Как найти значение приложенной силы


Загрузить PDF


Загрузить PDF

Сила — это толчок или усилие, приложенное к объекту, которое заставляет его сдвинуться с места или ускориться. Второй закон Ньютона описывает связь силы с массой и ускорением, позволяя вычислить силу. Как правило, чем больше масса объекта, тем бóльшая сила требуется для того, чтобы сдвинуть его с места.[1]

  1. Изображение с названием Calculate Force Step 1

    1

    Умножьте массу на ускорение. Сила F, необходимая для того, чтобы придать объекту массой m ускорение a, определяется по следующей формуле: F = m x a. То есть сила равна массе, умноженной на ускорение.[2]

  2. Изображение с названием Calculate Force Step 2

    2

    Переведите единицы измерения в систему СИ. В Международной системе единиц (СИ) основной единицей измерения массы служит килограмм, а ускорения — м/с2 (метр на секунду в квадрате). Выразив массу и ускорение в единицах СИ, мы получим значение силы в ньютонах (Н).[3]

    • Например, если масса объекта составляет 3 фунта, необходимо перевести ее в килограммы. 3 фунта равны 1,36 кг, то есть масса объекта равна 1,36 кг.
  3. Изображение с названием Calculate Force Step 3

    3

    Помните о том, что в физике вес и масса — это разные понятия. Если вес объекта дан в ньютонах, для нахождения массы его следует разделить на 9,8. Например, 10 Н эквивалентны 10/9,8 = 1,02 кг.[4]

    Реклама

  1. Изображение с названием Calculate Force Step 4

    1

    Найдите силу, необходимую для того, чтобы разогнать автомобиль массой 1000 кг до 5 м/с2.[5]

    • Сначала проверим, все ли величины приведены в единицах измерения системы СИ.
    • Умножив массу (1000 кг) на ускорение (5 м/с2), получим силу (5000 Н).
  2. Изображение с названием Calculate Force Step 5

    2

    Вычислите силу, необходимую для того, чтобы разогнать тележку массой 8 фунтов до ускорения 7 м/с2.

    • Сначала выразим все величины в единицах измерения СИ. Один фунт равен 0,453 кг, поэтому, умножив 8 фунтов на этот коэффициент, находим, что масса тележки составляет 3,62 кг.
    • Умножив массу (3,62 кг) на заданное ускорение (7 м/с2), находим необходимую силу (25,34 Н).
  3. Изображение с названием Calculate Force Step 6

    3

    Найдите силу, действующую на тележку весом 100 Н, которая движется с ускорением 2,5 м/с2.

    • Как мы помним, вес в ньютонах следует перевести в массу в килограммах, поделив на 9,8. Разделив 100 Н на 9,8, получаем массу 10,2 кг.
    • Умножив найденную массу тележки (10,2 кг) на заданное ускорение (2,5 м/с2), получаем силу (25,5 Н).

    Реклама

Советы

  • Всегда внимательно читайте условие задачи, чтобы определить, что дано: масса или вес.
  • Проверьте единицы измерения и при необходимости выразите массу в килограммах, а ускорение — в м/с2.
  • Согласно определению основной единицы измерения силы в системе СИ, Н = кг * м/с2.[6]

Реклама

Об этой статье

Эту страницу просматривали 64 479 раз.

Была ли эта статья полезной?

Формула равнодействующей всех сил в физике

Формула равнодействующей всех сил

Первый закон Ньютона говорит нам о том, что в инерциальных системах отсчета тела могут изменять скорость только, если на них оказывают воздействие другие тела. При помощи силы ($overline{F}$) выражают взаимное действие тел друг на друга. Сила способна изменить величину и направление скорости тела. $overline{F}$ – это векторная величина, то есть она обладает модулем (величиной) и направлением.

Определение и формула равнодействующей всех сил

В классической динамике основным законом, с помощью которого находят направление и модуль равнодействующей силы является второй закон Ньютона:

[overline{F}=moverline{a} left(1right),]

где $m$ – масса тела, на которое действует сила $overline{F}$; $overline{a}$ – ускорение, которое сила $overline{F}$ сообщает рассматриваемому телу. Смысл второго закона Ньютона заключается в том, что силы, которые действуют на тело, определяют изменение скорости тела, а не просто его скорость. Следует знать, что второй закон Ньютона выполняется для инерциальных систем отсчета.

На тело могут действовать не одна, а некоторая совокупность сил. Суммарное действие этих сил характеризуют, используя понятие равнодействующей силы. Пусть на тело оказывают действие в один и тот же момент времени несколько сил. Ускорение тела при этом равно сумме векторов ускорений, которые возникли бы при наличии каждой силы отдельно. Силы, которые оказывают действие на тело, следует суммировать в соответствии с правилом сложения векторов. Равнодействующей силой ($overline{F}$) называют векторную сумму всех сил, которые оказывают действие на тело в рассматриваемый момент времени:

[overline{F}={overline{F}}_1+{overline{F}}_2+dots +{overline{F}}_N=sumlimits^N_{i=1}{{overline{F}}_i} left(2right).]

Формула (2) – это формула равнодействующей всех сил, приложенных к телу. Равнодействующая сила является искусственной величиной, которую вводят для удобства проведения вычислений. Равнодействующая сила направлена как вектор ускорения тела.

Основной закон динамики поступательного движения при наличии нескольких сил

Если на тело действуют несколько сил, тогда второй закон Ньютона записывают как:

[sumlimits^N_{i=1}{{overline{F}}_i}=moverline{a}left(3right).]

$overline{F}=0$, если силы, приложенные к телу, взаимно компенсируют друг друга. Тогда в инерциальной системе отсчета скорость движения тела постоянна.

При изображении сил, действующих на тело, на рисунке, в случае равноускоренного движения, равнодействующую силу, изображают длиннее, чем сумму сил, которые противоположно ей направлены. Если тело перемещается с постоянной скоростью или покоится, длины векторов сил (равнодействующей и сумме остальных сил), одинаковы и направлены они в противоположные стороны.

Когда находят равнодействующую сил, на рисунке изображают все учитываемые в задаче силы. Суммируют эти силы в соответствии с правилами сложения векторов.

Примеры задач на равнодействующую сил

Пример 1

Задание. На материальную точку действуют две силы, направленные под углом $alpha =60{}^circ $ друг к другу. Чему равна равнодействующая этих сил, если $F_1=20 $Н; $F_2=10 $Н?

Решение. Сделаем рисунок.

