Здравствуйте, сегодня второй урок по языку программирования Паскаль в котором мы поговорим о переменных.
Урок № 2 Переменные и типы данных.
Что такое переменные? Мы можем представить себе для простоты понимания переменную как ящик, в который мы помещаем какие-то вещи. В нашем случае, случае языка программирования предметы могут быть число, строки, символы.
Переменные различаются по типам. Есть типы для чисел, есть типы для строк, для больших чисел, для маленьких чисел, для чисел с запятыми т. е. нецелых чисел и целых чисел соответственно. Типы эти определены не просто так они нужны для того что бы компилятор понимал какие мы можем действия применить. Так как с числами применяются одни действия, а со строками совсем другие.
Давайте познакомимся какие типы переменных существуют в паскале, и как объявлять переменные.
В языке Паскаль объявление переменных делается до того, как начинается программа. Существует отдельный блок var. В нем описываются переменные. Делается это таким образом. Мы пишем имя переменной, например, а ставим : и после этого пишем тип.
Вот типы данных Паскаль.
Слева идентификатор или название типа непосредственно который мы будем писать в программе. Дальше длина, байт то место, которое занимает эта переменная в памяти компьютера. Если говорить техническими понятиями, то переменная это именованная область памяти компьютера, в котором записан. Для нас это определение достаточно глубокое и не особо нужное.
Дальше указан диапазон (множество) значений. Т. е. для типа integer это целый тип, есть также вещественные типы, логические типы и символьные типы.
В табличке можно увидеть диапазон значений которое может принимать эта переменная. Для каждого диапазона чисел если мы знаем заранее сколько приблизительно каких чисел у нас могут быть, то мы можем определить тип, который нам нужно конкретно под эту задачу, что бы он не ел много памяти и в тоже время охватывал диапазон значений, которые у нас могут быть теоретически в этой переменной использоваться.
Вещественные типы это для не целых чисел т. е. с запятой или точкой.
Логический тип может принимать только два значения true и false.
Символьный тип все символы кодировки АСКИ.
Начнем с простого.
Создадим целую переменную a: integer; и b: integer;
Можно записать в 2 строки:
- a: integer;
- b: integer;
Можно сократить записать.
- a, b: integer;
Присвоим значение переменным. Присвоение в Паскаль пишется вот таким значком :=.
- a :=12;
- b :=3;
И давайте выведем на экран переменную, если вы помните с прошлого урока вывод на экран у нас делается специальная функция writeln( );
- writeln(a);
- writeln(b);
Давайте попробуем еще одну штучку. В скобках параметрах функции writeln мы можем указать не просто переменную или какой-нибудь текст, а можем указать выражение (а+в) и программа подсчитает и выведет на экран.
Давайте попробуем не много украсить нашу программу. Заодно посмотрим на функцию вывода, как еще можно использовать её. Мы можем кроме того, что просто выводим значение переменной где просто текст совместить эти две вещи. Ставим кавычки ‘ ‘ потом запятую , .В кавычках пишем любой текст который нам нужно. Через запятую мы можем перечислять какие-то разные значения. И тоже самое сделаем для переменной b. Также выведем сумму (а+в)
- writeln(‘Значение переменной а = ‘, a, ‘;’);
- writeln(‘Значение переменной b = ‘, b, ‘;’);
- writeln(‘Значение суммы a+b = ‘, a+b,);
Вот такие не хитрые способы вывода нескольких аргументов этой функции. Следующий урок будет посвящен константам и вводу данных. Так же еще поговорим про переменные и их типы.
Переменная — это именованная область памяти для хранения данных, которые могут изменяться в процессе исполнения программы.
Переменная характеризуется:
- Именем («обозначением ячейки памяти»)
- Значением (данными, содержащимися в переменной в конкретный момент времени)
- Типом (определяющим: а) какие значения может принимать переменная; б) какие операции можно производить с этими значениями; в) как данные представлены в памяти компьютера)
Имена и типы переменных указываются в разделе описаний и не могут изменяться в процессе выполнения программы.
Простые типы
Дискретные (можно перечислить возможные значения):
- целые (integer, longint)
- символьный (char)
- логический (boolean)
- диапазон (часть значений стандартного дискретного типа, например, 1..100)
- перечисляемый (явно перечислены все допустмые значения)
Вещественные (real, double, extended) — служат для представления действительных чисел с ограниченной точностью.
Структурированные типы
- Массив (фиксированное количество данных одного типа)
- Строка
- Запись (связанные данные, в общем случае, разных типов)
- Множество
- Файл (данные одного типа, хранящиеся на внешнем носителе)
var
имена переменных : тип;
...
имена переменных : тип;
Например:
var
a, b, c: real;
i, n: integer;
f: boolean;
Для обмена информацией между компьютером, исполняющим программу, и пользователем служат операторы ввода и вывода (точнее, операторы вызова процедур ввода и вывода).
Оператор ввода нужен, чтобы компьютер получил исходные данные. В программе на Pascal он записывается следующим образом:
или
При выполнении оператора программа будет приостановлена, пока пользователь не наберет на клавиатуре значения и не нажмет клавишу «Enter». Затем введенные значения будут помещены в переменные, указанные как параметры процедуры ввода. Например, при выполнении оператора
компьютер будет ожидать ввода двух значений, которые затем будут помещены в переменные a и b.
Операторы read и readln отличаются тем, что во втором случае после ввода данных будет переведена строка, т.е. последующие сообщения компьютера будут выводиться с новой строки.
