, ясное дело, разные, да. Но мы всё же рискнём и попробуем сделать их одинаковыми! Попробуем добраться до одного и того же числа в разных степенях. Причём, желательно, числа самого возможно малого. Итак, начинаем расшифровку!
Ну, с четвёркой сразу всё ясно — это 22. Так, уже кое-что.)
С дробью 0,25 — пока непонятно. Проверять надо. Используем практический совет — переходим от десятичной дроби к обыкновенной:
0,25 = 25/100 = 1/4
Уже гораздо лучше. Ибо теперь уже отчётливо видно, что 1/4 — это 2-2. Отлично, и число 0,25 тоже сроднили с двойкой.)
Пока всё идёт хорошо. Но осталось самое нехорошее число из всех – корень квадратный из двух! А с этим перцем что делать? Можно ли его тоже представить как степень двойки? А кто ж его знает…
Что ж, снова лезем в нашу сокровищницу знаний о степенях! На этот раз дополнительно подключаем наши знания о корнях. Из курса 9-го класса мы с вами должны были вынести, что любой корень, при желании, всегда можно превратить в степень с дробным показателем.
Вот так:
В нашем случае:
Во как! Оказывается, корень квадратный из двух – это 21/2. Вот оно что!
Вот и прекрасно! Все наши неудобные числа на самом деле оказались зашифрованной двойкой.) Не спорю, где-то весьма изощрённо зашифрованной. Но и мы ведь тоже повышаем свой профессионализм в разгадке подобных шифров! А дальше уже всё очевидно. Заменяем в нашем уравнении числа 4, 0,25 и корень из двух на степени двойки:
Всё! Основания всех степеней в примере стали одинаковыми — двойка. А теперь в ход идут стандартные действия со степенями:
am·an = am+n
am:an = am-n
(am)n = amn
Для левой части получится:
2-2·(22)5x-16 = 2-2+2(5x-16)
Для правой части будет:
И теперь наше злое уравнение стало выглядеть вот так:
Кто не врубился, как именно получилось это уравнение, то тут вопрос не к показательным уравнениям. Вопрос — к действиям со степенями. Я же просил срочно повторить тем, у кого проблемы!
Вот и финишная прямая! Получен канонический вид показательного уравнения! Ну как? Убедил я вас, что не всё так страшно? 😉 Убираем двойки и приравниваем показатели:
Осталось всего лишь решить это линейное уравнение. Как? С помощью тождественных преобразований, вестимо.) Дорешайте, чего уж там! Умножайте обе части на двойку (чтобы убрать дробь 3/2), переносите слагаемые с иксами влево, без иксов вправо, приводите подобные, считайте — и будет вам счастье!
Должно всё получиться красиво:
x = 4
А теперь снова осмысливаем ход решения. В данном примере нас выручил переход от квадратного корня к степени с показателем 1/2. Причём только такое хитрое преобразование нам помогло везде выйти на одинаковое основание (двойку), которое и спасло положение! И, если бы не оно, то мы бы имели все шансы навсегда зависнуть и так и не справиться с этим примером, да…
Поэтому не пренебрегаем очередным практическим советом:
Если в показательном уравнении присутствуют корни, то переходим от корней к степеням с дробными показателями. Очень часто только такое преобразование и проясняет дальнейшую ситуацию.
Конечно же, отрицательные да дробные степени уже гораздо сложнее натуральных степеней. Хотя бы с точки зрения визуального восприятия и, особенно, распознавания справа налево!
Понятно, что напрямую возвести, например, двойку в степень -3 или же четвёрку в степень -3/2 не такая уж и большая проблема. Для знающих.)
А вот поди, например, с ходу сообрази, что
0,125 = 2-3
или
Тут только практика и богатый опыт рулят, да. И, конечно же, чёткое представление, что такое отрицательная и дробная степень. А также — практические советы! Да-да, те самые зелёные.) Надеюсь, что они всё-таки помогут вам лучше ориентироваться во всём разношёрстном многообразии степеней и значительно увеличат ваши шансы на успех! Так что не пренебрегаем ими. Я не зря зелёным цветом пишу иногда.)