Формула равнодействующей всех сил, пример 1

Силы на рис. 1 складываем по правилу параллелограмма. Длину равнодействующей силы $overline{F}$ можно найти, используя теорему косинусов:

[F=sqrt{F^2_1+F^2_2+2F_1F_2{cos alpha }} left(1.1right).]

Вычислим модуль равнодействующей силы:

[F=sqrt{{20}^2+{10}^2+2cdot 20cdot 10{cos (60{}^circ ) }}approx 26,5 left(Нright).]

Ответ. $F=26,5$ Н

Пример 2

Задание. На материальную точку действуют силы (рис.2). Какова равнодействующая этих сил?

Формула равнодействующей всех сил, пример 2

Решение. Равнодействующая сил, приложенных к точке (рис.2) равна:

[overline{F}={overline{F}}_1+{overline{F}}_2+{overline{F}}_3+{overline{F}}_4left(2.1right).]

Формула равнодействующей всех сил, пример 3

Найдем равнодействующую сил ${overline{F}}_1$ и ${overline{F}}_2$. Эти силы направлены вдоль одной прямой, но в противоположные стороны, следовательно:

[F_{12}=F_1-F_2=17-11=6 left(Hright).]

Так как $F_1>F_2$, то сила ${overline{F}}_{12}$ направлена в туже сторону, что и сила ${overline{F}}_1$.

Найдем равнодействующую сил ${overline{F}}_3$ и ${overline{F}}_4$. Данные силы направлены вдоль одной вертикальной прямой (рис.1), значит:

[F_{34}=F_3-F_4=18-10=8 left(Нright).]

Направление силы ${overline{F}}_{34}$ совпадает с направлением вектора ${overline{F}}_3$, так как ${overline{F}}_3>{overline{F}}_4$.

Равнодействующую, которая действует на материальную точку, найдем как:

[overline{F}={overline{F}}_{12}+{overline{F}}_{34}left(2.2right).]

Силы ${overline{F}}_{12}$ и ${overline{F}}_{34}$ взаимно перпендикулярны. Найдем длину вектора $overline{F}$ по теореме Пифагора:

[F=sqrt{F^2_{12}+F^2_{34}}=sqrt{6^2+8^2}=10 left(Нright).]

Ответ. $F$=10 Н

Читать дальше: формула равнодействующей силы.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Содержание:

Сила:

При изучения природных явлений используют разные физические величины. Для того чтобы описать качественно и количественно взаимодействие тел, вводят физическую величину, которую называют силой.

Определение силы

Сила – это физическая величина, которая служит мерой взаимодействия тел и является причиной изменения скоростей тел или их частей.

Наблюдение. Если мы рассматриваем, например, взаимодействие руки с волейбольным мячом, то мы говорим: «Мяч действует с силой на руку или рука действует с силой на мяч».

Опыт. Подвесим на пружину яблоко (рис. 66).

Сила в физике - виды, формулы и определения с примерами

Пружина удлинится. Если на неё подвесить два яблока, то она удлинится больше. Итак, два яблока действуют на пружину с большей силой, чем одно.

Результат действия одного тела на другое зависит от значения приложенной силы.

Чем плотнее закрыта дверь, тем с большей силой мы должны её толкать или тянуть на себя, чтобы отворить.

Для того чтобы легче открывать дверь, её ручку прикрепляют как можно дальше от петель. Попробуйте открыть дверь, толкая её в точке, размещённой вблизи петель. Вы убедитесь, что это сделать намного труднее, чем с помощью ручки. Результат действия одного тела на другое зависит от точки приложения силы.

Сила в физике - виды, формулы и определения с примерами

Для достижения определённого результата действия, например, растяжения или сжатия пружины, закрытия или открытия двери, нужно прикладывать силы в разных направлениях.

Действие одного тела на другое зависит от направления действия силы.

Графически силу изображают в виде отрезка прямой со стрелкой на конце (рис. 67).

Начало отрезка совмещают с точкой приложения силы. Длина отрезка в определённом масштабе равна значению силы. Стрелка показывает направление силы. Величины, характеризующиеся кроме числового значения еще и направлением в пространстве, называют векторными, или векторами (от латинского слова вектор — ведущий, несущий).

Почему тела изменяют свое состояние в пространстве

Любые изменения в природе происходят в результате взаимодействия между телами. Чтобы изменить положение вагона на рельсах, железнодорожники направляют к нему локомотив, который смещает вагон с места и приводит его в состояние движения (рис. 32). Сила в физике - виды, формулы и определения с примерами

Парусник может длительное время стоять возле берега до тех пор, пока не подует попутный ветер и подействует на его паруса (рис. 33). Колеса игрушечного автомобиля могут вращаться с любой скоростью, но игрушка не изменит своего положения, если под игрушку не положить дощечку или линейку (рис.34). Форму или размер пружины можно изменить, лишь подвесив к ней груз или потянув рукой за один из его концов.

Сила в физике - виды, формулы и определения с примерами

Все тела в природе так или иначе связаны между собой и действуют друг на друга или непосредственно, или через физические поля. Такое действие всегда является взаимным. Если тепловоз действует на вагон и изменяет его скорость, то скорость тепловоза при этом также изменяется благодаря обратному действию вагона. Солнце действует на все тела на Земле и на саму Землю, удерживая ее на орбите. Но и Земля притягивает Солнце и, в свою очередь, изменяет его траекторию. Таким образом, во всех случаях можно говорить только о взаимном действии тел – взаимодействии.

При взаимодействии могут изменяться скорости тел или их частей.

Однако, взаимодействуя с различными телами, данное тело будет изменять свою скорость по-разному. Так, парусник может приобрести скорость вследствие действия на него ветра. Но такой же результат можно получить, включив двигатель, который находится на паруснике. Парусник может сдвинуть с места и катер, действуя на него через трос. Чтобы каждый раз не называть все взаимодействующие тела, все эти действия объединяют одним понятием силы.

Что такое сила

Сила как физическое понятие может быть большей или меньшей, как и вызванные ею изменения в состоянии тела или его частей.

Сила – это физическое понятие, которое обобщает все взаимодействия, вследствие чего тело или его части изменяют свое состояние.

Действие тепловоза на вагон будет значительно интенсивнее, чем действие нескольких грузчиков. Под действием тепловоза вагон быстрее сдвинется с места и начнет двигаться с большей скоростью, чем тогда, когда вагон будут толкать грузчики, которые еле сдвинут его на небольшое расстояние или совсем его не сдвинут.