Оператор вывода нужен, чтобы компьютер показал результаты работы программы или какие-либо вспомогательные сообщения. В программе на Pascal он записывается следующим образом:
или
При выполнении оператора вычисляются значения выражений, после чего эти значения выводятся на экран монитора. Например, при выполнении оператора
на экран будет выведена сумма переменных a и b, а также значение переменной c. Если нужно вывести на экран какое-либо текстовое сообщение, его нужно заключить в апострофы (одиночные кавычки):
Операторы write и writeln отличаются тем, что во втором случае после вывода данных будет переведена строка, т.е. последующие сообщения компьютера будут выводиться с новой строки.
Для того чтобы переменная получила или изменила свое значение, используется оператор присваивания. В Pascal он записывается следующим образом:
Тип переменной должен совпадать с типом выражения либо быть «более широким» совместимым (т.е. вещественной переменной можно присвоить значение целого выражения; строковой переменной можно присвоить значение символьного выражения).
Компьютер сначала вычисляет значение выражения в правой части оператора присваивания, затем помещает его в переменную, указанную слева от символа присваивания «:=».
Например, при выполнении оператора
переменная x получит значение суммы переменных a и b. При выполнении оператора
значение переменной n увеличится на единицу.
Решение задач на выполнение алгоритма
Задача №1 Определите значение переменной а после выполнения фрагмента алгоритма:
Примечание: знаком * обозначено умножение,
знаком := обозначена операция присваивания.
Решение задачи №1 Последовательно выпишем значения переменных в ходе цикла, пока переменная b не станет равной 1 .
Шаг 1. | b=b-1=3-1=2 a=a*9=1*9=9 |
Шаг 2. | b=b-1=2-1=1 a=a*9=9*9=81 |
Так как после второго шага переменная b равна 1, то по условию «b=1», цикл завершён.
Ответ: Переменная а равна 81.
Задача №2
Примечание: знаком * обозначено умножение,
знаком := обозначена операция присваивания.
Решение задачи №2 Последовательно выпишем значения переменных в ходе цикла, пока переменная b не станет равной 1 .
Шаг 1. | b=b-2=7-2=5 a=a*8=1*8=8 |
Шаг 2. | b=b-2=5-2=3 a=a*8=8*8=64 |
Шаг 3. | b=b-2=3-2=1 а=a*8=64*8=512 |
Так как после второго шага переменная b равна 1, то по условию «b=1», цикл завершён.
Ответ: Переменная а равна 512.
Задача №3
Решение задачи №3 Последовательно выпишем значения переменных в ходе цикла, пока не выполнится следующее условие «а<9» .
Шаг 1. | Проверяем условие «а<b», условия не выполняется (идем по стрелки «нет»). b=b+2=1+2=3 a=a+1=1+1=2 |
Шаг 2. | Проверяем условие «а<b», условия выполняется (идем по стрелки «да»). b=b+2=3+2=5 a=a+3=2+3=5 |
Шаг 3. | Проверяем условие «а<b», условия не выполняется (идем по стрелки «нет»). b=b+2=5+2=7 a=a+1=5+1=6 |
Шаг 4. | Проверяем условие «а<b», условия выполняется (идем по стрелки «да»). b=b+2=7+2=9 a=a+3=6+3=9 |
Так как после четвертого шага переменная а равна 9, то по условию «а<9» , цикл завершён.
Ответ: Переменная b равна 9.
Задача №4 Определите значение переменной b после выполнения фрагмента алгоритма:
Решение задачи №4 Последовательно выпишем значения переменных в ходе цикла, пока не выполнится следующее условие «а<9» .
Шаг 1. | Проверяем условие «а<b», условия не выполняется (идем по стрелки «нет»). b=b*2=1*2=2 a=a+2=1+2=3 |
Шаг 2. | Проверяем условие «а<b», условия не выполняется (идем по стрелки «нет»). b=b*2=2*2=4 a=a+2=3+2=5 |
Шаг 3. | Проверяем условие «а<b», условия не выполняется (идем по стрелки «нет»). b=b*2=4*2=8 a=a+2=5+2=7 |
Шаг 4. | Проверяем условие «а<b», условия выполняется (идем по стрелки «да»). b=b+2=8+2=10 a=a+2=7+2=9 |
Так как после четвертого шага переменная а равна 9, то по условию «а<9» , цикл завершён.
Ответ: Переменная b равна 10.
Задача №5 Определите значение переменной b после выполнения фрагмента алгоритма:
Решение задачи №5 Последовательно выпишем значения переменных в ходе цикла, пока не выполнится следующее условие «а=1» .
Шаг 1. | a=a/2=256/2=128 b=b+a=0+128=128 |
Шаг 2. | a=a/2=128/2=64 b=b+a=128+64=192 |
Шаг 3. | a=a/2=64/2=32 b=b+a=192+32=224 |
Шаг 4. | a=a/2=32/2=16 b=b+a=224+16=240 |
Шаг 5. | a=a/2=16/2=8 b=b+a=240+8=248 |
Шаг 6. | a=a/2=8/2=4 b=b+a=248+4=252 |
Шаг 7. | a=a/2=4/2=2 b=b+a=252+2=254 |
Шаг 8. | a=a/2=2/2=1 b=b+a=254+1=255 |
Так как после восьмого шага переменная а равна 1, то по условию «а=1» , цикл завершён.
Ответ: Переменная b равна 255.
Задачи для самостоятельного решения
Задача №6 Определите значение переменной b после выполнения фрагмента алгоритма:
Задача №7 Определите значение переменной a после выполнения фрагмента алгоритма:
Анализ результата исполнения алгоритма
Термин «алгоритм», впервые употребленный в современном значении. Лейбницем (1646–1716), является латинизированной формой имени великого персидского математика Мухаммеда бен Муссы аль-Хорезми (ок. 783 – ок. 850). Его книга «Об индийском счете» в XII в. была переведена на латинский язык и пользовалась широкой популярностью не одно столетие. Имя автора европейцы произносили как Алгоритми (Algorithmi), и со временем так стали называть в Европе всю систему десятичной арифметики.
