Как найти значение корня объяснение


Загрузить PDF


Загрузить PDF

До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

  1. Изображение с названием Calculate a Square Root by Hand Step 1

    1

    Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число.[1]
    Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

    • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
    • Записать это можно следующим образом: √400 = √(25 х 16).
  2. Изображение с названием Calculate a Square Root by Hand Step 2

    2

    Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b.[2]
    Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  3. Изображение с названием Calculate a Square Root by Hand Step 3

    3

    Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • √147
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  4. Изображение с названием Calculate a Square Root by Hand Step 4

    4

    Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 – мы были правы.
  5. Изображение с названием Calculate a Square Root by Hand Step 5

    5

    Еще один способ – разложите подкоренное число на простые множители. Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • √88
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Реклама

При помощи деления в столбик

  1. Изображение с названием Calculate a Square Root by Hand Step 6

    1

    Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как “7 95 20 78 91 82, 47 89 70”.

    • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде “7 80, 14”. Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
  2. Изображение с названием Calculate a Square Root by Hand Step 7

    2

    Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

    • В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 22 < 7 и n = 2. Напишите 2 сверху справа – это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
  3. Изображение с названием Calculate a Square Root by Hand Step 8

    3

    Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

    • В нашем примере вычтите 4 из 7 и получите 3.
  4. Изображение с названием Calculate a Square Root by Hand Step 9

    4

    Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением “_×_=”.

    • В нашем примере второй парой чисел является “80”. Запишите “80” после 3. Затем, удвоенное число сверху справа дает 4. Запишите “4_×_=” снизу справа.
  5. Изображение с названием Calculate a Square Root by Hand Step 10

    5

    Заполните прочерки справа. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

    • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 – слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа – это вторая цифра в искомом квадратном корне числа 780,14.
  6. Изображение с названием Calculate a Square Root by Hand Step 11

    6

    Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

    • В нашем примере, вычтите 329 из 380, что равно 51.
  7. Изображение с названием Calculate a Square Root by Hand Step 12

    7

    Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением “_×_=”.

    • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите “54_×_=” снизу справа.
  8. Изображение с названием Calculate a Square Root by Hand Step 13

    8

    Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

    • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 – 4941 = 173.
  9. Изображение с названием Calculate a Square Root by Hand Step 14

    9

    Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

    Реклама

Понимание процесса

  1. Изображение с названием Calculate a Square Root by Hand Step 15

    1

    Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

  2. Изображение с названием Calculate a Square Root by Hand Step 16

    2

    Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C – третьей и так далее.

  3. Изображение с названием Calculate a Square Root by Hand Step 17

    3

    Задайте букву для каждой пары первых цифр. Обозначим через Sa первую пару цифр в значении S, через Sb – вторую пару цифр и так далее.

  4. Изображение с названием Calculate a Square Root by Hand Step 18

    4

    Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

  5. Изображение с названием Calculate a Square Root by Hand Step 19

    5

    Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен Sa (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

    • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.
  6. Изображение с названием Calculate a Square Root by Hand Step 20

    6

    Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C – цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.

    • Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B². Запомните, что 10A+B – это такое число, у которого цифра B означает единицы, а цифра A – десятки. Например, если A=1 и B=2, то 10A+B равно числу 12.(10A+B)² – это площадь всего квадрата, 100A² – площадь большого внутреннего квадрата, – площадь малого внутреннего квадрата, 10A×B – площадь каждого из двух прямоугольников. Сложив площади описанных фигур, вы найдете площадь исходного квадрата.
  7. Изображение с названием Calculate a Square Root by Hand Step 21

    7

    Вычтите A² из Sa. Для учета множителя 100 снесите одну пару цифр (Sb) из S: вам нужно, чтобы “SaSb” было равным общей площади квадрата, и из нее вычтите 100A² (площадь большого квадрата). В результате получите число N1, стоящее слева в шаге 4 (N = 380 в нашем примере). N1 = 2×10A×B + B² (площадь двух прямоугольников плюс площадь малого квадрата).

  8. Изображение с названием Calculate a Square Root by Hand Step 22

    8

    Выражение N1 = 2×10A×B + B² можно записать как N1 = (2×10A + B) × B. В нашем примере вам известно значение N1 (=380) и A(=2) и необходимо вычислить B. Скорее всего, B не является целым числом, поэтому необходимо найти наибольшее целое B, удовлетворяющее условию: (2×10A + B) × B ≤ N1. При этом B+1 будет слишком большим, поэтому N1 < (2×10A + (B+1)) × (B+1).

  9. Изображение с названием Calculate a Square Root by Hand Step 23

    9

    Решите уравнение. Для решения умножьте A на 2, переведите результат в десятки (что эквивалентно умножению на 10), поместите B в положение единиц, и умножьте это число на B. Это число (2×10A + B) × B и это выражение абсолютно идентичны записи “N_×_=” (где N=2×A) сверху справа в шаге 4. А в шаге 5 вы находите наибольшее целое B, которое ставится на место прочерков и соответствует неравенству: (2×10A + B) × B ≤ N1.

  10. Изображение с названием Calculate a Square Root by Hand Step 24

    10

    Вычтите площадь (2×10A + B) × B из общей площади (слева в шаге 6). Так вы получите площадь S-(10A+B)², которая еще не учитывалась (и которая поможет вычислить следующие цифры).