Сила как физическая величина количественно характеризует действие одного тела на другое.

Для того чтобы можно было производить математические расчеты, силу обозначают определенной буквой. Как правило, это латинская буква F.

Как и все другие физические величины, сила имеет единицы измерения. Современная наука пользуется единицей, которая называется ньютоном (Н). Единица получила такое название в честь английского ученого Исаака Ньютона, который внес значительную лепту в развитие физической и математической наук.

Сила в физике - виды, формулы и определения с примерамиИсаак Ньютон (1643-1727) – выдающийся английский ученый, основоположник классической физики. Научные труды касаются механики, оптики, астрономии и математики. Сформулировал основные законы классической механики, открыл закон всемирного тяготения, дисперсию света, развил корпускулярную теорию света, разработал дифференциальное и интегральное исчисление.

Силы могут иметь различные значения. Так, на стакан с водой действует сила со стороны Земли, которая равна примерно 2 Н. А трактор, когда тянет плуг, действует на него с силой в несколько тысяч ньютонов.

Чем измеряют силу

Для измерения силы используют специальные приборы, называющиеся динамометрами (dina – сила; metro – меряю). Как правило, каждый такой прибор имеет измерительный элемент в виде пружины определенной формы (рис. 35).

Сила в физике - виды, формулы и определения с примерами

Сила характеризуется направлением.

Указать числовое значение силы не всегда достаточно для определения результата ее действия. Важно знать точку ее приложения и направление действия.

Если высокий брусок, стоящий на столе, толкать в нижней части, то он будет скользить по поверхности стола. Если же к бруску приложить силу в верхней его части, то он просто перевернется (рис. 36).

Сила в физике - виды, формулы и определения с примерами

Понятно, что направление падения бруска зависит от того, в каком направлении будем его толкать. Следовательно, сила имеет направление. От направления силы зависит изменение скорости тела, на которое эта сила действует.

Учитывая, что сила имеет направление и числовое значение, ее изображают в виде стрелки определенной длины и направления (вектора). Такая стрелка начинается в точке на теле, которая называется точкой приложения силы. На рисунке 37 изображена сила, значение которой равно 10 Н, направлена она слева направо и приложена в точке А.

Сила в физике - виды, формулы и определения с примерами

Пользуясь графическим методом, можно производить различные математические операции с силами. Так, если к одной точке на теле приложены силы 2 Н и 3 Н, которые действуют в одном направлении, то их можно заменить одной силой, которая будет приложена в той же точке и действовать в том же направлении, а ее значение будет равно сумме значений каждой из сил (рис. 38). Вектор этой силы будет иметь длину, равную сумме длин двух векторов.

Сила в физике - виды, формулы и определения с примерами

Возможен и другой случай, когда силы, приложенные в одной точке тела, действуют в противоположных направлениях. Тогда их можно заменить одной силой, направленной в направлении большей силы, а ее значение будет равняться разности значений каждой силы (рис. 39). Длина вектора этой силы будет равна разности длин векторов приложенных сил.

Сила в физике - виды, формулы и определения с примерами

Сила, которой можно заменить действие нескольких сил, приложенных в определенной точке тела, называется равнодействующей.

Равнодействующая – это сила, действие которой равнозначно действию нескольких сил, приложенных к телу в определенной его точке.

Силу обозначают большой латинской буквой Сила в физике - виды, формулы и определения с примерами.

На рис. 68 спортсменка приготовилась стрелять из лука. В этом случае её рука действует на тетиву с силой направленной вправо, а тетива действует на руку с такой же по значению силой, направленной влево. Итак, значения сил одинаковы, но их направления противоположны.

  • Заказать решение задач по физике

Сложение сил

Главная задача динамики – по действующей силе определить движение тела или по характеру движения тела установить, какая сила на него действует. Понятие о силе является основным в механике. И. Ньютон утверждал то, что мы называем силой, есть действие одного тела на другое, или их взаимодействие.

Действие одних тел на другие сообщает ускорение их движению. Полученное телом ускорение является внешним проявлением того, что оно взаимодействовало с другим телом. Когда мы говорим «сила», то подразумеваем, что на данное тело действуют другие тела.

Сила, являющаяся причиной изменения состояния движения тел или их деформации, характеризует взаимодействие тел, которое происходит при их непосредственном контакте (например столкновении) или через поля (рис. 2.2).

Сила в физике - виды, формулы и определения с примерами

Сила – векторная величина, характеризующая действие, которое является причиной изменения состояния движения или покоя.

Сила в физике - виды, формулы и определения с примерами

Действие на тело нескольких сил может быть заменено их равнодействующей (рис. 2.3), которую определяют геометрическим сложением этих сил как векторов:
Сила в физике - виды, формулы и определения с примерами
 

Не скорость тела, а ее изменение есть следствием действия силы (действия других тел).

Сила в физике - виды, формулы и определения с примерами

Помимо значения и направления сила характеризуется еще и точкой приложения, которую можно перемещать вдоль линии действия силы, если тело абсолютно твердое (не деформируется). Поскольку действия сил независимы, то сила может быть разложена на составляющие Сила в физике - виды, формулы и определения с примерами (рис. 2.4) как проекции на оси координат.

Для того чтобы выявить инертность тел и увидеть, как на нее влияет время их взаимодействия, проведем такой опыт. На тонкой нитке подвесим груз (рис. 2.5, а). Снизу к грузу прикрепим точно такую же нитку. Если резко дернуть за нижнюю нитку, то она оборвется, а груз останется висеть на верхней нитке (рис. 2.5, б). Если нижнюю нитку натягивать медленно, то оборвется верхняя нитка (рис. 2.5, в).

Когда мы резко дергаем за нижнюю нитку, взаимодействие руки и нитки кратковременно, груз не успевает изменить свою скорость – верхняя нитка не обрывается, т. к. груз имеет значительную инертность.

Если же за нижнюю нитку тянуть медленно (рука действует на груз продолжительное время), то груз набирает такую скорость, что его перемещение достаточно для разрыва и без того натянутой верхней нитки.

Как вы уже знаете, инертность тел определяется их массой, т. е. масса тела характеризует его инертность.