Научное определение алгоритма дал А. Чёрч в 1930 году. В наше время понятие алгоритма является одним из основополагающих понятий вычислительной математики и информатики.
Алгоритм — это точное и полное описание последовательности действий над заданными объектами, позволяющее получить конечный результат.
Можно сказать, что алгоритм решения какой-либо задачи — это последовательность шагов реализации (или нахождения) этого решения, а процесс построения алгоритма (алгоритмизация) — разложение задачи на элементарные действия или операции.
Область математики, известная как теория алгоритмов, посвящена исследованию свойств, способов записи, области применения различных алгоритмов, а также созданию новых алгоритмов. Теория алгоритмов находит широкое применение в различных областях деятельности человека — в технике, производстве, медицине, образовании и т. д. Появление компьютера позволило решать чрезвычайно сложные, трудоемкие задачи.
Определение алгоритма для применения в области информатики нуждается в некотором уточнении. Во-первых, решение задач в информатике всегда связано с преобразованием информации, а значит, исходными данными и результатом работы алгоритма должна быть информация. Это может быть представлено в виде схемы.
Во-вторых, алгоритмы в информатике предназначены для реализации в виде компьютерных программ или для создания некоторой компьютерной технологии. Для выполнения алгоритма требуется конечный объем оперативной памяти и конечное время.
Основные требования, предъявляемые к алгоритмам:
Дискретность (прерывность): алгоритм должен представлять решение задачи в виде последовательности простых (или ранее определенных) этапов (шагов). Каждый шаг алгоритма формулируется в виде инструкций (команд).
Определенность (детерминированность; лат. determinate — определенность, точность): шаги (операции) алгоритма должны допускать однозначную трактовку и быть понятными для исполнителя алгоритма. Это свойство указывает на то, что любое действие в алгоритме должно быть строго определено и описано для каждого случая.
Массовость: алгоритм должен давать решение не только для конкретного набора значений, а для целого класса задач, который определяется диапазоном возможных исходных данных (область применимости алгоритма). Свойство массовости подразумевает использование переменных в качестве исходных данных алгоритма.
Результативность: алгоритм должен давать конкретный результат, т. е. должны быть рассмотрены все возможные ситуации и для каждой из них получен результат. Под результатом может пониматься и сообщение о том, что задача решения не имеет.
Конечность: количество шагов алгоритма должно быть конечным.
Эффективность: количество шагов и сами шаги алгоритма должны быть такими, чтобы решение могло быть найдено за конечное и, более того, приемлемое время.
Для оценки и сравнения алгоритмов существует много критериев. Чаще всего анализ алгоритма (или, как говорят, анализ сложности алгоритма) состоит в оценке временных затрат на решение задачи в зависимости от объема исходных данных. Используются также термины «временная сложность», «трудоемкость» алгоритма. Фактически эта оценка сводится к подсчету количества основных операций в алгоритме, поскольку каждая из них выполняется за заранее известное конечное время. Кроме временной сложности, должна оцениваться также емкостная сложность, т. е. увеличение затрат памяти в зависимости от размера исходных данных. Оценка сложности дает количественный критерий для сравнения алгоритмов, предназначенных для решения одной и той же задачи. Оптимальным (наилучшим) считается алгоритм, который невозможно значительно улучшить в плане временных и емкостных затрат.
Анализом сложности алгоритмов, исследованием классов задач, решаемых с помощью алгоритмов той или иной сложности, и многими другими теоретическими вопросами занимается специальная область информатики.
Алгоритмы можно представлять как некоторые структуры, состоящие из отдельных базовых элементов.
Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур:
- следование — образуется из последовательности действий, следующих одно за другим;
- ветвление (развилка) — обеспечивает в зависимости от результатов проверки условия (ДА или НЕТ) выбор одного из альтернативных путей алгоритма;
- цикл — обеспечивает многократное выполнение некоторой совокупности действий, которая называется телом цикла.
Для описания алгоритмов наиболее распространены следующие методы (языки):
Обычный язык. Изложение алгоритма ведется на обычном языке с разделением на последовательные шаги.
Блок-схемы. Графическое изображение алгоритма с помощью специальных значков-блоков.
Формальные алгоритмические языки (языки программирования). При записи алгоритмов используют строго определенный набор символов и составленных из них специальных зарезервированных слов. Имеют строгие правила построения языковых конструкций.
Псевдокод. Синтез алгоритмического и обычного языков. Элементы некоторого базового алгоритмического языка используются для строгой записи базовых структур алгоритма.
Словесный способ (запись на обычном языке) не имеет широкого распространения, т. к. таких описаний есть ряд недостатков:
- строго не формализуемы;
- достаточно многословны;
- могут допускать неоднозначность толкования отдельных предписаний;
- сложные задачи с анализом условий, с повторяющимися действиями трудно представляются в словесной или словесно-формульной форме.
Графический способ представления информации является более наглядным и компактным по сравнению со словесным. При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий. Такое графическое представление алгоритма называется блок-схемой. Определенному типу действия (ввод/вывод данных, проверка условия, вычисление выражения, начало и конец алгоритма и т. п.) соответствует определенная геометрическая фигура — блочный символ. Блоки соединяются между собой линиями переходов, которые определяют очередность выполнения действий.