  11. Изображение с названием Calculate a Square Root by Hand Step 25

    11

    Для вычисления следующей цифры C повторите процесс. Слева снесите следующую пару цифр (Sc) из S для получения N2 и найдите наибольшее C, удовлетворяющее условию (2×10×(10A+B)+C) × C ≤ N2 (что эквивалентно двукратному написанию числа из пары цифр “A B” с соответствующим “_×_=”, и нахождению наибольшего числа, которое можно подставить вместо прочерков).

    Реклама

Советы

  • Перемещение десятичного разделителя при увеличении числа на 2 цифры (множитель 100), перемещает десятичный разделить на одну цифру в значении квадратного корня этого числа (множитель 10).
  • В нашем примере, 1,73 может считаться остатком: 780,14 = 27,9² + 1,73.
  • Данный метод верен для любых чисел.
  • Записывайте процесс вычисления в том виде, который вам наиболее удобен. Например, некоторые записывают результат над исходным числом.
  • Альтернативный метод с использованием непрерывных дробей включает формулу: √z = √(x^2+y) = x + y/(2x + y/(2x + y/(2x + …))). Например, для вычисления квадратного корня из 780,14, целым числом, квадрат которого близок к 780,14 будет число 28, поэтому z=780,14, x=28, y=-3,86. Подставляя эти значения в уравнение и решая его в упрощении до х+у/(2x), уже в младших членах получаем результат 78207/2800 или около 27,931(1), а в следующих членах 4374188/156607 или около 27,930986(5). Решение каждого последующего члена добавляет около 3 цифр к дробной доли по сравнению с предыдущем членом.

Реклама

Предупреждения

  • Не забудьте разделить число на пары, начиная с дробной части числа. Например, разделяя 79520789182,47897 как “79 52 07 89 18 2,4 78 97″, вы получите бессмысленное число.

Реклама

Похожие статьи

Источники

Об этой статье

Эту страницу просматривали 926 223 раза.

Была ли эта статья полезной?

Что такое арифметический квадратный корень

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа (a) называется такое неотрицательное число, квадрат которого равен (a). (  (sqrt{a}=x, {{x}^{2}}=a; x, age 0)).

А почему же число  ( a) (число под корнем) должно быть обязательно неотрицательным?

Например, чему равен ( sqrt{-9})?

Так-так, попробуем подобрать. Может, три?

Проверим: ( {{3}^{2}}=9), а не ( -9).

Может, ( left( -3 right))? 

Опять же, проверяем: ( {{left( -3 right)}^{2}}=9).

Ну что же, не подбирается?

Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число! Это надо запомнить!

Число или выражение под знаком корня должно быть неотрицательным!

Однако ты наверняка уже заметил, что не только число под корнем должно быть неотрицательным, но и само значение тоже должно быть неотрицательным!

 Ведь в определении сказано, что «квадратным корнем из числа( a)называется такое неотрицательное число, квадрат которого равен( a)».

Но подождите!  В самом начале мы разбирали пример ( {{x}^{2}}=4) и один из ответов был отрицательным числом! 

 Мы подбирали числа, которые можно возвести в квадрат и получить при этом ( displaystyle 4). Ответом были ( displaystyle 2) и ( displaystyle -2)

А тут говорится, что квадратным корнем должно быть «неотрицательное число»! Почему?

Такой вопрос вполне уместен. Здесь необходимо просто разграничить понятия квадратного уравнения и арифметического квадратного корня.

К примеру, ( displaystyle {{x}^{2}}=4) (квадратное уравнение) не равносильно выражению ( x=sqrt{4}) (арифмитический квадратный корень).

Из ( {{x}^{2}}=4) следует, что

( left| x right|=sqrt{4}), то есть ( x=pm sqrt{4}=pm 2) или ( {{x}_{1}}=2); ( {{x}_{2}}=-2)

(не помнишь почему так? Почитай тему «Модуль числа»!)

А из ( x=sqrt{4}) следует, что ( x=2).

Конечно, это очень путает, но это необходимо запомнить, что знаки «плюс-минус» являются результатом решения квадратного уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.

В наше квадратное уравнение подходит как ( 2), так и ( x=-2).

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.

Запись иррациональных чисел с помощью квадратного корня

А теперь попробуй решить такое уравнение ( {{x}^{2}}=3).

Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

Начнем с самого начала – с нуля: ( {{0}^{2}}=0) – не подходит.

Двигаемся дальше ( displaystyle x=1); ( displaystyle {{1}^{2}}=1) – меньше трех, тоже отметаем.

А что если ( displaystyle x=2)? 

Проверим: ( displaystyle {{2}^{2}}=4) – тоже не подходит, т.к. это больше трех.

С отрицательными числами получится такая же история.

И что же теперь делать? Неужели перебор нам ничего не дал?

Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между ( displaystyle 1) и ( displaystyle 2), а также между ( displaystyle -2) и ( displaystyle -1).

Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными.

И что дальше?

Давай построим график функции ( displaystyle y={{x}^{2}}) и отметим на нем решения.

График квадратичной функции

Попробуем обмануть систему и получить ответ с помощью калькулятора (как мы это делали в начале)!

Извлечем корень из ( displaystyle 3), делов-то!

Ой-ой-ой, выходит, что ( sqrt{3}=1,732050807568ldots ) Такое число никогда не кончается.