Во время тщательных исследований взаимодействия двух тел, например столкновения двух абсолютно упругих шаров, установлено, что отношение модулей ускорений взаимодействующих тел равно обратному отношению их масс: Сила в физике - виды, формулы и определения с примерами

Следствием этого соотношения является один из методов измерения массы тел. Сначала выбирают тело, массу которого условно берут за единицу, – эталон массы. Между эталоном массы и телом, массу которого нужно измерить, можно поместить сжатую при помощи нитки пружину. Потом нитку поджечь и определить ускорение эталона Сила в физике - виды, формулы и определения с примерами и исследуемого тела Сила в физике - виды, формулы и определения с примерами Из соотношения Сила в физике - виды, формулы и определения с примерами находим массу исследуемого тела: Сила в физике - виды, формулы и определения с примерами

где Сила в физике - виды, формулы и определения с примерами и Сила в физике - виды, формулы и определения с примерами – масса и ускорение эталона (1 единица массы). Отсюда Сила в физике - виды, формулы и определения с примерами единиц массы. 

По международному соглашению за единицу массы принята масса эталона килограмма (рис. 2.6).

Сила в физике - виды, формулы и определения с примерами
 

Килограмм (кг) – основная единица массы в Международной системе единиц (СИ). Килограмм равен массе международного прототипа килограмма – гире из платино-иридиевого сплава (90 % Pt, 10 % lr) в виде цилиндра диаметром и высотой 39 мм, хранящейся в Международном бюро мер и весов (г. Севр, предместье Парижа).

С достаточной точностью можно сказать, что массу 1 кг имеет 1 Сила в физике - виды, формулы и определения с примерами чистой воды Сила в физике - виды, формулы и определения с примерами при 15 °C.
Для измерения массы тела часто используют способ сравнения масс тел с помощью весов. При этом учитывают способность тел взаимодействовать с Землей. Как подтверждают опыты, тела, имеющие одинаковую массу, одинаково притягиваются к Земле в данном месте.

Равнодействующая сила

При изучении физики в 7-м классе вы познакомились с понятием «сила», которое используется для описания взаимодействия тел.

Чтобы вспомнить основные характеристики силы, проведем опыт, например, с куском поролона, покоящимся на неподвижном столе, так как притяжение Земли уравновешено воздействием стола.

Используя пинцет, можно действовать на поролон в различных точках и видеть его поступательное, вращательное или более сложное движение в зависимости от направления, места и величины воздействия.

При этом легко наблюдать не только изменение скорости поролона, но и его деформацию (изменение формы и размеров) (рис. 34) в местах контакта поролона с пинцетом.

Сила в физике - виды, формулы и определения с примерами
Рис. 34

Изменение скорости и деформация тел проявляются в любых опытах при самых разнообразных взаимодействиях, и поэтому принято следующее определение силы:

  • сила — физическая векторная величина, являющаяся количественной мерой действия одного тела на другое, в результате которого изменяется скорость тела и происходит его деформация. 

Опыт показывает, что результат воздействия силы определяется не только ее направлением и модулем, но и точкой приложения.

Единицей измерения силы в СИ является 1 ньютон (сокращенно 1 Н).

Вспомним исторически сложившиеся названия сил и их обозначения.

Силой тяжести Сила в физике - виды, формулы и определения с примерами называется сила, с которой тело притягивается к Земле. Силой давления Сила в физике - виды, формулы и определения с примерами называется сила, с которой тело действует на опору или жидкость и газ действуют на стенки сосуда. Силой упругости Сила в физике - виды, формулы и определения с примерами называется сила, возникающая при деформации тела. Силой реакции Сила в физике - виды, формулы и определения с примерами называется сила, действующая на тело со стороны опоры или подвеса. Силой сопротивления Сила в физике - виды, формулы и определения с примерами и силой трения Сила в физике - виды, формулы и определения с примерами называются силы, препятствующие механическому движению тела.

Силы могут действовать на поверхность тела (например, сила давления воздуха) (рис. 35) или быть приложены в некоторой условной точке (например, сила упругости нити в точке ее крепления к телу) (рис. 36).

Для упрощения математического описания механического движения тело рассматривается как материальная точка, если не указаны его размеры и форма. На рисунке тело чаще всего изображают прямоугольником.

Можно изображать силы, действующие на тело, приложенными в центре прямоугольника. Но обычно в центре прямоугольника изображают приложенной силу тяжести, а силу трения и силу реакции опоры рисуют приложенными в точке на нижней грани тела под его центром (рис. 37). Если на тело действуют другие тела, то необходимо учесть одновременно действие нескольких сил.

Сила в физике - виды, формулы и определения с примерами
Рис. 37

При изучении физики в 7-м классе вы познакомились со сложением сил и научились складывать силы, действующие на тело вдоль одной прямой.

В этом случае действие, например, двух сил можно заменить одной силой. Модуль равнодействующей силы равен сумме или разности модулей двух слагаемых сил в зависимости от того, совпадают их направления (рис. 38, а, б) или противоположны (рис. 39. а, б). Направление равнодействующей двух сил совпадает с направлением большей силы.

Сила в физике - виды, формулы и определения с примерами
Рис. 38

Сила в физике - виды, формулы и определения с примерами
Рис. 39

А как складываются силы, если они направлены под некоторым углом друг к другу? Покажем на опыте, что они складываются также векторно. Подвесим груз массой 0,2 кг на динамометре, закрепленном на неподвижном штативе. Если груз покоится, то сила упругости пружины динамометра уравновешивает силу тяжести груза (рис. 40), а показания прибора равны: Fупр = mg = 2H (Сила в физике - виды, формулы и определения с примерами)

Сила в физике - виды, формулы и определения с примерами
Рис. 40

Теперь подвесим этот же груз с помощью двух одинаковых динамометров (рис. 41, а), закрепленных на одной высоте. Меняя положения динамометров, а следовательно, угол между силами Сила в физике - виды, формулы и определения с примерами и Сила в физике - виды, формулы и определения с примерами, действующими на груз со стороны динамометров, можно убедиться, что их показания зависят от этого угла и лишь при угле, равном нулю, в сумме равны 2 Н.

Следовательно, совместное действие сил Сила в физике - виды, формулы и определения с примерами и Сила в физике - виды, формулы и определения с примерами уравновешивает действие силы тяжести груза, но сумма модулей этих сил не равна 2 Н, т. е. силы нельзя складывать как скалярные величины.

Когда угол между силами Сила в физике - виды, формулы и определения с примерами и Сила в физике - виды, формулы и определения с примерами равен 120° (рис. 41,6), то сумма показаний динамометров — 4 Н, а сила тяжести груза все та же — 2 H. Но если найти в этом случае векторную сумму Сила в физике - виды, формулы и определения с примерами по правилу сложения векторов, то она по модулю равна Fp= 2 Н.

