Видеоурок: закон Архимеда
Зако́н Архиме́да — закон гидростатики и аэростатики: на тело, погружённое в жидкость или газ, действует выталкивающая сила, численно равная весу объема жидкости или газа, вытесненного телом. Закон открыт Архимедом в III веке до н. э. Выталкивающая сила также называется архимедовой силой или гидростатической подъёмной силой[1][2] (её не следует путать с аэро- и гидродинамической подъёмной силой, возникающей при обтекании тела потоком газа или жидкости).
Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.
В соответствии с законом Архимеда для выталкивающей силы выполняется[3]:
где:
Описание[править | править код]
Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.
Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.
Плавание тела. Сила Архимеда () уравновешивает вес тела ():
ρж g Vж = ρт g Vт
Например, воздушный шарик объёмом , наполненный гелием, летит вверх из-за того, что плотность гелия () меньше плотности воздуха ():
Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость или газ. В силу симметрии прямоугольного тела, силы давления, действующие на боковые грани тела, уравновешиваются. Давление () и сила давления (), действующие на верхнюю грань тела, равны:
где:
Давление () и сила давления (), действующие на нижнюю грань тела, равны:
где:
Сила давления жидкости или газа на тело определяется разностью сил и :
где:
Разница давлений:
В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляцию жилых отсеков космических аппаратов необходимо производить принудительно вентиляторами.
Обобщения[править | править код]
Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.
Вывод закона Архимеда для тела произвольной формы[править | править код]
Вывод через мысленный эксперимент[править | править код]
Если мысленно заменить погружённое в жидкость тело той же жидкостью, мысленно размещённая в том же объёме порция воды будет находиться в равновесии и действовать на окружающую воду с силой, равной силе тяжести, действующей на порцию воды. Так как перемешивания частиц воды не происходит, можно утверждать, что окружающая вода действует на выделенный объём с той же силой, но направленной в противоположном направлении, то есть с силой, равной [4][5][6].
Расчёт силы[править | править код]
Гидростатическое давление на глубине , оказываемое жидкостью с плотностью на тело, есть . Пусть плотность жидкости () и напряжённость гравитационного поля () — постоянные величины, а — параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат , причём выберем направление оси z совпадающим с направлением вектора . Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку . На неё будет действовать сила давления жидкости, направленная внутрь тела, . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:
При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.
Получаем, что модуль силы Архимеда равен , и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.
Вывод через закон сохранения энергии[править | править код]
Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погружённого тела на жидкость, приводит к изменению её потенциальной энергии:
где — масса вытесненной части жидкости, — перемещение её центра масс. Отсюда модуль вытесняющей силы:
По третьему закону Ньютона эта сила, равна по модулю и противоположна по направлению силе Архимеда, действующей со стороны жидкости на тело. Объём вытесненной жидкости равен объёму погруженной части тела, поэтому массу вытесненной жидкости можно записать как:
- где — объем погружённой части тела.
Таким образом, для силы Архимеда имеем:
Условие плавания тел[править | править код]
Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести и силы Архимеда , которые действуют на это тело. Возможны следующие три случая:
- — тело тонет;
- — тело плавает в жидкости или газе;
- — тело всплывает до тех пор, пока не начнёт плавать.
Другая формулировка (где — плотность тела, — плотность среды, в которую тело погружено):
- — тело тонет;
- — тело плавает в жидкости или газе;
- — тело всплывает до тех пор, пока не начнёт плавать.
Примечания[править | править код]
- ↑ Архимеда закон : [арх. 1 января 2023] // Анкилоз — Банка. — М. : Большая российская энциклопедия, 2005. — С. 331. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 2). — ISBN 5-85270-330-3.
- ↑ Архимеда закон // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 123. — 707 с. — 100 000 экз.
- ↑ Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, к полю, действующему вблизи поверхности планеты).
- ↑ Перышкин А. , Оригинальное доказательство закона Архимеда. Дата обращения: 28 сентября 2020. Архивировано 20 июля 2020 года.
- ↑ Доказательство закона Архимеда для тела произвольной формы. Дата обращения: 28 сентября 2020. Архивировано 21 сентября 2020 года.
- ↑ Buoyancy (англ.). Архивировано 14 июля 2007 года.
Ссылки[править | править код]
- Архимедов закон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Закон Архимеда // Энциклопедия «Кругосвет».
Сила: что это за величина
Прежде чем говорить о силе Архимеда, нужно понять, что это вообще такое — сила.
В повседневной жизни мы часто видим, как физические тела деформируются (меняют форму или размер), ускоряются и тормозят, падают. В общем, чего только с ними не происходит! Причина любых действий или взаимодействий тел — ее величество сила.
Сила — это физическая векторная величина, которая воздействует на данное тело со стороны других тел. Сила измеряется в ньютонах — единице измерения, которую назвали в честь Исаака Ньютона.
Поскольку сила — величина векторная, у нее, помимо модуля, есть направление. От того, куда направлена сила, зависит результат.
Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В этом случае результат выражается в направлении движения.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Полезные подарки для родителей
В колесе фортуны — гарантированные призы, которые помогут наладить учебный процесс и выстроить отношения с ребёнком!