Как же такое запомнить, ведь на экзамене калькулятора не будет!?

Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. ( sqrt{3}) и ( -sqrt{3}) уже сами по себе ответы.

Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.

Деление корней

С умножением корней разобрались, теперь приступим к свойству деления.

Напомню, что формула в общем виде выглядит так:

( displaystyle sqrt[{}]{frac{a}{b}}=frac{sqrt[{}]{a}}{sqrt[{}]{b}}), если ( displaystyle age 0 , b>0).

А значит это, что корень из частного равен частному корней.

Ну что, давай разбираться на примерах:

( displaystyle   frac{sqrt{12}}{sqrt{3}}=sqrt{frac{12}{3}}=sqrt{4}=2)

Вот и вся наука. А вот такой пример:

( displaystyle   frac{sqrt{12}}{3}=frac{sqrt{12}}{sqrt{9}}=sqrt{frac{12}{9}}=sqrt{frac{4}{3}}=frac{2}{sqrt{3}})

Все не так гладко, как в первом примере, но, как видишь, ничего сложного нет.

А что, если попадется такое выражение:

( displaystyle   sqrt{frac{144}{225}}=?)

Надо просто применить формулу в обратном направлении:

( displaystyle   sqrt{frac{144}{225}}=frac{sqrt{144}}{sqrt{225}}=frac{12}{15}=frac{4}{5}=0,8)

А вот такой примерчик:

( displaystyle   sqrt{0,16}=sqrt{frac{16}{100}}=frac{4}{10}=0,4)

Еще ты можешь встретить такое выражение:

( displaystyle   sqrt{5frac{19}{25}}=?)

Все то же самое, только здесь надо вспомнить, как переводить дроби (если не помнишь, загляни в тему дроби и возвращайся!). Вспомнил? Теперь решаем!

( displaystyle   sqrt{5frac{19}{25}}=sqrt{frac{144}{25}}=frac{12}{5}=2,4)

Уверена, что ты со всем, всем справился, теперь попробуем возводить корни в степени.

Возведение в степень

А что же будет, если квадратный корень возвести в квадрат? Все просто, вспомним смысл квадратного корня из числа ( displaystyle a) – это число, квадратный корень которого равен ( displaystyle a).

Так вот, если мы возводим число, квадратный корень которого равен ( displaystyle a), в квадрат, то что получаем?

Ну, конечно, ( displaystyle a)!

Рассмотрим на примерах:

( displaystyle   {{left( sqrt{12} right)}^{2}}=12)

( displaystyle   {{left( sqrt{17} right)}^{2}}=17)

Все просто, правда? А если корень будет в другой степени? Ничего страшного!

Придерживайся той же логики и помни свойства и возможные действия со степенями.

Забыл?

Почитай теорию по теме «Степень и ее свойства» и тебе все станет предельно ясно.

Вот, к примеру, такое выражение:

( displaystyle   {{left( sqrt{5} right)}^{6}}={{left( {{left( sqrt{5} right)}^{2}} right)}^{3}}={{5}^{3}}=125)

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

( displaystyle   {{left( sqrt{5} right)}^{7}}={{left( sqrt{5} right)}^{6}}cdot sqrt{5}=125sqrt{5})

С этим вроде все ясно, а как извлечь корень из числа в степени? Вот, к примеру, такое:

( displaystyle   sqrt{{{3}^{2}}}=sqrt{9}=3)

Довольно просто, правда? А если степень больше двух? Следуем той же логике, используя свойства степеней:

( displaystyle   sqrt{{{3}^{6}}}=sqrt{{{left( {{3}^{3}} right)}^{2}}}={{3}^{3}}=27)

( displaystyle   sqrt{{{3}^{5}}}=sqrt{{{3}^{4}}cdot 3}=sqrt{{{left( {{3}^{2}} right)}^{2}}cdot 3}={{3}^{2}}cdot sqrt{3}=9sqrt{3})

Ну как, все понятно? Тогда реши самостоятельно примеры:

  • ( displaystyle   sqrt{{{left( -3 right)}^{2}}})
  • ( displaystyle   sqrt{{{6}^{6}}})
  • ( displaystyle   {{left( sqrt{8} right)}^{7}})

А вот и ответы:

Извлечение корней из больших чисел

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

( displaystyle   sqrt{98}=sqrt{49cdot 2}=sqrt{49}cdot sqrt{2}=7sqrt{2})

Можно было пойти по иному пути и разложить на другие множители:

( displaystyle   sqrt{98}=sqrt{7cdot 14})

Что дальше? А дальше раскладываем на множители до самого конца:

( displaystyle   sqrt{98}=sqrt{7cdot 14}=sqrt{7cdot 7cdot 2}=sqrt{{{7}^{2}}cdot 2}=7sqrt{2})

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Разложение на множители очень пригодится при решении таких нестандартных заданий, как вот это:

( displaystyle   sqrt{15}cdot sqrt{180}cdot sqrt{12})

Не пугаемся, а действуем! Разложим каждый множитель под корнем на отдельные множители:

А теперь попробуй самостоятельно (без калькулятора! его на экзамене не будет):

( displaystyle   sqrt{15}cdot sqrt{180}cdot sqrt{12}=sqrt{5cdot 3}cdot sqrt{36cdot 5}cdot sqrt{2cdot 6})

Разве это конец? Не останавливаемся на полпути!