Следовательно, силы нужно складывать по правилам сложения векторов.

Модуль векторной суммы сил Сила в физике - виды, формулы и определения с примерами и Сила в физике - виды, формулы и определения с примерами равен 2 H при любом значении угла между направлениями этих сил, а также и во всех случаях, когда модули сил не равны друг другу (рис. 41, в).

Сила в физике - виды, формулы и определения с примерами
Рис. 41

Какие бы более сложные опыты не проводились (и при действии на тело нескольких сил), всегда результаты измерений показывают, что действие нескольких сил можно заменить их векторной суммой, т. е. силы складываются, как векторы, — геометрически.

Векторная сумма сил, действующих на тело, называется равнодействующей и определяется по формуле:
Сила в физике - виды, формулы и определения с примерами

Если размерами тела нельзя пренебречь и силы приложены в разных его точках, то векторы сил можно перенести в одну точку, сохраняя модуль и направление, и векторно сложить (рис. 42).

Необходимо понимать, что равнодействующая сила заменяет действие нескольких сил только по отношению к движению тела в целом, но не заменяет действие каждой слагаемой силы в других отношениях.

Сила в физике - виды, формулы и определения с примерами
Рис. 42

Например, растянутая двумя руками пружина покоится (рис. 43), а значит, равнодействующая сил Сила в физике - виды, формулы и определения с примерами и Сила в физике - виды, формулы и определения с примерами равна нулю, но каждая из этих сил деформирует соответственно подвес динамометра и пружину.

Сила в физике - виды, формулы и определения с примерами
Рис. 43

Если тело движется с постоянной скоростью, то согласно первому закону Ньютона все воздействия на тело скомпенсированы, т. е. равнодействующая всех сил также должна быть равна нулю.

Главные выводы:

  1. Сила — физическая векторная величина, являющаяся количественной мерой действия одного тела на другое, в результате которого изменяется скорость тела и происходит его деформация.
  2. Сила характеризуется модулем, направлением, а также точкой приложения.
  3. Заменить действие нескольких сил можно равнодействующей силой, которая определяется как векторная сумма этих сил.
  4. При движении тела с постоянной скоростью (или в состоянии покоя) равнодействующая всех сил, действующих на него, равна нулю.

Что означает понятие “Сила” в физике

Вам хорошо известно слово «сила». Обычно смысл слова «сила» и образованных от него слов «силач», «сильный» и т. д. связан с возможностями человека, животного, механизма, с интенсивностью проявления природных явлений. Мы говорим «самый сильный человек», «сила воли», «сильные чувства», «сильный мороз», «сильный двигатель». А какое содержание вкладывают в слово «сила» физики?

Мы уже говорили о том, что причина изменения скорости движения тела — его взаимодействие с другими телами.

Чтобы теннисный мяч вернулся на сторону соперника, вы бьете по мячу ракеткой, но и мяч «бьет» по ракетке. Чтобы остановить велосипед, вы нажимаете на ручки тормоза и в то же время ощущаете, как они давят на ваши ладони. Обратите внимание: в любом случае результат зависит от того, насколько «сильным» будет взаимодействие: сильнее ударите по мячу — мяч наберет большую скорость (рис. 18.1); сильнее нажмете на тормоз — быстрее остановится велосипед. Мерой действия одного тела на другое служит физическая величина сила.

Сила — это физическая величина, которая является мерой действия одного тела на другое (мерой взаимодействия тел).

Силу обычно обозначают символом F. Единица силы в СИ — ньютон (названа в честь Исаака Ньютона): [F]=Н. 1 Н — это сила, которая, действуя на тело массой 1 кг в течение 1 с, изменяет скорость его движения на Сила в физике - виды, формулы и определения с примерами Чем больше сила и чем дольше она действует на тело, тем заметнее изменяется скорость движения тела (см. рис. 18.1). Чтобы тела разной массы за одинаковое время изменяли скорости своего движения одинаково, на них должны действовать разные силы (рис. 18.2).

Сила в физике - виды, формулы и определения с примерами

Сила в физике - виды, формулы и определения с примерами

Графическое изображение сил

Сила, действуя на тело, может изменить скорость его движения как по значению, так и по направлению, поэтому сила определяется и значением, и направлением. Уже говорилось о том, что физические величины, имеющие значение и направление, называют векторными. Итак, сила — векторная величина. На рисунках вектор силы начинают в точке, к которой приложена сила (эту точку так и называют — точка приложения силы), и направляют в сторону действия силы. Длину стрелки иногда выбирают так, чтобы она в определенном масштабе соответствовала значению силы (рис. 18.3). Изменение скорости движения тела (по значению, по направлению) зависит от направления силы (см. таблицу на с. 123).

Сила в физике - виды, формулы и определения с примерами

Сила в физике - виды, формулы и определения с примерами

Сложение сил, действующие вдоль одной прямой

Обычно на тело действует не одна сила, а две, три или больше. Проведем опыт. Поставим на стол тележку и привяжем к ней две нити. Потянем за одну нить с силой 5 Н, а за другую — в том же направлении — с силой 3 Н (рис. 18.4). Тележка придет в движение, увеличивая свою скорость так, как если бы на нее действовала одна сила 8 Н. Силу 8 Н, которой в данном случае можно заменить две силы 5 и 3 Н, называют равнодействующей двух сил и обозначают символом R (или F). Силу, которая производит на тело такое же действие, как несколько одновременно действующих сил, называют равнодействующей этих сил. Если тележку одновременно тянуть за две нити в противоположные стороны (рис. 18.5), то силы не будут «помогать» друг другу разгонять тележку, а наоборот — будут «мешать». В этом случае тележка будет двигаться так, будто на нее действует одна сила 2 Н в направлении, в котором действует сила 5 Н, то есть равнодействующей сил 5 и 3 Н будет сила 2 Н.

Сила в физике - виды, формулы и определения с примерами

Как вы считаете, какой будет равнодействующая, если нити, привязанные к тележке с противоположных сторон, потянуть с силами, одинаковыми по значению, например 5 Н? Изменится ли в этом случае скорость движения тележки? 4 Выясняем, когда силы компенсируют друг друга Надеемся, вы правильно ответили на вопрос в п. 3 и самостоятельно пришли к выводу: если две силы равны по значению, противоположны по направлению и приложены к одному телу, то равнодействующая этих сил равна нулю. Силы уравновешивают (компенсируют) друг друга, поэтому причины для изменения скорости движения тела нет. Так, по горизонтальному прямолинейному отрезку шоссе автомобиль движется равномерно (рис. 18.6, а), если сила тяги его двигателя компенсирует силу сопротивления движению (сила сопротивления движению достаточно быстро остановит автомобиль, если двигатель не будет работать). Портфель в руке находится в состоянии покоя, если сила притяжения Земли, действующая на портфель, компенсируется силой, которую прикладывает к портфелю человек (рис. 18.6, б).