Открытие закона Архимеда
Так вышло, что закон Архимеда известен не столько своей формулировкой, сколько историей возникновения.
Легенда гласит, что царь Герон II попросил Архимеда определить, из чистого ли золота сделана его корона, при этом не причиняя вреда самой короне. То есть расплавить корону или растворить — нельзя.
Взвесить корону Архимеду труда не составило, но этого было мало — нужно ведь определить объем короны, чтобы рассчитать плотность металла, из которого она отлита.
Рассчитать плотность металла, чтобы установить, золотая ли корона, можно по формуле плотности.
Формула плотности тела
ρ = m/V
ρ — плотность тела [кг/м3]
m — масса тела [кг]
V — объем тела [м3]
Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну — и вдруг заметил, что уровень воды в ванне поднялся. Тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему.
Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый закричал «Эврика!» и побежал докладывать о своей победе в царский дворец (и так торопился, что даже не оделся). 🤦🏻♂️
Попробуйте онлайн-курс подготовки к ЕГЭ по физике с опытным преподавателем в Skysmart!
Формула и определение силы Архимеда для жидкости
На поверхность твердого тела, погруженного в жидкость, действуют силы давления. Эти силы увеличиваются с глубиной погружения, и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.
Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой или силой Архимеда. Истинная причина появления выталкивающей силы — наличие различного гидростатического давления в разных точках жидкости.
Определение архимедовой силы для жидкостей звучит так:
Выталкивающая сила, действующая на тело, погруженное в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена.
Формула архимедовой силы для жидкости
FАрх = ρжgVпогр
ρж — плотность жидкости[кг/м3]
Vпогр — объем погруженной части тела [м3]
g — ускорение свободного падения [м/с2]
На планете Земля g = 9,8 м/с 2.
А теперь давайте порешаем задачки, чтобы закрепить, как вычислить архимедову силу.
Задача 1
В сосуд погружены три железных шарика равных объемов. Одинаковы ли силы, выталкивающие шарики? Плотность жидкости вследствие ничтожно малой сжимаемости на любой глубине считать примерно одинаковой.
Решение
Да, так как объемы одинаковы, а архимедова сила зависит от объема погруженной части тела, а не от глубины.
Задача 2
На графике показана зависимость модуля силы Архимеда FАрх, действующей на медленно погружаемый в жидкость кубик, от глубины погружения x. Длина ребра кубика равна 10 см, его нижнее основание все время параллельно поверхности жидкости. Определите плотность жидкости. Ускорение свободного падения принять равным 10 м/с2.
Решение
Сила Архимеда, действующая на кубик, равна FАрх = ρжgVпогр.
Vпогр. — объем погруженной части кубика,
ρж — плотность жидкости.
Учитывая, что нижнее основание кубика все время параллельно поверхности жидкости, можем записать:
FАрх = ρжgV погр = ρжga 2x
где а — длина стороны кубика.
Выразим плотность:
ρ = FАрх / ga2x
Рассматривая любую точку данного графика, получим:
ρ = FАрхga2x = 20,25 / 10 × 7,5 × 10-2 = 2700 кг/м3
Ответ: плотность жидкости равна 2700 кг/м 3.
Условия плавания тел
Из закона Архимеда вытекают следствия об условиях плавания тел.
Почему корабли не тонут?
Корабль сделан из металла, плотность которого больше плотности воды. И, по идее, он должен тонуть. Но дело в том, что корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Если корабль получит пробоину, то пространство внутри заполнится водой — следовательно, общая плотность корабля увеличится. Судно утонет.
В подводных лодках есть специальные резервуары, которые заполняют водой или сжатым воздухом. Если нужно уйти на глубину — водой, если подняться — сжатым воздухом. Рыбы используют такой же принцип в плавательном пузыре — наполняют его воздухом, чтобы подняться наверх.
Человеку, чтобы не утонуть, тоже достаточно набрать в легкие воздух и не двигаться — вода будет выталкивать тело на поверхность. Именно поэтому важно не тратить силы и кислород в легких на панику и борьбу, а расслабиться и позволить физическим законам сделать все за нас.
Формула и определение силы Архимеда для газов
На самом деле тут все очень похоже на жидкости. Начнем с формулировки закона Архимеда:
Выталкивающая сила, действующая на тело, погруженное в газ, равна по модулю весу вытесненного газа и противоположно ему направлена.
Формула архимедовой силы для газов
FАрх = ρгgVпогр
ρг — плотность газа [кг/м3]
Vпогр — объем погруженной части тела [м3]
g — ускорение свободного падения [м/с2]
На планете Земля g = 9,8 м/с 2.
Сила Архимеда для газов действует аналогично архимедовой силе для жидкостей. Давайте убедимся в этом, решив задачку.
Задача
Груз какой максимальной массы может удерживать воздушный шар с гелием объема 0,3 м3, находясь в атмосфере Земли? Плотность воздуха равна 1,3 кг/м 3. Гелий считать невесомым.