Зато, если вы станете на «ты» даже с такими экзотическими степенями, как отрицательные и дробные, то ваши возможности в решении показательных уравнений колоссально расширятся, и вам уже будет по плечу практически любой тип показательных уравнений. Ну, если не любой, то процентов 80 всех показательных уравнений — уж точно! Да-да, я не шучу!
Итак, наша первая часть знакомства с показательными уравнениями подошла к своему логическому завершению. И, в качестве промежуточной тренировки, я традиционно предлагаю немного порешать самостоятельно.)
Задание 1.
Чтобы мои слова о расшифровке отрицательных и дробных степеней не пропали даром, предлагаю сыграть в небольшую игру!
Представьте в виде степени двойки числа:
Ответы (в беспорядке):
Получилось? Отлично! Тогда делаем боевое задание — решаем простейшие и простые показательные уравнения!
Задание 2.
Решить уравнения (все ответы — в беспорядке!):
52x-8 = 25
25x-4 — 16x+3 = 0
Ответы:
x = 16
x1 = -1; x2 = 2
x = 5
Получилось? Действительно, уж куда проще-то!
Тогда решаем следующую партию:
(2x+4)x-3 = 0,5x·4x-4
351-x = 0,2–x·7x
Ответы:
x1 = -2; x2 = 2
x = 0,5
x1 = 3; x2 = 5
И эти примеры одной левой? Отлично! Вы растёте! Тогда вот вам на закуску ещё примерчики:
Ответы:
x = 6
x = 13/31
x = -0,75
x1 = 1; x2 = 8/3
И это решено? Что ж, респект! Снимаю шляпу.) Значит, урок прошёл не напрасно, и начальный уровень решения показательных уравнений можно считать успешно освоенным. Впереди — следующие уровни и более сложные уравнения! И новые приёмы и подходы. И нестандартные примеры. И новые сюрпризы.) Всё это — в следующем уроке!
Что-то не получилось? Значит, скорее всего, проблемы в действиях со степенями. Или в тождественных преобразованиях. Или в том и другом сразу. Тут уж я бессилен. Могу в очередной раз предложить лишь одно — не лениться и прогуляться по ссылочкам.)
Продолжение следует.)
План урока:
Простейшие показательные уравнения ах = b
Уравнения вида аf(x) = ag(x)
Задачи, сводящиеся к показательным уравнениям
Уравнения с заменой переменных
Графическое решение показательных уравнений
Показательные неравенства
Простейшие показательные уравнения ах = b
Рассмотрим уравнение
2х = 8
Его называют показательным уравнением, ведь переменная находится в показателе степени. Для его решения представим правую часть как степень числа 2:
8 = 23
Тогда уравнение будет выглядеть так:
2х = 23
Теперь и справа, и слева стоят степени двойки. Очевидно, что число 3 будет являться его корнем:
23 = 23
Является ли этот корень единственным? Да, в этом можно убедиться, если построить в координатной плоскости одновременно графики у = 2х и у = 8. Второй график представляет собой горизонтальную линию.
Пересекаются эти графики только в одной точке, а потому найденное нами решение х = 3 является единственным.
Так как любая показательная функция является монотонной, то есть либо только возрастает (при основании, большем единицы), либо только убывает (при основании, меньшем единицы), то в общем случае ур-ние ах = b может иметь не более одного решения. Это является следствием известного свойства монотонных функций – горизонтальная линия пересекает их не более чем в одной точке.
Сразу отметим, что если в ур-нии вида ах = b число b не является положительным, то корней у ур-ния не будет вовсе. Это следует из того факта, что область значений показательной функции – промежуток (0; + ∞), ведь при возведении в степень любого положительного числа результат всё равно остается положительным. Можно проиллюстрировать это и графически:
Решая простейшее показательное уравнение
2х = 8
мы специально представляли правую часть как степень двойки:
2х = 23
После этого мы делали вывод, что если в обеих частях ур-ния стоят степени с равными основаниями (2 = 2), то у них должны быть равны и показатели. Это утверждение верно и в более общем случае. Если есть ур-ние вида
ах = ас
то его единственным решением является х = с.