( displaystyle   begin{array}{l}sqrt{5cdot 3}cdot sqrt{36cdot 5}cdot sqrt{2cdot 6}=sqrt{5cdot 3}cdot sqrt{3cdot 12cdot 5}cdot sqrt{2cdot 3cdot 2}=\=sqrt{5cdot 3}cdot sqrt{3cdot 2cdot 2cdot 3cdot 5}cdot sqrt{2cdot 3cdot 2}end{array})

На простые множители разложили. Что дальше? А дальше пользуемся свойством умножение корней и записываем все под одним знаком корня:

( displaystyle   begin{array}{l}sqrt{5cdot 3cdot 3cdot 2cdot 2cdot 3cdot 5cdot 2cdot 3cdot 2}=sqrt{5cdot 5cdot 3cdot 3cdot 3cdot 3cdot 2cdot 2cdot 2cdot 2}=\=sqrt{25}cdot sqrt{81}cdot sqrt{16}=5cdot 9cdot 4=180end{array})

Вот и все, не так все и страшно, правда?

( displaystyle   sqrt{15}cdot sqrt{54}cdot sqrt{10}=?)

Получилось ( displaystyle   90)? Молодец, все верно!

А теперь попробуй вот такой пример решить:

( displaystyle   sqrt{4225}=?)

А пример-то – крепкий орешек, так сходу и не разберешься, как к нему подступиться. Но нам он, конечно, по зубам.

Читается: квадратный корень из (a).

Число (a) называется подкоренным числом.

Обрати внимание!

Квадратный корень из отрицательных чисел не существует.

Например,

−16

 не имеет смысла, т. к. нет такого действительного числа (a), которое в квадрате равно отрицательному числу:

a2≠−16

.

Чтобы найти квадратный корень из числа, необходимо хорошо знать квадраты чисел.

Часто используемые квадраты целых чисел:

(1) (2 ) (3) (4) (5) (6) (7) (8)

(9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (25)
(1 ) (4) (9) (16) (25) (36) (49) (64) (81) (100) (121) (144) (169) (196) (225) (256) (289) (324) (361) (400) (625)

Значит,

81=9;121=11;361=19и т. д.

Если подкоренное число — десятичная дробь, то необходимо обращать внимание на количество цифр после запятой:

0,09¯=0,3¯,т.к.0,32=0,3⋅0,3=0,09;0,0016¯=0,04¯;0,009=? 

Устно вычислить невозможно, т. к. результатом является бесконечная десятичная дробь.

Если подкоренное число заканчивается нулями, то необходимо обращать внимание на их количество:

400¯=20¯;1210000¯=1100¯;9000¯=?

Устно вычислить невозможно, т. к. результатом является бесконечная десятичная дробь (проверь с помощью калькулятора).

Если выражение

a

 имеет смысл, то

a≥0иa2=a

.

82=8;162=16

, нерационально сначала извлекать корень из (16), а затем результат возводить в квадрат.

Благодаря прочтению этой статьи вы научитесь:

  1. Извлекать корни из разных чисел;
  2. Решать разнообразные задания по этой тематике;
  3. Применять удобные таблицы на практике.

А также пополните свой мозг новыми знаниями, что всегда хорошо и полезно! Приятным бонусом для вас будут задания для отработки материала с ответами, которые вы сможете найти в конце этой статьи. Что значит понятие: «Извлечение корня из числа»?

Определение

Извлечение корня из числа — это нахождение значения корня, т.е. действие, обратное возведению в степень.

Числа b и a равны, ведь при извлечении корня n-ной степени одного из чисел, мы, соответственно, находим и второе.

  • n — натуральное число, являющиеся степенью корня.
  • a — подкоренное значение.

Интересно

При помощи разложения функции в ряд можно показать, что сумма всех натуральных чисел равна:

1/12[18]

Когда следует извлекать корень? Если вы видите, что a можно представить в виде n-ной степени какого-либо числа b, то корень a можно извлечь.

Определение

Квадратный корень из числа — это неизвестное число, которое дает это же число при возведении его в квадрат.

Пример извлечения корня:

√25=5×5 — из этого становится ясно, что квадратный корень числа равен 5.

В обратной ситуации, когда нельзя представить корень n-ной степени из числа a, в виде n-ной степени числа b, корень не извлекается или находится лишь приближенное значение этого корня.

Пример:

√6≈√2,44949

Для этого используют различные виды решений, начиная с калькулятора, заканчивая формулами. Калькулятор хоть и посчитает все вместо нас, но не всегда мы можем его применить. Поэтому важно знать другие варианты нахождения приближенного значения корня.

Способы извлечения корня

Для того, чтобы найти значение корня, существуют такие способы извлечения корня, как:

  1. Применение различных таблиц.
  2. Разложение чисел или выражений на простые множители.
  3. Извлечение корней из дробных чисел.
  4. Извлечение отрицательного корня.
  5. Поразрядное нахождение значения корня.

Они основываются на свойствах корней. Далее рассмотрим таблицы, которые могут помочь в процессе извлечения корней.