Решение
Подставляем значения и получаем:
FАрх = ρгgVпогр = 1,3 × 10 × 0,3 = 0,39 Н
По второму закону Ньютона для инерциальных систем отсчета:
FАрх = mg
Выражаем массу груза и подставляем значения:
m = FАрх / g = 0,39 / 10 = 0, 039 кг = 39 кг
Ответ: груз максимальной массы 39 г может удержать данный шарик с гелием.
Когда сила Архимеда не работает
Архимедова сила не работает лишь в трех случаях:
-
Невесомость. Главное условие возникновения Архимедовой силы — это наличие веса у среды. Если мы находимся в невесомости, холодный воздух не опускается, а горячий, наоборот, не поднимается.
-
Тело плотно прилегает к поверхности. Отсутствие газа или жидкости между поверхностью и телом свидетельствует об отсутствии выталкивающей силы — телу просто неоткуда выталкиваться.
-
Растворы и смеси. Если взять спирт, плотность которого меньше плотности воды, и смешать его с водой, получится раствор. На него не будет действовать сила Архимеда, несмотря на то, что плотность спирта меньше плотности воды — он просто растворится.
Сила Архимеда
Вместе с преподавателем физики разбираемся, в чем измеряется и от чего зависит сила Архимеда. А в конце статьи вспомним известную легенду о том, как был открыт закон Архимеда, и узнаем, действует ли он в условиях невесомости
Как объяснить, почему плавают огромные корабли из стали, которая тяжелее воды? Да еще и перевозят тонны грузов. Это происходит благодаря открытию, сделанному за два с лишним столетия до нашей эры изобретателем и ученым Архимедом.
История сохранила нам немного имен ученых-практиков, чьи изобретения изменили мир. Навсегда забыт гений, который придумал колесо. Но любой современный школьник назовет Архимеда, даже если знает о нем только легенду про мокрого голого философа, бежавшего по улице Сиракуз с криком: «Эврика!», то есть «Нашел!». А ведь ученый заслужил вечную благодарную память человечества благодаря многим изобретениям и открытиям:
- Теория рычага и способы его расчета. На этой основе построены боевые машины для метания тяжелых камней и «коготь Архимеда» — машина для переворачивания римских трирем;
- Шкив и многоступенчатый блок, полиспаст;
- Червячная передача;
- Архимедов винт и насосы, работающие на его принципе;
- Одометр, машина для измерения пройденного пути;
- «Архимедово число»: отношение длины окружности к ее диаметру
- Фокусировка световых лучей при помощи зеркал. По легенде, так были сожжены римские корабли, осаждавшие Сиракузы. Недавно энтузиасты провели экспериментальную проверку и удалось поджечь деревянный баркас.
Однако самое знаменитое открытие — закон Архимеда, основа гидростатики. Удивительно, что он был почти забыт, пока корабли строили из дерева. И только когда они стали железными, а потом стальными, инженеры осознали важность силы Архимеда и стали применять ее формулу при расчетах водных и воздушных судов.
Определение закона Архимеда простыми словами
На тело, погруженное в жидкость или газ, действует подъемная, она же выталкивающая сила (сила Архимеда), равная весу вытесненного объема жидкости или газа.
Вектор силы Архимеда направлен против направления действия силы тяжести. Следствия закона Архимеда:
- В невесомости закон Архимеда не действует.
- Если сила Архимеда меньше силы тяжести, то тело утонет.
- Если силы одинаковы по величине, тело «повисает» в окружающей среде.
- Если сила Архимеда больше силы тяжести, то тело всплывает, пока они не уравновесятся. В воде этот момент наступит на поверхности.
Формула силы Архимеда
Предыдущая формулировка годится только для участка цепи, где отсутствует сам источник электродвижущей силы. В реальности ток течет по замкнутому контуру, где обязательно есть батарея или генератор, имеющий собственное внутреннее сопротивление. Поэтому формула закона Ома для полной цепи выглядит несколько сложнее
Где: FA — сила Архимеда;
ρ — плотность жидкости или газа, в которое погружают тело;
g — ускорение свободного падения, которое зависит от того, на какой планете или спутнике мы находимся. Для поверхности Земли, например, ускорение примерно равно 9,8 м/с2;
V — объем погруженной в среду части тела.
Закон Паскаля
Объяснение закона простыми словами и его формула
подробнее
В чем измеряется сила Архимеда
Единица измерения силы Архимеда в системе СИ — ньютон (Н).
1Н = 1 кг·м/с2
Архимед и наше время
В перечне военных трофеев, взятых римлянами в Сиракузах, есть некий «Планетарий Архимеда» — механическая модель движения планет. Он не сохранился, но есть подозрение, что загадочное устройство, случайно обнаруженное в затонувшем корабле у острова Антикитера, тоже сделано золотыми руками Архимеда. Прямых доказательств этого факта нет, но уже выяснено, что время изготовления приблизительно соответствует годам жизни гениального инженера.
Популярные вопросы и ответы
Отвечает Николай Герасимов, старший преподаватель по физике Домашней школы «ИнтернетУрок».
От чего зависит сила Архимеда?