Задание. Найдите решение показательного уравнения
8х = 8– 9
Решение. У обоих частей равны основания, значит, равны и показатели:
х = – 9
Ответ: – 9.
Задание. Найдите корень уравнения
Решение. Заметим, что число 625 = 54. Тогда ур-ние можно представить так:
Отсюда получаем, что х = 4.
Ответ: 4.
Видно, что основной метод решения показательных уравнений основан на его преобразовании, при котором и в правой, и в левой части стоят степени с совпадающими основаниями.
Задание. При каком х справедливо равенство
Решение. Преобразуем число справа:
Теперь ур-ние можно решить:
Ответ: – 3.
Задание. Решите ур-ние
Решение. Любое число при возведении в нулевую степень дает единицу, а потому можно записать, что 1 = 1270. Заменим с учетом этого правую часть равенства:
Ответ: 0.
Уравнения вида аf(x) = ag(x)
Рассмотрим чуть более сложное показательное ур-ние
Для его решения заменим показатели степеней другими величинами:
Теперь наше ур-ние принимает вид
Такие ур-ния мы решать умеем. Надо лишь приравнять показатели степеней:
При решении подобных ур-ний введение новых переменных опускают. Можно сразу приравнять показатели степеней, если равны их основания:
В общем случае использованное правило можно сформулировать так:
Задание. Найдите корень ур-ния
Решение. Представим правую часть как степень двойки:
Тогда ур-ние примет вид
Теперь мы имеем право приравнять показатели:
Ответ: – 1
Задание. Укажите значение х, для которого выполняется условие
Решение. Здесь удобнее преобразовать не правую, а левую часть. Заметим, что
С учетом этого можно записать
Основания у выражений слева и справа совпадают, а потому можно приравнять показатели:
Ответ: 12,5
Задание. Укажите корень показательного уравнения
Решение. Для перехода к одному основанию представим число 64 как квадрат восьми:
Тогда ур-ние примет вид:
Ответ: х = 3
Задание. Найдите корень ур-ния
Решение. Здесь ситуация чуть более сложная, ведь число 2 невозможно представить как степень пятерки, а пятерки не получится выразить как степень двойки. Однако у обеих степеней в ур-нии совпадают показатели. Напомним, что справедливы следующие правила работы со степенями:
С учетом этого поделим обе части ур-ния на выражения 53+х:
Ответ: – 2.
Задание. При каких х справедлива запись
Решение.
Можно сделать преобразования, после которых в ур-нии останется только показательная функция 5х. Для этого произведем следующие замены:
Перепишем исходное ур-ние с учетом этих замен:
Теперь множитель 5х можно вынести за скобки:
Ответ: 2
Рассмотрим чуть более сложное ур-ние, которое может встретиться на ЕГЭ в задании повышенной сложности №13.
Задание. Найдите решение уравнения
Решение. Преобразуем левое слагаемое:
Перепишем начальное ур-ние, используя это преобразование
Теперь мы можем спокойно вынести множитель за скобки:
Получили одинаковые основания слева и справа. Значит, можно приравнять и показатели:
Это квадратное уравнение, решение которого не должно вызывать у десятиклассника проблем:
Задачи, сводящиеся к показательным уравнениям
Рассмотрим одну прикладную задачу, встречающуюся в ЕГЭ по математике.
Задание. Из-за радиоактивного распада масса слитка из изотопа уменьшается, причем изменение его массы описывается зависимостью m(t) = m0 • 2–t/T, где m0 – исходная масса слитка, Т – период полураспада, t – время. В начальный момент времени изотоп, чей период полураспада составляет 10 минут, весит 40 миллиграмм. Сколько времени нужно подождать, чтобы масса слитка уменьшилась до 5 миллиграмм.