Квадраты натуральных чисел

Основной является таблица квадратов натуральных чисел:

0 1 2 3 4 5 6 7 8 9
0 0 1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Она, пожалуй, самая распространенная среди школьников. Если в какой-то важный момент она вам необходима, но у вас отсутствует к ней доступ, можно воспользоваться несколькими хитростями:

  1. Чтобы быстро возвести в квадрат число, на конце которого 0, можно добавить к нему парочку нулей: 80×80=6400; 30×30=900. Т.е., первые цифры умножаем и дописываем два 0 к этому числу.
  2. Теперь возьмём какое-нибудь число так, чтобы вторая его цифра оканчивалась на 5. Так, например, число 75. Чтобы быстро возвести его в квадрат, прибавьте к первой цифре единицу, из чего получаются цифры 7 и 8.
  3. Умножаем их и приписываем в конец число 25 и получаем конечный результат в виде числа 5625.

Квадратные корни

Вторая таблица — это таблица квадратных корней:

√x 0 1 2 3 4 5 6 7 8 9
0 0 1 1,41421 1,73205 2 2,23607 2,44949 2,64575 2,82843 3
1 3,16228 3,31662 3,4641 3,60555 3,74166 3,87298 4 4,12311 4,24264 4,3589
2 4,47214 4,58258 4,69042 4,79583 4,89898 5 5,09902 5,19615 5,2915 5,38516
3 5,47723 5,56776 5,65685 5,74456 5,83095 5,91608 6 6,08276 6,16441 6,245
4 6,32456 6,40312 6,48074 6,55744 6,63325 6,7082 6,78233 6,85565 6,9282 7
5 7,07107 7,14143 7,2111 7,28011 7,34847 7,4162 7,48331 7,54983 7,61577 7,68115
6 7,74597 7,81025 7,87401 7,93725 8 8,06226 8,12404 8,18535 8,24621 8,30662
7 8,3666 8,42615 8,48528 8,544 8,60233 8,66025 8,7178 8,77496 8,83176 8,88819
8 8,94427 9 9,05539 9,11043 9,16515 9,21954 9,27362 9,32738 9,38083 9,43398
9 9,48683 9,53939 9,59166 9,64365 9,69536 9,74679 9,79796 9,84886 9,89949 9,94987

Числа в кубе

И, конечно же, третья — таблица кубов, при помощи которой осуществляется извлечение кубического корня.

0 1 2 3 4 5 6 7 8 9
0 0 1 8 27 64 125 216 343 512 729
1 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859
2 8000 9261 10648 12167 13824 15625 17576 19683 21952 24389
3 27000 29791 32768 35937 39304 42875 46656 50653 54872 59319
4 64000 68921 74088 79507 85184 91125 97336 103823 110592 117649
5 125000 132651 140608 148877 157464 166375 175716 185193 195112 205379
6 216000 226981 238328 250047 262144 274625 287496 300763 314432 328509
7 343000 357911 373248 389017 405224 421875 438976 456533 474552 493039
8 512000 531441 551368 571787 592704 614125 636056 658503 681472 704969
9 729000 753571 778688 804357 830584 857375 884736 912673 941192 970299
Эти числа возводятся в третью степень.

Интересно

Название «Куб» приобрелось из-за того, что такая операция проводится для нахождения объема куба. Т.е., для этого нужно возвести длину ребра куба в третью степень.

Такие таблицы достаточно просты в использовании. Слева — десятки, а справа —  единицы. С их помощью можно быстро и легко извлечь корень числа от 0 до 99. Это был один из методов извлечения корней, как мне кажется, самый простой после вычислительного средства — калькулятора, но, зачастую, мы не всегда можем им воспользоваться, как говорилось ранее. Так давайте же перейдем к другим интересным и сложным на первый взгляд вариантам решения.

Разложение подкоренного числа на простые множители

Двигаясь от наиболее удобного и быстрого способа к более сложному, давайте разберемся во втором из них — разложение подкоренного числа на простые множители.

Этот метод состоит в том, чтобы представить какое-либо число в виде степени с нужным нам показателем, из чего мы можем получить значение этого корня.

Пример 1:

Возьмём число 196. Для извлечения его квадратного корня, разложим это число на простые множители: √196=2×2×7×7=2²×7²

Теперь делаем следующие действия: 2×7=14.

Ответ: √196=14.

Объяснение:

Множители находятся так: 196 делим на 2, а полученное число 98 мы тоже делим на 2. Делим до тех пор, пока деление станет невозможным. Так, число 49 нельзя поделить пополам, поэтому мы действуем методом подбора. Находим такое число, которое делится. В данном случае — это 7. Два числа, что у нас получились (2 и 7), мы умножаем друг на друга, но уже без степени и получаем число 14, что есть извлечённый корень из числа 196.

Пример 2:

Для того, чтобы лучше понять, как раскладывать на множители, приведем ещё одно число и перейдем к действиям. Деление 441 на 2 невозможно, поэтому подбираем число. Оно делится на 3 два раза. Опять выходит число 49, которое мы делим 2 раза на 7. Из этого следует: √441=3×3×7×7=3²×7²

3×7=21. Значит, ответ: √441=21.

Объяснение:

3 мы умножили на 7, так как это два числа, имеющих 2 степень. Будь у одного из них 4 степень, например: 3⁴×7² — нужно было бы сделать так: 3×3×7. Проще сказать, что мы сокращаем степени ⁴ и ².