Название символа | Графическое изображение | Комментарии |
Пуск/Останов (блоки начала и конца алгоритма) | Указание на начало или конец алгоритма | |
Ввод/Вывод данных (блоки ввода, вывода | Организация ввода/вывода в общем виде | |
Процесс (операторные блоки) | Выполнение вычислительного действия или последовательности действий (можно объединять в один блок), которые изменяют значение, форму представления или размещение данных | |
Условие (условный блок) | Выбор направления выполнения алгоритма. Если условие, записанное внутри ромба, выполняется, то управление передается по стрелке «да», в противном случае — по стрелке «нет». Таким образом, реализуется процесс изменения последовательности вычислений в зависимости от выполнения условия | |
Начало цикла с параметром | Используется для организации циклических конструкций с известным количеством итераций (повторений) и известным шагом изменения параметра цикла. Внутри блока для параметра цикла указываются через запятую его начальное значение, конечное значение и шаг изменения. Цикл, для которого неизвестно количество повторений, записывается с помощью условного и операторных блоков | |
Предопределенный процесс | Используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращения к библиотечным подпрограммам | |
Печать сообщений (документ) | Вывод результатов на печать |
При составлении блок-схемы необходимо проверять выполнение следующих условий:
- из каждого прямоугольника и параллелограмма (кроме конца алгоритма) должна выходить только одна стрелка;
- в каждый прямоугольник и параллелограмм (кроме начала алгоритма) должна входить хотя бы одна стрелка;
- в каждый ромб должна входить хотя бы одна стрелка, а выходить из него — две стрелки, помеченные словами «ДА» и «НЕТ».
Псевдокод занимает промежуточное положение между естественным языком и языками программирования. В псевдокоде не приняты строгие синтаксические правила для записи команд, что отличает формальные языки программирования. Однако в псевдокоде есть некоторые конструкции, которые присущи формальным языкам, что облегчает переход от записи алгоритма на псевдокоде к записи алгоритма на языке программирования. Псевдокоды бывают разные. Рассмотрим учебный (школьный) алгоритмический язык АЯ.
Алфавит учебного алгоритмического языка является открытым. В него могут быть введены любые понятные всем символы: русские и латинские буквы, знаки математических операций, знаки отношений, специальные знаки и т. д. Кроме алфавита, в алгоритмической нотации определяются служебные слова, которые являются неделимыми. Служебные слова обычно выделяются жирным шрифтом или подчеркиванием. К служебным словам относятся:
алг — заголовок алгоритма | нц — начало цикла | знач |
нач — начало алгоритма | кц — конец цикла | и |
кон — конец алгоритма | дано | или |
арг — аргумент | надо | не |
рез — результат | если | да |
цел — целый | то | нет |
сим — символьный | иначе | при |
лит — литерный | всё | выбор |
лог — логический | пока | утв |
вещ — вещественный | для | ввод |
таб — таблица | от | вывод |
длин — длина | до |
Общий вид записи алгоритма на псевдокоде:
алг — название алгоритма (аргументы и результаты)
дано — условие применимости алгоритма
надо — цель выполнения алгоритма
нач — описание промежуточных величин
последовательность команд (тело алгоритма)
Часть алгоритма от слова алг до слова нач называется заголовком, а часть, заключенная между словами нач и кон, — телом алгоритма (исполняемой частью алгоритма).
В предложении алг после названия алгоритма в круглых скобках указываются характеристики (арг, рез) и тип значения (цел, вещ, сим, лит или лог) всех входных (аргументы) и выходных (результаты) переменных. При описании массивов (таблиц) используется служебное слово таб, дополненное именем массива и граничными парами по каждому индексу элементов массива.
Команды учебного языка:
1. Оператор присваивания, который обозначается «:=» и служит для вычисления выражений, стоящих справа, и присваивания их значений переменным, указанным в левой части. Например, если переменная а имела значение 5, то после выполнения оператора присваивания а := а + 1, значение переменной а изменится на 6.
2. Операторы ввода/вывода:
ввод (список имен переменных)
вывод (список вывода)
Список вывода может содержать комментарии, которые заключаются в кавычки.
3. Оператор ветвления (с использованием команды если. то… иначе…всё; выбор);
4. Операторы цикла (с использованием команд для, пока, до).
Запись алгоритма на псевдокоде:
Здесь в предложениях дано и надо после знака «|» записаны комментарии. Комментарии можно помещать в конце любой строки, они существенно облегчают понимание алгоритма.
При записи алгоритма в словесной форме, в виде блок-схемы или на псевдокоде допускается произвольное изображение команд. Вместе с тем такая запись позволяет понять человеку суть дела и исполнить алгоритм. Однако алгоритм, предназначенный для исполнения на компьютере, должен быть записан на строго формализованном языке. Такой язык называется языком программирования, а запись алгоритма на этом языке — компьютерной программой.
Для решения одной и той же задачи можно предложить несколько алгоритмов. Алгоритмы составляются с ориентацией на определенного исполнителя алгоритма. У каждого исполнителя имеется свой конечный набор команд, которые для него понятны и исполняемы. Этот набор называется системой команд исполнителя. Пользуясь системой команд, исполнитель может выполнить алгоритм формально, не вникая в содержание поставленной задачи. От исполнителя требуется только строгое выполнение последовательности действий, предусмотренной алгоритмом. Таким образом, в общем случае алгоритм претерпевает изменения по стадиям:
- первая стадия — алгоритм должен быть представлен в форме, понятной человеку, который его разрабатывает;
- вторая стадия — алгоритм должен быть представлен в форме, понятной исполнителю алгоритма (вторая стадия может отсутствовать, если исполнять алгоритм будет сам разработчик).
Примеры решения задач
Пример 1. Исполнитель Утроитель может выполнить только две команды, которым присвоены номера:
Первая команда уменьшает число на 1, вторая — увеличивает его втрое.
Написать набор команд (не более пяти) получения из числа 3 числа 16. В ответе указать только номера команд.