Решение. Подставим в заданную формулу значения из условия:
m0 = 40 миллиграмм;
T = 10 минут;
m(t) = 5 миллиграмм.
В результате мы получим ур-ние
из которого надо найти значение t. Поделим обе части на 40:
Ответ: 30 минут.
Далее решим чуть более сложную задачу, в которой фигурирует сразу 2 радиоактивных вещества.
Задание. На особо точных рычажных весах в лаборатории лежат два слитка из радиоактивных элементов. Первый из них весит в начале эксперимента 80 миллиграмм и имеет период полураспада, равный 10 минутам. Второй слиток весит 40 миллиграмм, и его период полураспада составляет 15 минут. Изначально весы наклонены в сторону более тяжелого слитка. Через сколько минут после начала эксперимента весы выровняются? Масса слитков меняется по закону m(t) = m0 • 2–t/T, где m0 и Т – это начальная масса слитка и период его полураспада соответственно.
Решение. Весы выровняются тогда, когда массы слитков будут равны. Если подставить в данную в задаче формулу условия, то получится, что масса первого слитка меняется по закону
а масса второго слитка описывается зависимостью
Приравняем обе формулы, чтобы найти момент времени, когда массы слитков совпадут (m1 = m2):
Делим обе части на 40:
Основания равны, а потому приравниваем показатели:
Ответ: 30 минут.
Уравнения с заменой переменных
В ряде случаев для решения показательного уравнения следует ввести новую переменную. В учебных заданиях такая замена чаще всего (но не всегда) приводит к квадратному ур-нию.
Задание. Решите уравнение методом замены переменной
Заметим, что в уравнении стоят степени тройки и девятки, но 32 = 9. Тогда введем новую переменную t = 3x. Если возвести ее в квадрат, то получим, что
C учетом этого изначальное ур-ние можно переписать:
Получили обычное квадратное ур-ние. Решим его:
Мы нашли два значения t. Далее необходимо вернуться к прежней переменной, то есть к х:
Первое ур-ние не имеет решений, ведь показательная функция может принимать лишь положительные значения. Поэтому остается рассмотреть только второе ур-ние:
Ответ: 2.
Задание. Найдите корни ур-ния
Решение. Здесь в одном ур-нии стоит сразу три показательных функции. Попытаемся упростить ситуацию и избавиться от одной из них. Для этого поделим ур-ние на выражение 44х+1:
Так как 14х+1 = 1, мы можем записать:
Обратим внимание, что делить ур-ние на выражение с переменной можно лишь в том случае, если мы уверены, что оно не обращается в ноль ни при каких значениях х. В данном случае мы действительно можем быть в этом уверены, ведь величина 44х+1 строго положительна при любом х.
Вернемся к ур-нию. В нем стоят величины (9/4)4х+1 и (3/2)4х+1. У них одинаковые показатели, но разные степени. Однако можно заметить, что
9/4 = (3/2)2, поэтому и (9/4)4х+1 = ((3/2)4х+1)2. Это значит, что перед нами уравнение с заменой переменных.
Произведем замену t = (3/2)4х+1, тогда (9/4)4х+1 = ((3/2)4х+1)2 = t2. Далее перепишем ур-ние с новой переменной t:
Снова получили квадратное ур-ние.
Возвращаемся к переменной х:
И снова первое ур-ние не имеет корней, так как при возведении положительного числа в степень не может получится отрицательное число. Остается решить второе ур-ние:
Ответ: – 0,25.
Графическое решение показательных уравнений
Не всякое показательное уравнение легко или вообще возможно решить аналитическим способом. В таких случаях выручает графическое решение уравнений.