Интересно

Подкоренные числа, разложенные на простые множители, могут иметь лишь чётную степень.

Извлечение корней из дробных чисел

Перед тем, как начать вычисления, убедитесь, что дробное число представлено в виде обыкновенной дроби.

Перейдем к свойству корня из частного:

[sqrt[n]{frac{a}{b}}=frac{sqrt[n]{a}}{sqrt[n]{b}}]

Далее нужно воспользоваться правилом извлечения корня из дроби, которое гласит: корень из дроби равен от деления корня числителя на корень знаменателя.

Пример 1:

Давайте возьмем любую десятичную дробь и на её примере посмотрим, как нужно извлекать корень.

Так, например, найдем кубический корень из 373,248.

Первый ход — это представление десятичной дроби в виде обыкновенной:

³√373248/³√1000. После этого найдем кубический корень в числе и знаменателе:

³√373248=2×2×2×2×2×2×2×2×2×3×3×3×3×3×3=2⁹×3⁶=72³

Эти действия происходят как с квадратными корнями, но здесь уже мы считаем числа 2 и 3 не по двойке, а тройке, т.е. 2⁹=2×2×2, а 3⁶=3×3. Или же сокращаем ⁹ и ⁶.

Проверим таким образом: из 9 вычитаем тройки до тех пор, пока не придем к 0: 9-3-3-3 – это значит, что двоек у нас будет именно 3. Так и с 3⁶. Если от 6 отнять 3 два раза, то будет 0. Выходит, что троек у нас именно две.

А 1000=10³.

Получается, ³√373248/³√1000=72/10=7,2.

Извлечение отрицательного корня

Существуют вещественные числа, из которых невозможно извлечь корень, т.е. решения нет. А вот из комплексных чисел можно извлекать корень. Для начала узнаем, что это за числа.

Определение

Вещественные (действительные) числа— это рациональные и иррациональные числа, которые можно записать в форме конечной или бесконечной десятичной дроби.

Комплексные числа — это выражение, в котором есть:

  • вещественные числа a и b;
  • i — мнимая единица.

Итак, чтобы извлечь корень из отрицательного числа, нужно помнить, что если знаменатель является нечётным, то число под знаком корня может оказаться отрицательным.

Далее, чтобы провести эту операцию с отрицательным числом, перейдем к следующим действиям:

  1. Извлекаем корень из противоположного ему положительного числа.
  2. Ставим перед полученным числом знак минус.

Пример 1:

1. Преобразуем выражение ⁵√-12 640/32 так, чтобы вместо отрицательного числа под корнем оказалось положительное:

⁵√-12 640/32 = -⁵√12 640/32

2. Избавимся от смешанного числа, заменив его обыкновенной дробью:

 -⁵√12 640/32= -⁵√1024/32

3. С помощью правила извлечения корней из обыкновенной дроби, начнем извлекать:

-⁵√1024/32 = — ⁵√1024/⁵√32.

4. Теперь нужно вычислить корни в числителе и знаменателе:

— ⁵√1024/⁵√32 = — ⁵√4⁵/⁵√2⁵ = — 4/2 = -2.

Нет времени решать самому?

Наши эксперты помогут!

Поразрядное нахождение значения корня

Мы разобрали несколько методов, которые вы можете выбрать на своё усмотрение. Однако, есть еще один, который может понадобиться в таких ситуациях, когда нужно знать полное значение корня, а число, находящееся под корнем нельзя представить в виде n-ной степени определенного числа.

Для таких случаев существует алгоритм поразрядного нахождения значения корня, который нужно использовать, чтобы получить нужное количество значений определяемого числа.

Пример 1:

Итак, чтобы в этом разобраться, найдем значение квадратного корня из 7:

1. Находим значение разряда единиц, перебирая значения 0, 1, 2, …, 9, в это же время вычисляя их во 2 степени до нужного значения, которое больше подкоренного числа 7. Значение ряда единиц равняется 2 (потому как 2² < 7, а 2³ > 7).

2. Следующий на очереди — разряд десятых. Здесь мы будем возводить в квадрат числа: 2.0, 2.1, 2.2, …, 2.9, сравнивая результат с нужным нам числом 7. Так как 2.6² < 7, а 2.7² > 7, то значение десятых равняется 6.

3. Значение сотых. По аналогии находим приближенное значение к 7.

2.64² = 6,9696 подходит нам, так как 2.65²=7.0225, а это больше 7. Действуя таким же образом, можно и дальше находить значение √7 ≈ 2.64.

Теперь, когда мы разобрались с извлечением корней, перейдем к практике. Специально для вас составлены задания с ответами, чтобы вы попробовали воспользоваться приобретенными знаниями. Решайте без таблиц и калькулятора.

Задания для отработки материала

1 задание

а)√324

б)√900

в)√1369

2 задание

а)³√531,441

б)³√166,375

3 задание

а) ⁵√-14 2471/1024

б) ⁵√-5 1182/3125

4 задание

а)Найдите квадратный корень из 3.

б)Найдите квадратный корень из 5.

в)Найдите квадратный корень из 9.

Ответы с решением

1 задание

а)√324

1)2×2×3×3×3×3=2²×3⁴=√324, а чтобы извлечь, мы умножаем:

2)2×3×3=18. Получается, √324=18.

б)√900

1)2×2×3×3×5×5=2²×3²×5²=√900.