Например, для определения выталкивающей силы, действующей на камень, лежащий на дне озера, нужно брать весь его объем. Если же определяем силу Архимеда, действующую на мяч, плавающий по этому озеру, то нужно брать лишь объем той части, которая находится под водой. Зависимость выталкивающей силы от ускорения свободного падения позволяет сделать интересный вывод о том, что в невесомости силы Архимеда нет.
Зная, что сила Архимеда зависит от плотности жидкости, можно объяснить следующее явление: куриное яйцо, помещенное в обычную воду, утонет и будет лежать на дне банки. Но стоит добавить в эту банку насыщенный раствор поваренной соли и тем самым изменить плотность воды — и яйцо начинает всплывать.
Как был открыт закон Архимеда?
Открытие закона Архимеда связано с интересной легендой. Древнегреческий царь Герон II приказал ювелирам изготовить золотую корону, что и было вскоре выполнено. Царь заподозрил, что ювелиры его обманули и сделали корону из электрона, сплава золота и серебра. Отличить подделку на глаз не удалось. Для проверки пригласили ученого из Сиракуз по имени Архимед. Достаточно было сравнить объем короны с объемом куска золота такой же массы.
Сложность состояла в определении объема короны, так как она была сложной формы, и вычислить объем по математическим формулам было невозможно. Долгие размышления не увенчались успехом, и Архимед решил сходить отдохнуть в баню. Именно там ученому пришла гениальная идея: погружаясь в воду, тело вытесняет ее в объеме, который равен объему погруженной части тела. «Эврика!» («Нашел!») — закричал Архимед и побежал к царю.
Сравнив объемы воды, вытесненной короной и куском золота такой же массы, он уличил ювелиров в нечестности и алчности. Так Архимедом был открыт закон, который позволяет нам объяснить, почему ходят по морям и океанам огромные корабли, изготовленные из железа, а маленькая металлическая гайка тонет.
Какой буквой обозначают силу Архимеда?
Как и большинство сил, сила Архимеда обозначается буквой F. Это первая буква английского слова force – сила. В индексе пишут букву А или В, которые позволяют отличить силу Архимеда FA или выталкивающую силу FВ от других сил в природе.
Содержание:
Выталкивающая сила:
Наблюдение. Почему тяжело погрузить мяч в воду, и почему, как только мы его отпустим, он выпрыгивает из воды? Почему в море легче плавать, чем в озере? Почему в воде мы можем поднять камень, а в воздухе — нет?
Опыт 1. Подвесим к пружине тело (рис. 138). В связи с тем, что на тело действует сила тяжести
Газы во многом подобны жидкостям. На тела, помещённые в газ, также действует выталкивающая сила. Именно под действием этой силы воздушные шары, метеорологические зонды, детские шарики, наполненные водородом, поднимаются вверх.
А от чего зависит выталкивающая сила ?
Опыт 2. Два тела разного объёма, но одинаковой массы, погрузим полностью в одну и ту же жидкость (воду). Мы видим, что тело большего объёма выталкивается из жидкости (воды) с большей силой (рис. 139).
Выталкивающая сила зависит от объёма погружённого в жидкость тела. Чем больше объём тела, тем большая выталкивающая сила действует на него.
Опыт 3. Погрузим полностью два тела одинакового объёма и массы в разные жидкости, например воду и керосин (рис. 140). Нарушение равновесия в этом случае свидетельствует, что в воде на тело действует большая выталкивающая сила, это можно связать с тем, что плотность воды больше, чем плотность керосина.
Выталкивающая сила зависит от плотности жидкости, в которую погружено тело. Чем больше плотность жидкости, тем большая выталкивающая сила действует на погружённое в неё тело.
Обобщая результаты наблюдений и опытов можно сделать такой вывод.
На тело, погружённое в жидкость (газ), действует выталкивающая сила, равная по значению весу жидкости (газа), вытесненной этим телом.
Это утверждение называют законом Архимеда, древнегреческого учёного, который его открыл и, по легенде, успешно применил для решения практической задачи: определил, содержится ли в золотой короне царя Гиерона примесь серебра. Силу, которая выталкивает тело из жидкости или газа, называют еще архимедовой силой.
На основе закона Архимеда можно сразу написать формулу для определения выталкивающей силы, но чтобы лучше понять, вследствие чего она возникает, выполним простые расчёты. Для этого рассмотрим тело в форме прямоугольного бруска, погружённого в жидкость таким образом, чтобы его верхняя и нижняя фан и располагались параллельно поверхности жидкости (рис. 141).
Посмотрим, каким будет результат действия сил давления на поверхность этого тела.
Согласно закону Паскаля горизонтальные силы и действующие на симметричные боковые грани бруска, попарно равны по значению и противоположно направлены. Они не выталкивают брусок вверх, а только сжимают его с боков. Рассмотрим силы гидростатического давления на верхнюю и нижнюю грани бруска.
Пусть верхняя грань площадью S расположена на глубине тогда сила давления , на неё будет равна:
где — плотность жидкости.
Нижняя грань бруска площадью S расположена на большей глубине , поэтому сила давления на неё будет также больше, чем :
Обе силы давления , и действуют вдоль вертикали, их равнодействующая и будет силой Архимеда , направленной вверх в сторону большей силы , а её значение будет равно разности сил
и : .