Сила в физике - виды, формулы и определения с примерами

Итоги:

Сила F — физическая величина, являющаяся мерой действия одного тела на другое (мерой взаимодействия тел). Сила — причина изменения скорости движения тела. Единица силы в СИ — ньютон (Н). 1 Н равен силе, которая, действуя на тело массой 1 кг в течение 1 с, изменяет скорость его движения на 1 м/с.

Сила — векторная величина. Чтобы охарактеризовать силу, необходимо указать значение, направление и точку приложения силы. Если на тело действуют несколько сил, то их общее действие всегда можно заменить действием одной силы — равнодействующей. Равнодействующей сил, которые действуют на тело в одном направлении, является сила, значение которой равно сумме значений сил, а направление совпадает с направлением этих сил. Если две силы, действующие на тело, направлены в противоположные стороны, то направление равнодействующей совпадает с направлением большей силы, а для нахождения значения равнодействующей нужно из значения большей силы вычесть значение меньшей. Две силы компенсируют (уравновешивают) друг друга, если они равны по значению, противоположны по направлению и приложены к одному телу.

  • Силы в механике
  • Сила тяжести в физике
  • Сила упругости в физике и закон Гука
  • Деформация в физике
  • Звук в физике и его характеристики
  • Звуковые и ультразвуковые колебания
  • Инерция в физике
  • Масса тела в физике

Содержание

  1. Формула равнодействующей всех сил
  2. Второй закон Ньютона и формула модуля равнодействующей
  3. Примеры задач с решением
  4. О причинах изменений
  5. Сложение сил
  6. Задачи
  7. Что мы узнали?

На тело могут оказывать действие не одна, а некоторая совокупность сил. Суммарное действие этих сил характеризуют, используя понятие равнодействующей силы.

Формула равнодействующей всех сил

Пусть на тело воздействуют в один и тот же момент времени N сил. Ускорение тела при этом равно сумме векторов ускорений, которые возникли бы при наличии каждой силы отдельно. Сила является векторной величиной. Следовательно, силы, действующие на тело, нужно складывать в соответствии с правилом сложения векторов. Равнодействующей силой ($overline$) называют векторную сумму всех сил, которые оказывают действие на тело в рассматриваемый момент времени:

Формула (1) — это формула равнодействующей всех сил, приложенных к телу. Равнодействующая сила является искусственной величиной, которую вводят для удобства проведения вычислений. Равнодействующая сила направлена также как вектор ускорения тела.

Складывают векторы, используя правило треугольника (рис.1)

правило параллелограмма (рис.2).

или многоугольника (рис.3):

Второй закон Ньютона и формула модуля равнодействующей

Основной закон динамики поступательного движения в механике можно считать формулой для нахождения модуля равнодействующей силы, приложенной к телу и вызывающей ускорение этого тела:

$overline=0$, если силы, приложенные к телу, взаимно компенсируют друг друга. Тогда в инерциальной системе отсчета тело скорость движения тела.

При изображении сил, действующих на тело, на рисунке, в случае равноускоренного движения, равнодействующую силу, изображают длиннее, чем сумму сил, которые противоположно ей направлены. Если тело перемещается с постоянной скоростью или покоится, длины векторов сил (равнодействующей и сумме остальных сил), одинаковы и направлены они в противоположные стороны.

Когда находят равнодействующую сил, на рисунке изображают все учитываемые в задаче силы. Суммируют эти силы в соответствии с правилами сложения векторов.

Примеры задач с решением

Задание. К материальной точке приложены силы, направленные под углом $alpha =60<>^circ $ друг к другу (рис.4). Чему равен модуль равнодействующей этих сил, если $F_1=40 $Н; $F_2=20 $Н?

Решение. Силы на рис. 1 сложим, используя правило параллелограмма. Длину равнодействующей силы $overline$ найдем, применяя теорему косинусов:

Вычислим модуль равнодействующей силы:

[F=sqrt<<40>^2+<20>^2+2cdot 40cdot 20<cos (60<>^circ ) >>approx 52,92 left(Н
ight).]

Ответ. $F=52,92$ Н

Задание. Как изменяется модуль равнодействующей силы со временем, если материальная точка массы $m$ перемещается в соответствии с законом: $s=A<cos (omega t)(м) >$, где $s$ — путь пройденный точкой; $A=const;; omega =const?$ Чему равна максимальная величина этой силы?

Решение. По второму закону Ньютона равнодействующая сил, действующих на материальную точку равна:

Следовательно, модуль силы можно найти как:

Ускорение точки будем искать, используя связь между ним и перемещением точки:

Первая производная от $s$ по времени равна:

Подставим полученный в (2.5) результат, в формулу модуля для равнодействующей силы (2.2) запишем как:

Так как косинус может быть меньше или равен единицы, то максимальное значение модуля силы, действующей на точку, составит:

О причинах изменений

Классическая механика разделена на два раздела – кинематику, при помощи уравнений описывающую траекторию движения тел, и динамику, которая разбирается с причинами изменения положения объектов или самих объектов.

Причиной изменений выступает некоторая сила, которая есть мера действия на тело других тел или силовых полей (например, электромагнитное поле или гравитация). К примеру, сила упругости вызывает деформацию тела, сила тяжести – падение тел на Землю.

Сила – это векторная величина, то есть, ее действие – направленное. Модуль силы в общем случае пропорционален некоему коэффициенту (для деформации пружины – это ее жесткость), а также параметрам действия (масса, заряд).

Сложение сил

В случае, когда на тело действует n сил, говорят о равнодействующей силе, а формула второго закона Ньютона принимает вид:

$mvec a = sumlimits_^n vec F_i$.

Рис. 1. Равнодействующая сил.

Поскольку F – векторная величина, сумма сил называется геометрической (или векторной). Такое сложение выполняется по правилу треугольника или параллелограмма, либо по компонентам. Поясним каждый метод на примере. Для этого запишем формулу равнодействующей силы в общем виде:

$F = sumlimits_^n vec F_i$

А силу $F_i$ представим в виде:

Тогда суммой двух сил будет новый вектор $F_ = (F_ + F_, F_ + F_, F_ + F_)$.