Ответ: 13311
Пример 2. Имеется Исполнитель алгоритма, который может передвигаться по числовой оси.
Система команд Исполнителя алгоритма:
1. «Вперед N» (Исполнитель алгоритма делает шаг вперед на N единиц).
2. «Назад M» (Исполнитель алгоритма делает шаг назад на M единиц).
Переменные N и M могут принимать любые целые положительные значения. Известно, что Исполнитель алгоритма выполнил программу из 50 команд, в которой команд «Назад 2» на 12 больше, чем команд «Вперед 3». Других команд в программе не было. Какой одной командой можно заменить эту программу, чтобы Исполнитель алгоритма оказался в той же точке, что и после выполнения программы?
1. Найдем, сколько было команд «Вперед», а сколько «Назад». Учитывая, что общее количество команд равно 50 и что команд «Назад» на 12 больше, чем команд «Вперед». Получим уравнение: x + (x + 12) = 50, где x — количество команд «Вперед». Тогда общее количество команд «Вперед»: x = 19, а количество команд «Назад»: 19 + 12 = 31.
2. Будем вести отсчет от начала числовой оси. Выполнив 19 раз команду «Вперед 3», Исполнитель алгоритма оказался бы на отметке числовой оси 57 (19 * 3 = 57). После выполнения 31 раз команды «Назад 2» (31 * 2 = 62) он оказался бы на отметке –5 (57 – 62 = –5).
3. Все эти команды можно заменить одной — «Назад 5».
Ответ: команда«Назад 5».
Пример 3. Черепашка является исполнителем для создания графических объектов на рабочем поле. При движении Черепашка оставляет след в виде линии. Черепашка может исполнять следующие команды:
Название команды | Параметр | Действия исполнителя |
вп | Число шагов | Продвигается в направлении головы на указанное число шагов |
нд | Число шагов | Продвигается в направлении, противоположном направлению головы на указанное число шагов |
пр | Число градусов | Поворачивается направо относительно направления, заданного головой черепашки |
лв | Число градусов | Поворачивается налево относительно направления, заданного головой черепашки |
Для записи повторяющихся действий (цикла) используется команда Повтори. В этой команде два параметра: первый задает количество повторений (итераций), а второй — список команд которые должны повторяться (тело цикла); список заключается в квадратные скобки.
Записать для исполнителя Черепашка алгоритмы:
а) построения квадрата со стороной 100;
б) построения правильного шестиугольника со стороной 50.
в) построения изображения цифры 4, если голова Черепашки смотрит на север.
Ответ: а) Повтори 4 [вп 100 пр 90]; б) Повтори 6 [вп 50 пр 360/6]; в) вп 100; повтори [лв 135 вп 50].
Пример 4. Два игрока играют в следующую игру (это вариант восточной игры). Перед ними лежат три кучки камней, в первой из которых 2, во второй — 3, в третьей — 4 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди. Ход состоит в том, что игрок или удваивает число камней в одной из кучек, или добавляет по два камня в каждую из них. Выигрывает игрок, после хода которого либо в одной из кучек становится не менее 15 камней, либо общее число камней в трех кучках становится не менее 25. Кто выиграет при безошибочной игре обоих игроков — игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ следует обосновать.
Решение. Удобнее всего составить таблицу возможных ходов обоих игроков. Заметим, что в каждом случае возможны всего четыре варианта хода. В таблице курсивом выделены случаи, которые сразу же приносят поражение игроку, делающему этот ход (например, когда камней в какой-либо кучке становится больше или равно 8, другой игрок непременно выигрывает следующим ходом, удваивая количество камней в этой кучке). Из таблицы видно, что при безошибочной игре обоих игроков первый всегда выиграет, если первым ходом сделает 4, 5, 6. У второго игрока в этом случае все ходы проигрышные.
1-й ход | 2-й ход | |||
Начало | 1-й игрок | 2-й игрок | 1-й игрок | 2-й игрок |
2,3,4 | 4,3,4 | 8,3,4 | выигрыш | |
4,6,4 | 8,6,4 | выигрыш | ||
4,12,4 | выигрыш | |||
4,6,8 | выигрыш | |||
6,8,6 | выигрыш | |||
4,3,8 | выигрыш | |||
6,5,6 | 12,5,6 | выигрыш | ||
6,10,6 | выигрыш | |||
6,5,12 | выигрыш | |||
8,7,8 | выигрыш | |||
2,6,4 | 4,6,4 | 8,6,4 | выигрыш | |
4,12,4 | выигрыш | |||
4,6,8 | выигрыш | |||
6,8,6 | выигрыш | |||
2,12,4 | выигрыш | |||
2,6,8 | выигрыш | |||
4,8,6 | выигрыш | |||
2,3,8 | выигрыш | |||
4,5,6 | 8,5,6 | выигрыш | ||
4,10,6 | выигрыш | |||
4,5,12 | выигрыш | |||
6,7,8 | выигрыш |
Пример 5. Записано 7 строк, каждая из которых имеет свой номер. В нулевой строке после номера записана цифра 001. Каждая последующая строка содержит два повторения предыдущей строки и добавленной в конец большой буквы латинского алфавита (первая строка — A, вторая строка — B и т. д.). Ниже приведены первые три строкиєтой записи (в скобках указан номер строки):
Какой символ находится в последней строке на 250-м месте (считая слева направо)?
Примечание. Первые семь букв латинского алфавита: A, B, C, D, E, F, G.
Решение. Найдем длину каждой строки. Длина каждой следующей строки в два раза больше длины предыдущей плюс один символ, длина строк составит:
(6) 127*2+1=255 символов.