Задание. Найдите графическим способом значение х, для которого справедливо равенство
Решение. Построим в одной системе координат графики у = 3х и у = 4 – х:
Видно, что графики пересекаются в одной точке с примерными координатами (1; 3). Так как графический метод не вполне точный, следует подставить х = 1 в ур-ние и убедиться, что это действительно корень ур-ния:
Получили верное равенство, значит, х = 1 – это действительно корень ур-ния.
Ответ: 1
Задание. Решите графически ур-ние
Решение. Перенесем вправо все слагаемые, кроме 2х:
Слева стоит показательная функция, а справа – квадратичная. Построим их графики и найдем точки пересечения:
Видно, что у графиков есть две общие точки – это (0;1) и (1; 2). На всякий случай проверим себя, подставив х = 0 и х = 1 в исходное ур-ние:
Ноль подходит. Проверяем единицу:
И единица тоже подошла. В итоге имеем два корня, 0 и 1.
Ответ: 0; 1.
Показательные неравенства
Рассмотрим координатную плоскость, в которой построен график некоторой показательной ф-ции у = ах, причем а > 0. Пусть на оси Ох отложены значения s и t, и t < s. То есть точка t располагается левее на оси Ох.
Ясно, что точкам t и s оси Ох соответствуют точки at и as на оси Оу. Так как
у = ах
является возрастающей функцией, то и величина at окажется меньше, чем as. Другими словами, точка at на оси Оу будет лежать ниже точки аs (это наглядно видно на рисунке). Получается, что из условия t < s следует неравенство at < as. Это значит, что эти два нер-ва являются равносильными.
С помощью этого правила можно решать некоторые простейшие показательные неравенства. Например, пусть дано нер-во
Представим восьмерку как степень двойки:
По только что сформулированному правилу можно заменить это нер-во на другое, которое ему равносильно:
Решением же этого линейного неравенства является промежуток (– ∞; 3).
Однако сформулированное нами правило работает тогда, когда основание показательной ф-ции больше единицы. А что же делать в том случае, если оно меньше единицы? Построим график такой ф-ции и снова отложим на оси Ох точки t и s, причем снова t будет меньше s, то есть эта точка будет лежать левее.
Так как показательная ф-ция у = ах при основании, меньшем единицы, является убывающей, то окажется, что на оси Оу точка as лежит ниже, чем at. То есть из условия t < s следует, что at > as. Получается, что эти нер-ва равносильны.
Например, пусть надо решить показательное неравенство
Выразим число слева как степень 0,5:
Тогда нер-во примет вид
По рассмотренному нами правилу его можно заменить на равносильное нер-во
В более привычном виде, когда выражение с переменной стоит слева, нер-во будет выглядеть так:
а его решением будет промежуток (3; + ∞).
В общем случае мы видим, что если в показательном нер-ве вида
основание a больше единицы, то его можно заменить равносильным нер-вом
Грубо говоря, мы просто убираем основание степеней, а знак нер-ва остается неизменным. Если же основание а меньше единицы, то знак неравенства необходимо поменять на противоположный:
Это правило остается верным и в том случае, когда вместо чисел или переменных t и s используются произвольные функции f(x) и g(x). Сформулируем это правило:
Таким образом, для решения показательных неравенств их следует преобразовать к тому виду, при котором и справа, и слева стоят показательные ф-ции с одинаковыми показателями, после чего этот показатель можно просто отбросить. Однако надо помнить, что при таком отбрасывании знак нер-ва изменится на противоположный, если показатель меньше единицы.
Задание. Решите простейшее неравенство
Решение.
Представим число 64 как степень двойки:
теперь и справа, и слева число 2 стоит в основании. Значит, его можно отбросить, причем знак нер-ва останется неизменным (ведь 2 > 1):
Задание. Найдите промежуток, на котором выполняется нер-во
Решение. Так как основание степеней, то есть число 0,345, меньше единицы, то при его «отбрасывании» знак нер-ва должен измениться на противоположный:
Это самое обычное квадратное неравенство. Для его решения нужно найти нули квадратичной функции, стоящей слева, после чего отметить их на числовой прямой и определить промежутки, на которых ф-ция будет положительна.