Рис. 2. Покомпонентное сложение векторов.

Абсолютное значение равнодействующей можно рассчитать так:

Теперь дадим строгое определение: равнодействующая сила есть векторная сумма всех сил, оказывающих влияние на тело.

Разберем правила треугольника и параллелограмма. Графически это выглядит так:

Рис. 3. Правило треугольника и параллелограмма.

Внешне они кажутся различными, но когда доходит до вычислений, сводятся к нахождению третьей стороны треугольника (или, что тоже самое, диагонали параллелограмма) по теореме косинусов.

Если сил больше двух, иногда удобней пользоваться правилом многоугольника. По своей сути – это всё тот же треугольник, только повторенный на одном рисунке некоторое количество раз. В случае, если по итогу контур получился замкнутым, общее действие сил равно нулю и тело покоится.

Задачи

  • На ящик, размещенный в центре декартовой прямоугольной системы координат, действуют две силы: $F_1 = (5, 0)$ и $F_2 = (3, 3)$. Рассчитать равнодействующую двумя методами: по правилу треугольника и при помощи покомпонентного сложения векторов.

Решение

Равнодействующей силой будет векторная сумма $F_1$ и $F_2$.

$vec F = vec F_1 + vec F_2 = (5+3, 0+3) = (8, 3)$
Абсолютное значение равнодействующей силы:

Теперь получим тоже значение при помощи правила треугольника. Для этого сначала найдем абсолютные значения $F_1$ и $F_2$, а также угол между ними.

Угол между ними – 45˚, так как первая сила параллельна оси Оx, а вторая делит первую координатную плоскость пополам, то есть является биссектрисой прямоугольного угла.

Теперь, разместив вектора по правилу треугольника, рассчитаем по теореме косинусов равнодействующую:

  • На машину действуют три силы: $F_1 = (-5, 0)$, $F_2 = (-2, 0)$, $F_1 = (7,0)$. Какова их равнодействующая?

Решение

Достаточно сложить иксовые компоненты векторов:

Что мы узнали?

В ходе урока было введено понятие равнодействующей сил и рассмотрены различные методы ее расчета, а также введена запись второго закона Ньютона для общего случая, когда количество сил неограниченно.

Силу, заменяющую собой действие на тело нескольких сил, называют равнодействующей ; равнодействующая сила равна векторной сумме сил, приложенных к данному телу:

F → = F → 1 + F → 2 + . + F → N ,

где F → 1 , F → 2 , . F → N — силы, приложенные к данному телу.

Равнодействующую двух сил удобно находить графически по правилу параллелограмма (рис. 2.14, а ) или треугольника (рис. 2.14, б ).

Для сложения нескольких сил (вычисления равнодействующей) используют следующий алгоритм :

1) вводят систему координат и записывают проекции всех сил на координатные оси:

F 1 x , F 2 x , . F Nx ,

F 1 y , F 2 y , . F Ny ;

2) вычисляют проекции равнодействующей как алгебраическую сумму проекций сил:

F x = F 1 x + F 2 x + . + F Nx ,

F y = F 1 y + F 2 y + . + F Ny ;

3) модуль равнодействующей вычисляют по формуле

F = F x 2 + F y 2 .

Рассмотрим частные случаи равнодействующей.

Силу взаимодействия тела с горизонтальной опорой , по которой может происходить движение тела, рассчитывают как равнодействующую силы трения и силы реакции опоры (рис. 2.15):

F → вз = F → тр + N → ,

ее модуль вычисляется по формуле

F вз = F тр 2 + N 2 ,

где F → тр — сила трения скольжения или покоя; N → — сила реакции опоры.

Частные случаи равнодействующей:

Силу взаимодействия тела с комбинированной опорой (например, креслом автомобиля, самолета и т.п.) рассчитывают как равнодействующую сил давления на вертикальную и горизонтальную части опоры (рис. 2.16):

F → вз = F → гор + F → верт ,

где F → гор — сила давления, действующая на тело со стороны горизонтальной части опоры (численно равная весу тела); F → верт — сила давления, действующая на тело со стороны вертикальной части опоры (численно равная силе инерции).

Частные случаи равнодействующей:

Равнодействующая силы тяжести и силы Архимеда называется подъемной силой (рис. 2.17):

F → под = F → А + m g → ,

ее модуль вычисляется по формуле

F под = F А − m g ,

где F → А — сила Архимеда (выталкивающая сила); m g → — сила тяжести.

Частные случаи равнодействующей:

Если под влиянием нескольких сил тело равномерно движется по окружности, то равнодействующая всех приложенных к телу сил является центростремительной силой (рис. 2.18):

F → ц .с = F → 1 + F → 2 + . + F → N .

где F → 1 , F → 2 , . F → N — силы, приложенные к телу.

Модуль центростремительной силы, направленной по радиусу к центру окружности, может быть вычислен по одной из формул:

F ц .с = m v 2 R , F ц .с = m ω 2 R , F ц .с = m v ω ,

где m — масса тела; v — модуль линейной скорости тела; ω — величина угловой скорости; R — радиус окружности.

Пример 21. По дну водоема, наклоненному под углом 60° к горизонту, начинает скользить тело массой 10 кг, полностью находящееся в воде. Найти модуль равнодействующей всех сил, приложенных к телу, если между телом и дном водоема воды нет, а коэффициент трения составляет 0,15.

Решение. Так как между телом и дном водяная прослойка отсутствует, то сила Архимеда на тело не действует.

Искомой величиной является модуль векторной суммы всех сил, приложенных к телу:

F → = F → тр + m g → + N → ,

где N → — сила нормальной реакции опоры; m g → — сила тяжести; F → тр — сила трения. Указанные силы и система координат изображены на рисунке.

Вычисление модуля результирующей силы F проведем в соответствии с алгоритмом.

1. Определим проекции сил, приложенных к телу, на координатные оси:

проекция силы трения

F тр x = − F тр = − μ N ;

проекция силы тяжести

( m g ) x = m g sin 60 ° = 0,5 3 m g ;

проекция силы реакции опоры

проекция силы трения

проекция силы тяжести

( m g ) y = − m g cos 60 ° = − 0,5 m g ;

проекция силы реакции опоры

где m — масса тела; g — модуль ускорения свободного падения; µ — коэффициент трения.

2. Вычислим проекции равнодействующей на координатные оси, суммируя соответствующие проекции указанных сил:

F x = F тр x + ( m g ) x = − μ N + 0,5 3 m g ;

F y = ( m g ) y + N y = − 0,5 m g + N .