Так как задано 7 строк, а нумерация начинается с нулевой строки, последняя строка имеет номер 6 и содержит 255 символов. Последний символ в строке — F. Предпоследний элемент — E, далее идут символы D, C, B, A, 1 (по правилу формирования строк). Таким образом, 250-й символ — это 1.
Пример 6. Имеется фрагмент алгоритма, записанный на учебном алгоритмическом языке:
n := Длина(а)
b := Извлечь(а, k)
нц для i от 7 до n – 1
с := Извлечь(а, i)
b := Склеить(b, с)
Здесь переменные а, b, с — строкового типа; переменные n, i — целые.
В алгоритме используются следующие функции:
Длина(х) — возвращает количество символов в строке х. Имеет тип «целое».
Извлечь(х, i) — возвращает i-й символ слева в строке х. Имеет строковый тип.
Склеить(х, у) — возвращает строку, в которой находятся все символы строки х, а затем все символы строки у. Имеет строковый тип.
Какое значение примет переменная b после выполнения этого фрагмента алгоритма, если переменная а имела значение «ВОСКРЕСЕНЬЕ»?
Решение. Находим общее число символов в строке а, получим, что n = 11.
Выполняя команду b := Извлечь(а, k) при k = 2, получим, что b примет значение “О“.
В цикле последовательно, начиная с 7-го символа строки а и заканчивая предпоследним (n – 1), извлекаем символ из строки а и присоединяем к строке b.
В результате получим слово “ОСЕНЬ” (символы с номерами 2 + 7 + 8 + 9 + 10).
Пример 7. Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Числовой ряд, который называется его именем, получился в результате решения задачи о кроликах, которую Фибоначчи изложил в своей «Книге Абака», написанной в 1202 году. Он выглядит так:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144.
В этом ряду каждое следующее число, начиная с третьего, равно сумме двух предыдущих. Составить словесный алгоритм и блок-схему проверки принадлежности введенного числа n ряду Фибоначчи.
Решение. Словесный алгоритм:
- Ввести число n.
- Установить значение первых трех чисел Фибоначчи: 1, 1, 2 (сумма двух предыдущих чисел).
- Пока введенное число n больше очередного числа Фибоначчи, взять два последних числа Фибоначчи и получить из них новое число Фибоначчи.
- Если число Фибоначчи равно введенному n или было введено число n = 1, значит, что было введено число Фибоначчи, в противном случае — введенное число не является числом Фибоначчи.
Приведенный словесный алгоритм в пункте 1, 2 содержит начальные установки, в пункте 3 — цикл с условием, а пункт 4 — это вывод результата работы алгоритма.
F — текущее число ряда Фибоначчи;
F1 и F2 — два предыдущих числа ряда Фибоначчи для числа F;
n — число, для которого требуется определить, является ли оно числом из ряда Фибоначчи.
Использование основных алгоритмических конструкций: следование, ветвление, цикл
Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур: следование, ветвление, цикл.
Базовая структура СЛЕДОВАНИЕ указывает на то, что управление передается последовательно от одного действия к другому.
Учебный алгоритмический язык | Язык блок-схем |
действие 1 действие 2 … действие n |
Использование исключительно этой структуры возможно лишь для достаточно простых задач, ход решения которых не меняется в зависимости от конкретных исходных данных и состоит в последовательном выполнении определенных операций.
В качестве примера рассмотрим решение простой задачи.
Пример. Найти y(x) = x2 + 3x + 5, используя только операции умножения и сложения.
Решение. На рис. приводятся два алгоритма, реализующие решение поставленной задачи.
Порядок вычисления y(x) в первом случае — обычный, а во втором — (x + 3) x + 5. Обе формулы эквивалентны, но в первом случае для вычисления необходимо 2 умножения, 2 сложения и 3 переменных (x, y, z), а во втором используются 1 умножение, 2 сложения и 2 переменные (x, y).
Приведенный пример показывает, что даже простые задачи могут решаться с помощью различных вариантов алгоритмов.
Обратите внимание, как в блоке следования используется оператор присваивания.
Операция присваивания — важнейшая операция во всех языках программирования. С помощью присваивания переменные получают новые значения: в левой части инструкции ставится идентификатор величины, а в правой части — выражение, значение которого можно определить.
В операторах присваивания используется либо привычный знак равенства, либо сочетание двоеточия и знака равенства «:=». Поскольку знак присваивания — это не знак равенства, возможны записи вида Х := Х + 1 или А := А – В. Нужно учитывать, что оператор присваивания будет выполняться только в том случае, если значения всех переменных правой части уже определены.
Базовая структура ВЕТВЛЕНИЕ (РАЗВИЛКА) используется в случае, когда выполнение программы может измениться в зависимости от результата проверки условия и пойти двумя разными (альтернативными) путями. Другими словами, условие является некоторым высказыванием (предикатом) и может быть истинным или ложным (принимать значение TRUE или FALSE). Каждый из путей ведет к общему выходу, так что работа алгоритма будет продолжаться независимо от того, какой путь будет выбран.
Различают две структуры этого типа — полную и неполную. В случае полной структуры, если условие выполняется (является истинным), вслед за ним выполняется действие 1, иначе — действие 2. В случае неполной структуры, если условие выполняется (является истинным), то вслед за ним выполняется действие 1, иначе ничего не происходит.
Важную роль в операторах ветвления играют содержащиеся в них условия. В простейшем случае условиями служат отношения между величинами. Условия с одним отношением называют простыми условными выражениями, или простыми условиями. В некоторых задачах необходимы более сложные условия, состоящие из нескольких простых, например условие А < X < С, т. е. Х < А и (Х > C) (возможна запись (Х < А) and (Х > C)). Объединение нескольких простых условий в одно образует составное условное выражение, или составное условие. Составные условия образуются с помощью логических операторов not (отрицание), and (логическое И), or (логическое ИЛИ), хоr (исключающее ИЛИ).