Нашли нули ф-ции. Далее отмечаем их на прямой, схематично показываем параболу и расставляем знаки промежутков:
Естественно, что в более сложных случаях могут использоваться всё те же методы решения нер-ва, которые применяются и в показательных ур-ниях. В частности, иногда приходится вводить новую переменную.
Задание. Найдите решение нер-ва
Решение. Для начала представим число 3х+1 как произведение:
Теперь перепишем с учетом этого исходное нер-во:
Получили дробь, в которой есть одна показательная ф-ция 3х. Заменим её новой переменной t = 3x:
Это дробно-рациональное неравенство, которое можно заменить равносильным ему целым нер-вом:
которое, в свою очередь, решается методом интервалов. Для этого найдем нули выражения, стоящего слева
Отмечаем найденные нули на прямой и расставляем знаки:
Итак, мы видим, что переменная t должна принадлежать промежутку (1/3; 9), то есть
Теперь произведем обратную замену t = 3x:
Так как основание 3 больше единицы, просто откидываем его:
Итак, мы узнали о показательных уравнениях и неравенствах и способах их решения. В большинстве случаев необходимо представить обе части равенства или неравенства в виде показательных степеней с одинаковыми основаниями. Данное действие иногда называют методом уравнивания показателей. Также в отдельных случаях может помочь графический способ решения ур-ний и замена переменной.
Показательные уравнения, как и любые другие, требуют поиска неизвестной переменной. Особенность в том, что она или выражение с ней находится в показателе степени.
Основные понятия и свойства
В показательных уравнениях, которые часто называют степенными, в основании находятся исключительно числа. Переменная же есть только в показателе.
Она может быть одна или являться частью выражения. Если она появляется в другом месте, приходится иметь дело с уравнениями смешанного типа.
Школьники знакомятся с простыми вычислениями уже в 7 классе, более сложные решают выпускники и студенты вузов. Если фигурирует несколько переменных и представлено больше одного уравнения, говорят об их системе.
Тогда необходимо выразить одну неизвестную через другую и искать результат методом подстановки. Поэтому умение находить значения, в которые возводят натуральные числа, пригодится на долгие годы.
Изучаются также и показательные функции: она может быть восходящей и нисходящей, в зависимости от значения переменной или выражения.
Два типа:
-
2x = 4 – показательное уравнение с иксом в степени;
-
2x = x + 12 – смешанное, ведь икс находится также и в основании.
При этом:
-
2 – основание, оно должно соответствовать двум условиям, а именно: быть больше нуля и отличаться от единицы;
-
х – показатель.
Если вместо знака «=» используются обозначения «>», «<», «≥», «≤», говорят о показательных неравенствах. Остальные условия остаются неизменными.
Для решения необходимо опираться на следующие свойства и правила:
1. Любое положительное число, возведенное в степень, равную единице, равно самому себе, то есть 91 = 9. Если же возвести число в степень ноль, то результат всегда будет одинаковым, а именно, равным единице: 90 = 1.
2. Если математическое выражение возводится в отрицательное значение, то его можно заменить дробью, где числитель – единица, а знаменатель первоначальное выражение, но уже в положительной степени. Числитель – значение, находящееся над чертой, знаменатель – под ней. Математически правило записывается в следующем виде:
.
3. Чтобы возвести число в степень, нужно умножить его на себя такое количество раз, которое равно ее значению, то есть р5 = р·р·р·р·р.
4. Если нужно умножить два положительных числа, отличных от единицы и равных между собой, то нужно сложить их показатели и возвести в полученное значение основание: p5·p3= p5+3 = p8.
5. Когда требуется разделить одно число на другое, имеющие отличные показатели, нужно вычесть из одного другой и возвести в полученное значение неизменное основание: p9/p3= p9-3 = p6.
6. Если необходимо возвести одну степень в другую, то нужно их перемножить. Само основание при этом остается без изменений. Его нужно возвести в полученное после арифметических действий значение: (p3)4 = p3*4 = p12.