Поскольку разность является высотой бруска, то произведение равно объёму тела , и мы окончательно получаем формулу,
являющуюся математическим выражением закона Архимеда:
Действительно, поскольку жидкость не сжимается, то объём вытесненной телом жидкости равен объёму этого тела, и произведение равно массе жидкости в объёме тела . В свою очередь, произведение является весом этой жидкости.
Из приведённого расчета наглядно видно, что выталкивающая (архимедова) сила возникает вследствие того, что значения гидростатического давления на разных глубинах неодинаковы и возрастают с глубиной.
Архимедовую силу можно определить экспериментально.
Опыт 4. Подвесим тело к динамометру (рис. 142). На тело действует сила тяжести почти 10 Н. Погрузим тело в жидкость (рис. 143).
Динамометр показывает 6 Н. Определим разность показаний динамометра. Она равняется 4 Н.
Кстати:
Однажды у императора Цао-Цао, который правил в Китае свыше 2000 лет тому назад, возникла мысль взвесить слона. Как ни суетились сановники, никто из них не мог ничего придумать, ведь нигде не было таких гигантских весов, чтобы на них можно было взвесить слона. Когда все сановники признали свою беспомощность, пришёл человек по имени Чао Чун и сказал, что он может взвесить слона. Он попросил: «Прикажите поставить слона в большую лодку, после чего обозначьте уровень погружения лодки в воду. Снимите слона, а лодку загрузите камнями так, чтобы она погрузилась до отметки. Вес камней будет равен весу слона”. Талантливый самородок, на много лет опередивший великого Архимеда, получил за своё предложение «щедрое» вознаграждение – благосклонный кивок императора Цао-Цао.
Выталкивающая сила и закон Архимеда
При взаимодействии твердых неподвижных тел, действуя друг на друга, они только деформируются. И действие каждого из этих тел на другое характеризуется силой.
Как взаимодействуют твердое тело и жидкость
Если твердое тело взаимодействует с жидкостью, то оно проникает в жидкость. Что происходит в таком случае? Ответ на этот вопрос получим из опыта.
К резиновой нити прицепим груз и измерим длину нити, которая растягивается весом груза. Если же груз после этого опустить в воду, то станет заметным сокращение длины нити. Таким образом, вес тела в воде уменьшился. Это возможно только потому, что в жидкости на погруженное тело действует выталкивающая сила. Направление этой силы противоположно направлению действия силы тяжести.
Как рассчитать значение выталкивающей силы
Опыты показывают, что значение выталкивающей силы зависит как от характеристик погруженного тела, так и от свойств жидкости.
Возьмем металлический цилиндр и стакан, объем которого равен объему цилиндра. Прицепим их к крючку динамометра и определим вес цилиндра и стакана (рис. 110). Теперь полностью погрузим цилиндр в воду. Динамометр покажет уменьшение веса. Но если стакан полностью заполнить водой, то показания динамометра восстановятся. Таким образом, выталкивающая сила равна весу воды, объем которой равен объему тела. Если воду заменить насыщенным раствором соли в воде, то выталкивающая сила будет большей, так как большим будет вес воды, объем которой равен объему тела.
Если учесть, что вес жидкости то для расчета выталкивающей силы можно использовать формулу
где – выталкивающая сила; – плотность жидкости; – объем погруженного в жидкость тела или его части.
Зависимость, выраженная формулой для выталкивающей силы, называется законом Архимеда, сама выталкивающая сила — силой Архимеда.
От чего зависит сила Архимеда
Почему действует сила Архимеда в жидкости? Представим себе, что в жидкость погружено тело в виде прямоугольного бруска (рис. 111).
На тело, погруженное в жидкость, действует выталкивающая сила, которая равна весу жидкости в объеме погруженного тела или его погруженной части.
В результате действия силы тяжести в жидкости существует давление, которое согласно закону Паскаля действует во всех направлениях. В связи с этим на верхнюю грань бруска будет действовать сила направленная вниз.
На нижнюю грань будет действовать сила направленная вверх. Так как , то и . Равнодействующая этих сил направлена вверх. Это и будет сила Архимеда.
Действует сила Архимеда и в газах, так как в них давление тоже изменяется с высотой.
Окончательно закон Архимеда можно сформулировать так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме погруженной части тела.
В газах сила Архимеда значительно меньше, чем в жидкостях, поскольку плотность газа намного меньше плотности жидкости.
Выталкивающая сила в жидкостях и газах
Почему мяч, если его погрузить в воду и отпустить, выпрыгивает над поверхностью воды? Почему тяжелый камень, который на суше нельзя сдвинуть с места, можно легко поднять под водой? Почему корабль, севший на мель, самостоятельно не может всплыть? Попробуем разобраться.
Существование выталкивающей силы:
Подвесим к коромыслу весов два одинаковых шара. Массы шаров равны, значит, весы будут уравновешены (рис. 27.1, а). Подставим под правый шар пустой сосуд (рис. 27.1, б). Затем нальем в сосуд воду и увидим, что равновесие весов нарушится (рис. 27.1, в), — некая сила пытается вытолкнуть шар из воды.