Движение по оси Oy отсутствует, т.е. F y = 0, или, в явном виде:

Отсюда следует, что

что позволяет получить формулу для расчета силы трения:

F тр = μ N = 0,5 μ m g .

3. Искомое значение равнодействующей:

F = F x 2 + F y 2 = | F x | = − 0,5 μ m g + 0,5 3 m g = 0,5 m g ( 3 − μ ) .

F = 0,5 ⋅ 10 ⋅ 10 ( 3 − 0,15 ) = 79 Н.

Пример 22. Тело массой 2,5 кг движется горизонтально под действием силы, равной 45 Н и направленной под углом 30° к горизонту. Определить величину силы взаимодействия тела с поверхностью, если коэффициент трения скольжения равен 0,5.

Решение. Силу взаимодействия тела и опоры найдем как равнодействующую силы трения F → тр и силы нормальной реакции опоры N → :

F → вз = F → тр + N → ,

модуль которой определяется формулой

F вз = F тр 2 + N 2 .

Силы, приложенные к телу, показаны на рисунке.

Модуль силы нормальной реакции опоры определяется формулой

N = m g − F sin 30 ° ,

а модуль силы трения скольжения —

где m — масса тела; g — модуль ускорения свободного падения; µ — коэффициент трения; F — модуль силы, вызывающей движение тела.

С учетом выражений для N и F тр формула для расчета искомой силы принимает вид:

F вз = ( μ N ) 2 + N 2 = N μ 2 + 1 = ( m g − F sin 30 ° ) μ 2 + 1 .

F вз = ( 2,5 ⋅ 10 − 45 ⋅ 0,5 ) ( 0,5 ) 2 + 1 ≈ 2,8 Н.

Пример 23. Во сколько раз изменится подъемная сила, если с аэростата сбросить балласт, равный половине его массы? Плотность воздуха считать равной 1,3 кг/м 3 , массу аэростата с балластом — 50 кг. Объем аэростата составляет 50 м 3 .

Решение. Подъемная сила, действующая на аэростат, является равнодействующей силы Архимеда F → А и силы тяжести m g → :

F → под = F → А + m g → ,

модуль которой определяется формулой

где F A = ρ возд gV — модуль силы Архимеда; ρ возд — плотность воздуха; g — модуль ускорения свободного падения; V — объем аэростата; m — масса аэростата (с балластом или без него).

Модуль подъемной силы может быть рассчитан по формулам:

  • для аэростата с балластом

F под 1 = ρ возд g V − m 1 g ,

  • для аэростата без балласта

F под 2 = ρ возд g V − m 2 g ,

где m 1 — масса аэростата с балластом; m 2 — масса аэростата без балласта.

Искомое отношение модулей подъемных сил составляет

F под 2 F под 1 = ρ возд V − m 2 ρ возд V − m 1 = 1,3 ⋅ 50 − 25 1,3 ⋅ 50 − 50 ≈ 2,7 .

Пример 24. Модуль равнодействующей всех сил, действующих на тело, равен 2,5 Н. Определить в градусах угол между векторами скорости и ускорения, если известно, что модуль скорости остается постоянным.

Решение. Скорость тела не изменяется по величине. Следовательно, тело обладает только нормальной составляющей ускорения a → n ≠ 0 . Такой случай реализуется при равномерном движении тела по окружности.

Равнодействующая всех сил, приложенных к телу, является центростремительной силой и показана на рисунке.

Векторы силы, скорости и ускорения имеют следующие направления:

  • центростремительная сила F → ц .с направлена к центру окружности;
  • вектор нормального ускорения a → n направлен так же, как и сила;
  • вектор скорости v → направлен по касательной к траектории движения тела.

Следовательно, искомый угол между векторами скорости и ускорения равен 90°.

Unit Converter

Enter the mass, acceleration, and frictional force resisting motion into the calculator to determine the applied force.

  • Net Force Calculator
  • Resultant Force Calculator
  • Average Force Calculator
  • Average Resistive Force Calculator

Applied Force Formula

The following formula is used to calculate an applied force.

  • Where AF is the applied force
  • m is the mass
  • a is the acceleration
  • FF is the frictional force or any opposing force to the applied force.

To calculate an applied force, multiply the mass by the acceleration, then subtract the frictional force.

As states above, this equation takes into account when there is a force opposing the motion of the object caused by the applied force.

Applied Force Definition

An applied force is a force that is acting on an object that causes it to accelerate in the direction of the force.

An applied force can be both contact and noncontact. A contact force example would be something pushing or pulling another. A non-contact force would be gravity.

Is force applied through distance?

Force is applied along with the full distance an object travels as long as the force remains in contact with the object that is moving.

Can applied force be negative?

An applied force can only be negative with respect to direction but not with respect to magnitude. For example, a force could have a magnitude of 20N in the negative x-direction.

Does applied force affect friction?

An applied force could affect both kinetic and static friction if the force is acting perpendicular to the surfaces of friction. This force would increase the normal force acting on the object thus increase the friction force.

How to find applied force without acceleration?

To find the applied force without acceleration, first, you would need both the initial and final velocity along with time. From those, you could calculate the acceleration using the formula a = (vf-vi)/t. From there calculate the applied force using F=ma.

How to find applied force with mass and coefficient of friction?

To find an applied force with mass and coefficient, first, find the friction force. Then determine the acceleration of the object. The applied force will equal the friction force plus the mass of the object times its acceleration.

Is applied force equal to net force?

An applied force can equal a net force if the applied force is the only force acting on the object. Otherwise, the applied force will not equal the net force.

What happens if friction force is greater than applied force?

If a friction force is greater than an applied force the object that the forces are acting on will not move. The friction force is a resistance to movement, so any applied force less than it will not move the object.

What happens when force is applied to an object?

A force applied to an object will cause that object to begin accelerating assuming no other forces are acting on it.

Applied Force Example

How to calculate an applied force?

  1. First, determine the mass.

    Measure the mass of the object. (Typically in kg)

  2. Next, determine the acceleration.

    Measure or calculate the acceleration in the direction of the applied force.

  3. Next, determine any opposing forces.

    Measure any opposing forces such as friction that are opposite of the applied force.

  4. Finally, calculate the applied force.

    Using the formula above, calculate the applied force.

FAQ

What is a force?

A force is any action that causes an object of mass to accelerate.


applied force calculator
applied force formula

Добавить комментарий