Применение свойств и правил помогает упростить выражения, быстрее произвести вычисления и получить результат.
Примеры решения показательных уравнений
Закрепить материал помогут подробные объяснения при решении показательных уравнений. Разъяснения на практике помогут изучить сложные моменты и облегчат усвоение знаний.
Задание 1
Упростить и решить уравнение: 53x+14 = 57+2x
В обеих частях примера одинаковые основания, значит, можно приравнять математические выражения, находящиеся в показателе. В результате получится:
3х + 14 = 7 + 2х.
Путем переноса чисел в одну часть, а переменных в другую, не сложно решить пример. Главное, не забывать менять знак на противоположный, плюс на минус и наоборот:
3х – 2х = 7 – 14,
х = -7.
Ответ: -7.
Задание 2
Выполнить вычисление и найти х:
4x+1 = 16,
4x+1 = 42.
Основания обеих частей примера – 4, оно не меняется, следовательно, можно воспользоваться изученными свойствами и получить простейшее уравнение:
х + 1 = 2;
х = 2 — 1 = 1.
Ответ: 1.
Задание 3
Упростить и найти значение х:
Дроби в примере разные. Поэтому приравнять их показатели сразу не получится. Но стоит обратить внимание, что числитель одной равен знаменателю другой и наоборот.
Чтобы решить, придется вспомнить о правиле возведения в отрицательную степень, когда выражение представляется в виде дроби. Значит, числитель можно поменять местами со знаменателем.
В показателе при этом появится знак «минус»:
При равных основаниях приравниваются степени: -х = 2х + 3.
Далее придется выполнить простое задание, чтобы найти неизвестную переменную:
3х = -3;
х = -1
Ответ: -1.
Задание 4
Вычислить: (3x)2 = 81.
Можно представить в следующем виде: (3x)2 = 34.
Если воспользоваться изученными свойствами, получается: 32x = 34.
Далее выполнить простые действия, чтобы получить результат:
2х = 4;
х =
= 2;
Ответ: 2.
Задание 5
Решить уравнение: 5x+1 + 7·5x-2= 132.
Если воспользоваться свойством степеней, применяемых для умножения значений с одинаковым основанием, можно преобразовать уравнение. Общий множитель прежде всего нужно поставить за скобки, это правило регулярно применяется при решении:
5x-2(53 + 7) = 132;
5x-2 * 132 = 132.
Если обе части уравнения разделить или умножить на одно и то же число, результат не изменится. В данном случае необходимо разделить на число 132. Это помогает избавиться от громоздких вычислений, удлиняющих ход решения:
5x-2 = 1.
Далее необходимо вспомнить, что любое значение, возведенное в ноль, равно единице:
5x-2 = 50
Остается только приравнять показатели и решить элементарный пример:
х – 2 = 0,
х = 2.
Ответ: 2.
Задание 6
Решить показательное уравнение √4x = 16.
Квадратный корень можно заменить степенью 1/2. Получается, что 4 имеет показатель x/2.
Значит, уравнение преобразуются в следующее:
4x/2 = 42.
А дальше необходимо действовать по уже проверенному и закрепленному методу:
x/2 = 2, x = 4.
Ответ: 4.
Чтобы быстро решать показательные уравнения, нужно знать свойства степеней и умело ими пользоваться на практике. Это позволит легко находить неизвестные переменные. Полученные знания обязательно пригодятся для вычисления более сложных задач.
Существуют онлайн калькуляторы, позволяющие легко и просто решить степенные уравнения. Требуется просто вписать их в ячейку и немного подождать, пока машина справится с подсчетами. Но гораздо интереснее самому произвести арифметические действия и получить верный результат.
Интернет не всегда есть под рукой, а подобные примеры – основа решения более трудных задач, которые могут встретиться на экзамене ЕГЭ по математике. Например, логарифмических. Они могут содержать тригонометрические элементы и объемные алгебраические конструкции.