Откуда берется эта сила? Чтобы разобраться, рассмотрим погруженный в жидкость кубик. На него со всех сторон действуют силы гидростатического давления жидкости (рис. 27.2). Силы гидростатического давления действующие на боковые грани кубика, противоположны по направлению и равны по значению, так как площади боковых граней одинаковы и эти грани расположены на одинаковой глубине. Такие силы уравновешивают друг друга. А вот силы гидростатического давления , соответственно действующие на верхнюю и нижнюю грани кубика, друг друга не уравновешивают. На верхнюю грань кубика действует сила давления : где — гидростатическое давление жидкости; S — площадь грани. Аналогично на нижнюю грань кубика действует сила давления : Нижняя грань находится на большей глубине, чем верхняя поэтому сила давления больше силы давления
Равнодействующая этих сил равна разности значений сил и направлена в сторону действия большей силы, то есть вертикально вверх. По вертикали вверх на кубик, погруженный в жидкость, действует сила, обусловленная разностью давлений на его нижнюю и верхнюю грани, — выталкивающая сила: На тело, помещенное в газ, тоже действует выталкивающая сила, но она значительно меньше выталкивающей силы, действующей на то же тело в жидкости, поскольку плотность газа намного меньше плотности жидкости. Выталкивающую силу, которая действует на тело в жидкости или газе, называют также архимедовой силой (в честь древнегреческого ученого Архимеда (рис. 27.3), который первым указал на существование этой силы и вычислил ее значение).
Расчет и вычисление силы Архимеда
Вычислим значение архимедовой (выталкивающей) силы для кубика, погруженного в жидкость (см. рис. 27.2). Вы уже знаете, что архимедова сила равна разности сил давлений жидкости на нижнюю и верхнюю грани кубика: где — сила давления жидкости на верхнюю грань кубика; — сила давления жидкости на нижнюю грань кубика. Зная , найдем выталкивающую силу: Разность глубин , на которых находятся нижняя и верхняя грани кубика, — это высота h кубика, следовательно, . Произведение площади S основания кубика на его высоту h — это объем V кубика: V= Sh, значит, формула для расчета архимедовой силы: Здесь — это масса жидкости в объеме кубика, то есть масса жидкости, объем которой равен объему кубика. Так как , то Архимедова сила равна весу жидкости в объеме кубика:
Мы рассмотрели случай с кубиком, полностью погруженным в жидкость. Однако полученный результат выполняется для тела любой формы, а также в случаях, когда тело погружено в жидкость частично (для расчетов следует брать объем погруженной в жидкость части тела). Кроме того, результат справедлив и для газов. А теперь сформулируем закон Архимеда: На тело, погруженное в жидкость или газ, действует выталкивающая сила, которая равна весу жидкости или газа в объеме погруженной части тела: где — архимедова сила; — плотность жидкости или газа; — объем погруженной части тела. Архимедова сила приложена к центру погруженной части тела и направлена вертикально вверх (рис. 27.4).
Выясняем, всегда ли на тело, погруженное в жидкость, действует архимедова сила:
Подвесим к динамометру камешек на нити. Динамометр покажет вес камешка. Подставим стакан с водой так, чтобы камешек оказался полностью погруженным в воду. Показание динамометра уменьшится. Кажется, что камешек «потерял» часть своего веса. Но никакой потери веса тела в жидкости не происходит: вес перераспределяется между подвесом (нитью) и опорой (жидкостью). Даже если архимедова сила, действующая на тело, достаточна, чтобы его удержать, и подвес не будет растянут, тело все равно не находится в состоянии невесомости, ведь оно давит на опору — жидкость. Следует отметить: когда тело плавает, его вес распределяется на воду, окружающую всю поверхность тела. Поэтому во время плавания нам кажется, что мы потеряли вес. Такие комфортные условия поддержания тяжелого тела обусловили то, что в результате эволюции самые массивные существа на Земле живут в океане (рис. 27.5).
Именно архимедова сила помогает нам поднимать в воде тяжелые камни или другие предметы, ведь часть силы тяжести, действующей на эти тела, уравновешивается не силой наших рук, а выталкивающей силой.
Однако случается, что вода не помогает поднять тело, а наоборот — препятствует этому. Это происходит, если тело лежит на дне и плотно к нему прилегает. Вода не может попасть под нижнюю поверхность тела и помочь своим давлением поднять его. В таком случае, чтобы оторвать тело от дна, нужно преодолеть не только силу тяжести, действующую на тело, но и силу давления воды на верхнюю поверхность тела (рис. 27.6). Данное явление может стать причиной трагедии: если подводная лодка опустится на глинистое дно и вытеснит из под себя воду, всплыть сама она не сможет.
Пример №1
Однородный алюминиевый брусок массой 540 г полностью погружен в воду и не касается дна и стенок сосуда. Определите архимедову силу, действующую на брусок. Анализ физической проблемы. Для вычисления архимедовой силы нужно знать плотность воды и объем бруска. Объем бруска определим по его массе и плотности. Плотности воды и алюминия узнаем из таблиц плотностей (с. 249). Задачу будем решать в единицах СИ.