Извлекаем:

2)2×3×5=30. Мы получили √900=30.

в)√1369

1)37×37=37²=√1369.

А здесь мы оставляем 37, так как это единственное число в квадрате. Конечным ответом будет: √1369=37.

2 задание

а)³√531441.

1)3×3×3×3×3×3×3×3×3×3×3×3=3¹²=³√531441.

Разложили на простые множители, а теперь найдем квадратный корень.

2)3¹² это 3×3×3×3, т.к. 3 у нас в 12 степени. Это можно проверить, отняв из 12 столько троек, чтобы вышел 0: 12-3-3-3-3. Так что, 3⁴=81; ³√531441=81.

3)1000=10³.  

4)³√531441/³√1000=81/10=8,1.

б)³√166,375.

1) 5×5×5×11×11×11=5³×11³=³√166375.

2)5³×11³=55. Так как числа в кубе – они в степени 1.

3) 1000=10³.  

4)³√166375/³√1000=55/10=5,5.

3 задание

а)

1) ⁵√-14 2471/1024 = -⁵√14 2471/1024.

2) -⁵√14 2471/1024= -⁵√16801/1024.

3) -⁵√16801/1024 = — ⁵√16801/⁵√1024.

4) ⁵√16801/⁵√1024 = — ⁵√6⁵/⁵√4⁵ = — 6/4 = — 1,5.

б)

1) ⁵√-5 1182/3125 = -⁵√5 1182/3125.

2) -⁵√5 1182/3125= -⁵√16807/3125.

3) -⁵√16807/3125 = — ⁵√16807/⁵√3125.

4) ⁵√16807/⁵√3125 = — ⁵√7⁵/⁵√5⁵ = — 7/5 = — 1,4.

4 задание

а)√3≈1,73.

б√5≈2,23.

в)√8≈2,82.

Из этой статьи вы узнаете:

  • что такое «извлечение корня»;
  • в каких случаях он извлекается;
  • принципы нахождения значения корня;
  • основные способы извлечения корня из натуральных и дробных чисел.

Что такое «извлечение корня»

Для начала введем определение «извлечение корня».

Определение 1

Извлечение корня — процесс нахождения значения корня.

При извлечении корня n-ной степени из числа a, мы находим число b, n-ная степень которого равняется a. Если мы нашли такое число b, можно утверждать, что корень извлечен.

Замечание 1

Выражения «извлечение корня» и «нахождение значения корня» равнозначны.

В каких случаях извлекается корень?

Определение 2

Корень n-ной степени можно извлечь из числа a точно в случае, если a можно представить в виде n-ной степени некоторого числа b. 

Пример 1

4=2×2, следовательно, из числа 4 можно точно извлечь квадратный корень, который равен 2

Определение 3

Когда корень n-ной степени из числа a невозможно представить в виде n-ной степени числа b, то такой корень не извлекается, либо извлекается только приближенное значение корня с точностью до любого десятичного разряда. 

Пример 2

2≈1,4142.

Принципы нахождения значения корня и способы их извлечения

  • Использование таблицы квадратов, таблицы кубов и т.д.
  • Разложение подкоренного выражения (числа) на простые множители
  • Извлечение корней из дробных чисел
  • Извлечение корня из отрицательного числа
  • Поразрядное нахождение значения корня

Необходимо понять, по каким принципам находится значение корней, и каким образом они извлекаются.

Определение 4

Главный принцип нахождения значения корней — основываться на свойствах корней, в том числе на равенстве: bnn=b, которое является справедливым для любого неотрицательного числа b.

Начать следует с наиболее простого и очевидного способа: таблицы квадратов, кубов и т.д.

Когда таблицы под руками нет, вам поможет способ разложения подкоренного числа на простые множители (способ незатейливый).

Стоит уделить внимание извлечению корня из отрицательного числа, что является возможным для корней с нечетными показателями.

Изучим, как извлекать корни из дробных чисел, в том числе из смешанных чисел, обыкновенных и десятичных дробей.

И потихоньку рассмотрим способ поразрядного нахождения значения корня — наиболее сложного и многоступенчатого.

Использование таблицы квадратов, кубов и т.д.

Таблица квадратов включает в себя все числа от 0 до 99 и состоит из 2 зон: в первой зоне можно составить любое число до 99 с помощью вертикального столбца с десятками и горизонтальной строки с единицами, во второй зоне содержатся все квадраты образуемых чисел.

Таблица квадратов

Таблица квадратов единицы
0 1 2 3 4 5 6 7 8 9
десятки 0 0 1 4 9 16 25 36 49 64 81
1 100 121 144 169 196 225 256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681 1764 1849 1936 2025 2116 2209 2304 2041
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Существуют также таблицы кубов, четвертой степени и т.д., которые созданы по принципу, аналогичному таблице квадратов.