Как определить значение переменной после выполнения алгоритма
Задания Д7 № 369
В алгоритме, записанном ниже, используются переменные a и b. Символ «:=» обозначает оператор присваивания, знаки «+», «-», «*» и «/» — соответственно операции сложения, вычитания, умножения и деления. Правила выполнения операций и порядок действий соответствуют правилам арифметики. Определите значение переменной a после выполнения алгоритма:
В ответе укажите одно целое число — значение переменной a.
b := 100 + a/b = 102
a := b/6*a = 17 · 10 = 170.
Задания Д7 № 389
В алгоритме, записанном ниже, используются переменные a и b. Символ «:=» обозначает оператор присваивания, знаки «+», «-», «*» и «/» — соответственно операции сложения, вычитания, умножения и деления. Правила выполнения операций и порядок действий соответствуют правилам арифметики. Определите значение переменной a после выполнения алгоритма:
Переменная в программировании — это каким-либо образом проименованная и/или адресованная область физической или виртуальной памяти, предназначенная для хранения данных (значений). С ее помощью можно проводить различные операции с данными и обеспечить программе необходимую гибкость. Данные в переменной могут быть как изменяемыми, так и постоянными (в этом случае она называется константой).
Как работают переменные
В процессе исполнения компьютерная программа постоянно обращается к каким-либо данным, которые хранятся в ячейках памяти. То есть работающее приложение должно «знать», какие именно данные ему сейчас нужны для работы, а также — где они находятся. На ранних этапах развития компьютерной техники программисты писали программы на машинном языке, в котором для обращения к конкретным данным использовались регистры. Но на таком языке человек может писать только очень простой код. При создании более сложных программ использовать этот способ стало очень сложно.
С появлением ассемблеров задача обращения к данным существенно упростилась за счет более понятного человеку синтаксиса и логики. Теперь не нужно вручную прописывать регистры — вместо них стали использоваться переменные, которым программист просто присваивает те или иные данные (значения).
Понятие переменной в программировании в целом напоминает одноименный аналог из математики. В алгебре это абстрактное буквенное выражение, которое имеет определенный интервал конкретных значений (как правило, числовых). Переменные позволяют записывать различные математические операции в общем виде. Затем, заменяя их на конкретные значения из допустимого интервала, можно получить необходимые значения.
Аналогично работают переменные и в информатике, с той лишь разницей, что это не только логическая абстракция, вместо которой можно подставить конкретные значения, но и вполне конкретная область виртуальной/реальной памяти, куда обращается программа за нужными ей для работы данными.
Таким образом, переменные характеризуются следующими атрибутами:
- именем или адресом, обозначающим конкретную ячейку памяти, в которой хранятся необходимые для работы приложения данные;
- значением, то есть конкретными данными, которые содержатся в проименованной ячейке памяти;
- типом, который определяет характер значений, принимаемых переменной, виды операций с ними и их представление в памяти компьютера.
В программировании переменные используются для работы с динамическими (изменяющимися) данными. Например, если в компьютерной игре есть два перемещающихся персонажа, то им необходимо задать скорость движения. Можно сделать это вручную для каждого из них, однако каждое изменение скорости придется прописывать заново, что не очень удобно. Гораздо проще сделать это с помощью переменных — задав определенный интервал их значений. В этом случае изменять скорость персонажей можно, просто подставив нужные данные.
В императивных языках программирования также существует понятие константы — это тоже ячейка памяти, но содержащая только одно неизменяемое значение. Ее можно задать заранее, при этом указав ее имя, к которому может обращаться программа, или указать непосредственно в коде как непосредственное значение.
Типы переменных
Компьютерные программы работают с разнообразными данными — числами, словами (символами), структурами (массивами, деревьями) и т. д. Соответственно, приложение должно уметь их различать, а также понимать, где они хранятся и в какой момент их необходимо задействовать. Поэтому в программировании используются следующие виды переменных:
- Статическая. В этом случае тип данных переменной определяется на этапе компиляции программы — то есть заранее задается программистом. Это позволяет в большинстве случаев сократить расходы ресурсов компьютера. Кроме того, статическая типизация переменных упрощает обнаружение ошибок, что снижает время разработки и повышает надежность программы. В то же время она делает программный код менее гибким, так как любые изменения в типе данных программисту придется указывать вручную.
- Динамическая. При такой типизации тип переменной определяется на этапе присвоения значения (то есть исполнения программы), а не его объявления. Благодаря этому в различных участках программного кода одна и та же переменная может принимать значения разных типов. Динамическая типизация делает программу более гибкой, позволяет ей лучше взаимодействовать с изменяющимся окружением, упрощает ее переход на новый формат данных. В то же время повышается вероятность ошибок, увеличивается расход ресурсов платформы при исполнении.
Для каждой переменной устанавливается своя область видимости — часть программы, в пределах которой ее идентификатор (имя) остается с ней связанным, то есть позволяет через себя обратиться к ее значению. В зависимости от этого переменные могут быть:
- локальными — задействуются только конкретной подпрограммой (фрагментом кода);
- глобальными — используются всей программой.
Чтобы упорядочить использование переменных в программировании и исключить возникновение ошибок, применяется ограничение их зоны видимости. Благодаря этому программист может использовать одни и те же идентификаторы для похожих переменных в различных фрагментах программного кода.