Дано:
,,,
Найти:
Решение:
По закону Архимеда: По определению плотности:
Подставим выражение для объема бруска в формулу для расчетов архимедовой силы:
Проверим единицу, найдем значение искомой величины:
Ответ:
Итоги:
На тело, находящееся в жидкости или газе, действует выталкивающая (архимедова) сила. Причина ее появления в том, что давление, которое оказывает жидкость или газ на верхнюю поверхность тела, отличается от давления, оказываемого на нижнюю поверхность тела. Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, которая направлена вертикально вверх и равна весу жидкости или газа в объеме погруженной части тела:
Условия плавания тел
При приготовлении раствора соли определенной плотности хозяйки погружают в него сырое яйцо: если плотность раствора недостаточна, яйцо тонет, если достаточна — всплывает. аналогично определяют плотность сахарного сиропа при консервации.
Вы наверняка можете привести множество примеров плавания тел. Плавают корабли и лодки, деревянные игрушки и воздушные шарики, плавают рыбы, дельфины, другие существа. А от чего зависит способность тела плавать? Проведем опыт. Возьмем небольшой сосуд с водой и несколько шариков, изготовленных из разных материалов. Будем поочередно погружать тела в воду, а потом отпускать их без начальной скорости. Далее в зависимости от плотности тела возможны разные варианты (см. таблицу).
Погружение
Тело начинает тонуть и в конце концов опускается на дно сосуда. Выясним, почему это происходит. На тело действуют две силы: 1) сила тяжести (поскольку ), направленная вертикально вниз; 2) выталкивающая сила направленная вертикально вверх. Тело погружается, а это значит, что сила, направленная вниз, больше: Поскольку . После сокращения на имеем:
тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа. Вариант 2. Плавание внутри жидкости. Тело не тонет и не всплывает, а остается плавать внутри жидкости. Попробуйте доказать, что в данном случае плотность тела равна плотности жидкости:
тело плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа. Вариант 3. Всплытие. Тело начинает всплывать и в конце концов останавливается на поверхности жидкости, погрузившись в жидкость частично. Пока тело всплывает, архимедова сила больше силы тяжести: или: Остановка тела на поверхности жидкости означает, что архимедова сила и сила тяжести уравновешены: тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше, чем плотность жидкости или газа.
Плавание тел в живой природе
Тела обитателей морей и рек содержат в своем составе много воды, поэтому их средняя плотность близка к плотности воды. Чтобы свободно двигаться в жидкости, они должны «управлять» средней плотностью своего тела. Приведем примеры. У рыб с плавательным пузырем такое управление происходит за счет изменения объема пузыря (рис. 28.1). Моллюск наутилус (рис. 28.2), обитающий в тропических морях, может быстро всплывать и снова опускаться на дно благодаря тому, что может менять объем внутренних полостей в организме (моллюск живет в закрученной спиралью раковине). Распространенный в Европе водяной паук (рис. 28.3) несет с собой в глубину воздушную оболочку на брюшке — именно она дает ему запас плавучести и помогает вернуться на поверхность.
Пример №2
Медный шар массой 445 г имеет внутри полость объемом 450 см3. Будет ли этот шар плавать в воде? Анализ физической проблемы. Чтобы ответить на вопрос, как поведет себя шар в воде, нужно плотность шара сравнить с плотностью воды Для вычисления плотности шара следует определить его объем и массу. Масса воздуха в шаре незначительна по сравнению с массой меди, поэтому Объем шара — это объем медной оболочки и объем полости Объем медной оболочки можно определить, зная массу и плотность меди. О плотностях меди и воды узнаем из таблиц плотностей (с. 249). Задачу целесообразно решать в представленных единицах.
Дано:
,,,
Найти:
Решение:
По определению плотности:
Объем шара: — объем медной оболочки.
Таким образом,
Решим задачу по действиям. 1. Определим объем шара:
2. Зная объем и массу шара, определим его плотность:
Анализ результата: плотность шара меньше плотности воды, поэтому шар будет плавать на поверхности воды.
Ответ: да, шар будет плавать на поверхности воды.
- Заказать решение задач по физике
Итоги:
Тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа Тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше плотности жидкости или газа
Судоходство и воздухоплавание
Стальной брусок в воде тонет, а стальные корабли плавают. Нейлоновая ткань падает в воздухе, а воздушные шары, изготовленные из этой ткани, поднимаются вверх сами и поднимают гондолы с пассажирами. Почему же стальные корабли плавают в воде, а воздушные шары называют аппаратами, которые легче воздуха? Получить ответы на эти вопросы вам помогут знания об основах судоходства и воздухоплавания.
Почему плавают суда
На первый взгляд, сталь непригодна для изготовления плавучего средства: плотность стали намного больше плотности воды, поэтому стальная пластинка в воде тонет. Но если из пластинки сделать кораблик и опустить его на поверхность воды, кораблик будет плавать (рис. 29.1). Почему? Дело в том, что погруженная в воду часть кораблика вытесняет воды достаточно, чтобы архимедова сила уравновесила силу тяжести, действующую на кораблик. Другими словами, средняя плотность кораблика за счет воздуха внутри него намного меньше плотности воды. Именно поэтому кораблик плавает на поверхности воды лишь немного в нее погружаясь.