Таблица кубов

Таблица кубов   единицы
0 1 2 3 4 5 6 7 8 9
десятки 0 0 1 8 27 64 125 216 343 512 729
1 1000 1 331 1 728 2 197 2 744 3 375 4 096 4 913 5 832 6 859
2 8000 9 261 10 648 12 167 13 824 15 625 17 576 19 683 21 952 24 389
3 27000 29 791 32 768 35 937 39 304 42 875 46 656 50 653 54 872 59 319
4 64000 68 921 74 088 79 507 85 184 91 125 97 336 103 823 110 592 117 649
5 125000 132 651 140 608 148 877 157 464 166 375 175 616 185 193 195 112 205 379
6 216000 226 981 238 328 250 047 262 144 274 625 287 496 300 763 314 432 328 509
7 343000 357 911 373 248 389 017 405 224 421 875 438 976 456 533 474 552 493 039
8 512000 531 441 551 368 571 787 592 704 614 125 636 056 658 503 681 472 704 969
  729000 753 571 778 688 804 357 830 584 857 375 884 736 912 673 941 192 970 299

Принцип функционирования таких таблиц прост, однако их часто нет под рукой, что значительно усложняет процесс извлечение корня, поэтому необходимо владеть минимум несколькими способами извлечения корней.

Разложение подкоренного числа на простые множители 

Наиболее удобный способ нахождения значения корня после таблицы квадратов и кубов.

Определение 5

Способ разложения подкоренного числа на простые множители подразумевает под собой представление числа в виде степени с необходимым показателем, что дает нам возможность получить значение корня.

Пример 3

Извлечем квадратный корень из 144.

Разложим 144 на простые множители:

Таким образом: 144=2×2×2×2×3×3=(2×2)2×32=(2×2×3)2=122. Следовательно, 144=122=12.

Также при использовании свойств степени и корней можно записать преобразование немного по-другому:

144=2×2×2×2×3×3=24×32=24×32=22×3=12

144=12 – окончательный ответ.

Извлечение корней из дробных чисел

Запоминаем: любое дробное число должно быть записано в виде обыкновенной дроби. 

Определение 6

Следуя свойству корня из частного, справедливым является следующее равенство:

pqn=pnqn. Исходя из этого равенства, необходимо воспользоваться правилом извлечения корня из дроби: корень из дроби равен от деления корня числителя на корень знаменателя.

Пример 4

Рассмотрим пример извлечения корня из десятичной дроби, поскольку извлечь корень из обыкновенной дроби можно с помощью таблицы.

Необходимо извлечь кубический корень из 474,552. Первым делом, представим десятичную дробь в виде обыкновенной: 474,552 = 474552/1000. Из этого следует: 47455210003=474552310003. Затем можно приступить к процессу извлечения кубических корней в числителе и знаменателе:

474552=2×2×2×3×3×3×13×13×13=(2×3×13)3=783 и 1000=103, то

4745523=7833=78 и 10003=1033=10.

Завершаем вычисления: 474552310003=7810=7,8.

Извлечение корня из отрицательных чисел

Если знаменатель является нечетным числом, то число под знаком корня может оказаться отрицательным. Из этого следует: для отрицательного числа -a и нечетного показателя корня 2n-1 справедливо равенство:

-a2×n-1=-a2×n-1

Определение 7

Правило извлечения нечетной степени из отрицательных чисел: чтобы извлечь корень из отрицательного числа необходимо извлечь корень из противоположного ему положительного числа и поставить перед ним знак минус.

Пример 5

-122092435. Для начала необходимо преобразовать выражение, чтобы под знаком корня оказалось положительно число:

-122092435=12209243-5​​​​​​

Затем следует заменить смешанное число обыкновенной дробью:

12209243-5=3125243-5

Пользуясь правилом извлечения корней из обыкновенной дроби, извлекаем:

3125243-5=-312552435

Вычисляем корни в числителе и знаменателе:

-312552435=-555355=-53=-123

Краткая запись решения:

-122092435=12209243-5=3125243-5=-312552435=-555355=-53=-123.

Ответ: -122092435=-123.

Поразрядное нахождение значения корня

Бывают случаи, когда под корнем находится число, которое не получается представить в виде n-ной степени некоторого числа. Но необходимо знать значение корня с точностью до некоторого знака. 

В таком случае необходимо воспользоваться алгоритмом поразрядного нахождения значения корня, с помощью которого можно получить достаточное количество значений искомого числа.

Пример 6

Как это происходит, разберем на примере извлечения квадратного корня из 5.

Сперва необходимо найти значение разряда единиц. Для этого начнем перебирать значения 0,1,2,…,9, вычисляя при этом 02, 12, …, 92 до необходимого значения, которое больше, чем подкоренное число 5. Все это удобно представить в виде таблицы:

Возможное значение корня 0 1 2 3
Это значение в степени 0 1 4 9

Значение ряда единиц равняется 2 (так как 22<5, а 23>5). Переходим в разряду десятых — будем возводить в квадрат числа 2,0, 2,1, 2,2,…,2,9, , сравнивая полученные значения с числом 5.

Возможное значение корня 2,0 2,1 2,2 2,3
Это значение в степени 4 4,41 4,84 5,29

Поскольку 2,22<5, а 2,32>5, то значение десятых равняется 2. Переходим к нахождению значения сотых:

Возможное значение корня 2.20 2,21 2,22 2,23 2,24
Это значение в степени 4,84 4,8841 4,8294 4,9729 5,0176

Таким образом, найдено значение корня из пяти — 2,23. Можно находить значения корня дальше: 

2,236, 2,2360, 2, 23606, 2,236067,…

Итак, мы изучили несколько наиболее распространенных способов нахождения значения корня, воспользоваться которыми можно в любой ситуации.

Добавить комментарий