В различных языках программирования в переменные можно «складывать» данные различных типов, например:
- целые числа с отрицательным или положительным знаком — например, 0, 1, –1, 234, –234 и т. д.;
- числа с плавающей запятой — компьютерная форма записи дробных действительных чисел;
- логические выражения — например, часто встречающееся в программировании true/false;
- строки (символы) — последовательности букв, чисел, знаков препинания, пробелов и т. д. (используются для записи текстовых данных);
- списки — структуры данных, представляющих собой упорядоченные последовательности значений;
- диапазоны — перечень значений стандартного дискретного типа, например, 1…100;
- массивы — фиксированное и структурированное количество однотипных данных;
- записи — совокупность связанных данных различного типа;
- файлы — однотипные данные, сохраненные на внешнем носителе информации.
В языках программирования со строгой (статической) типизацией тип переменных задается программистом заранее при их объявлении и не может быть изменен в дальнейшем. Более того, в этом случае в них нельзя добавить данные других типов. В частности в Java целочисленные переменные не могут содержать слова, строки или логические выражения. Напротив, в языках с динамической типизацией (например, Python) тип данных определяется программой автоматически при обращении к переменной, исходя из характера содержащихся в ней значений.
В зависимости от типа данных в переменной она может быть:
- Простой — используется для хранения данных, не имеющих структуры, таких как целые числа, символы, логические выражения true/false, отдельные значения из конечных множеств;
- Сложной — в такой переменной хранятся данные с внутренней структурой, наиболее показательными примерами которых являются массивы, деревья и записи.
Также в некоторых языках программирования предусмотрена возможность создания пустых переменных. Они имеют идентификатор (имя), но им не присвоено конкретных значений. Например, в JavaScript два типа таких переменных:
- Undefined (неопределенные). Это переменные, у которых не указан тип и значения. Иначе говоря, компьютер просто знает, что она есть, но не понимает, что в ней находится, какой объем памяти под нее выделить и как с ней потом работать. Чаще всего неопределенные переменные используются для отладки кода, определения данных, поступающих в программу, и поиска ошибок.
- Null (пустые). Такие переменные имеют определенный тип, но им не заданы конкретные значения. При этом компьютер понимает, какие данные в них положить, сколько им нужно памяти и как потом с ними работать. В отличие от undefined, null является конкретным значением переменной, означающим отсутствие данных.
От этих двух типов следует отличать переменную 0 (ноль), которая содержит конкретное целочисленное значение.
Использование переменных
Для работы с переменными необходимо их предварительно объявить. В различных языках программирования это происходит с некоторыми отличиями, но в целом используется похожий шаблон:
- Сначала ставится ключевое слово или знак, обозначающий новую переменную (например, var от английского «variation» или $);
- Далее указывается имя переменной. Как правило, оно записывается латинскими буквами и кратко описывает, какие данные будут использоваться (например, для переменной, содержащей имя человека, можно использовать слово name).
- После имени переменной указывается тип содержащихся в ней данных. Например, для каких-либо слов, имен, фраз это будет указатель string или char.
В некоторых языках порядок этих элементов в структуре объявления переменной может быть другим. Например, в ранних версиях Java отсутствовало ключевое слово var, которое указывает на создание новой переменной. Но в целом логика этого процесса везде примерно одинакова: нужно указать имя переменной и тип сохраняемых в ней данных.
На этом этапе заканчивается непосредственно объявление переменной. Но чтобы программа могла ее использовать, ей нужно присвоить определенное значение. Эта операция называется «присваиванием» и выражается с помощью математического символа «=», который называется оператором присваивания. После него указывается конкретное значение переменной, которое будет использоваться программой.
Хотя порядок объявления переменных может отличаться в зависимости от языка, существует несколько общих правил для корректного осуществления этой процедуры:
- Идентификаторы (имена) переменных могут содержать в себе буквы, цифры, знак нижнего подчеркивания, при этом оно обязательно не должно начинаться с цифры.
- Имя переменной лучше подбирать таким образом, чтобы было понятно, какие данные в ней сохраняются. Например, если это значения скорости персонажа в компьютерной игре, то подойдет идентификатор «speed».
- Следует избегать очень коротких (например, одно- или двухбуквенных) или слишком длинных имен переменных: первые неинформативны и затрудняют понимание, вторые делают код тяжеловесным и сложным для восприятия.
- Идентификаторы лучше писать английскими словами (например, price вместо stoimost), чтобы они были понятны другим людям, особенно при работе над иностранными или международными проектами.
- Первое слово в сложных именах рекомендуется записывать со строчной буквы, а каждое последующее — с заглавной (например, carsCount).
- Большинство современных языков программирования чувствительны к регистру имен переменных, что также необходимо учитывать при их написании.
В некоторых ЯП эти требования необязательны и просто рекомендуются как способы упростить написание и понимание кода. В других языках программирования они могут носить обязательный характер: несоблюдение правил их синтаксиса приводит к ошибкам и неисполнениям со стороны программы.
Переменные — одна из важнейших составляющих современного программирования, которая существенно упрощает написание кода, делает его более гибким и настраиваемым. В том или ином виде они встречаются в большинстве распространенных ЯП, поэтому понимание их структуры, принципа действия и правил написания являются основой создания правильно работающих приложений.
Как определить значения переменных после выполнения алгоритмов
Глеб Да нилин
Ученик
(177),
на голосовании
6 лет назад
По информатике на дом дали самостоятельную, а я ничего не знаю, а в учебнике 8класс ничего нету. Помогите пж.
а: =9
b:=а mod 2
b:=b*5
a:=b div 6-2
Голосование за лучший ответ
123 123
Оракул
(55505)
6 лет назад
Что значит как? Берете листочек и бумажку, и считаете прямо по строкам.
1. а = 9
2. б = остатку деления а на 2
3. б = б умножить на 5
4. а = частному деления б на 6, и вычесть 2.