Этот принцип лежит в основе конструкции всех судов. Средняя плотность судов намного меньше плотности воды, поэтому суда плавают на ее поверхности, погружаясь на относительно небольшую часть своего объема.
Характеристики судов:
Когда новое судно спускают на воду, оно начинает погружаться. Нижняя часть судна начинает вытеснять воду, вследствие чего возникает архимедова сила. Когда архимедова сила уравновешивает силу тяжести, действующую на судно, оно прекращает погружение. Глубину, на которую погружается судно, называют осадкой. Осадка судна изменяется в зависимости от загруженности судна и от того, в речной или морской воде оно находится. Разумеется, судно нельзя перегружать.
На корпус судна нанесена ватерлиния — линия, указывающая максимально допустимую осадку судна, при которой оно может безопасно плавать (рис. 29.2). Когда судно полностью нагружено, оно находится в воде вровень с ватерлинией.
Вес воды, которую вытесняет судно, погруженное в воду до ватерлинии, то есть архимедова сила, действующая на полностью нагруженное судно, называется полным водоизмещением судна. Напомним: поскольку нагруженное судно плавает на поверхности воды, то архимедова сила, которая действует на него, по значению равна силе тяжести, действующей на судно с грузом: Самые большие суда — танкеры для нефти — имеют полное водоизмещение до 5 млн кН, то есть их масса вместе с грузом достигает 500 000 т. Если из полного водоизмещения исключить вес самого судна, то получим максимальный вес груза, который может взять на борт данное судно, то есть определим грузоподъемность судна. грузоподъемность судна — максимальный вес груза, который судно может взять на борт, — это разность между полным водоизмещением судна и его весом. Украина — морское государство. В стране есть морской и речной флот, а также порты, имеющие большое экономическое значение: Одесский, Ильичевский, Южный, Николаевский, Херсонский, Бердянский, Мариупольский.
Как осуществилась мечта человека летать
Люди уже давно используют воздушные шары (аэростаты), поднимающиеся в воздух благодаря заполнению их оболочки горячим воздухом или легким газом. На воздушный шар в воздухе действует выталкивающая сила. Средняя плотность воздушного шара меньше плотности воздуха, поэтому выталкивающая сила больше силы тяжести и шар поднимается вверх. Разность между выталкивающей (архимедовой) силой и силой тяжести представляет собой подъемную силу воздушного шара. Сейчас воздушные шары используют для метеорологических и других исследований, соревнований, перевозок пассажиров, туристических и познавательных путешествий. Воздушные шары, наполненные легким газом (в основном гелием), называют шарльерами. В последнее время распространены воздушные шары, наполненные горячим воздухом, — современные монгольфьеры (рис. 29.3). Высокую температуру воздуха внутри шара поддерживают газовые горелки, установленные в его горловине. Поскольку плотность воздуха с высотой уменьшается, воздушные шары не могут подняться на какую угодно высоту. Воздушные шары поднимаются только до той высоты, где плотность воздуха равна средней плотности шара вместе с грузом.
Пример №3
В речном порту судно взяло на борт 100 т груза. В результате осадка судна увеличилась на 0,2 м и достигла максимально допустимой. Какова площадь сечения судна на уровне ватерлинии? Анализ физической проблемы. Когда на судно взяли груз, оно увеличило осадку и дополнительно вытеснило некоторый объем воды. По закону Архимеда, вес груза равен весу дополнительно вытесненной воды: Осадка судна увеличилась всего на 20 см, значит, площадь сечения судна на уровне поверхности воды изменилась незначительно. Поэтому объем дополнительно вытесненной воды равен где h — увеличение осадки; S — площадь сечения судна на уровне ватерлинии (по условию судно достигло максимальной осадки). Порт речной, поэтому плотность воды равна Задачу следует решать в единицах СИ.
Дано:
,,
Найти:
Решение:
1. Определим массу дополнительно вытесненной воды. По закону Архимеда:
поэтому
2. Определим объем дополнительно вытесненной воды:
3. Площадь S сечения судна на уровне ватерлинии найдем через объем вытесненной воды:
Ответ:
Мы решили задачу 1 по действиям. Решите эту задачу в общем виде (получите общую формулу, найдите значение искомой величины).
Пример №4
Объем воздушного шара равен Шар натягивает трос, которым прикреплен к причалу, с силой 800 Н. После освобождения троса шар смог подняться на некоторую высоту. Какова плотность воздуха на этой высоте, если плотность воздуха у причала
Анализ физической проблемы. Шар прекратил подъем потому, что на этой высоте его средняя плотность равна плотности воздуха . Чтобы определить среднюю плотность шара, следует найти его массу. Массу шара найдем по силе тяжести, действующей на шар. Для определения силы тяжести выполним пояснительный рисунок и покажем все силы, действовавшие на шар на причале: — сила тяжести; — архимедова сила, — сила натяжения троса. Шар на причале не двигался, поэтому силы, действовавшие на него, были скомпенсированы. Задачу будем решать по действиям в единицах СИ.
Дано:
,,,
Найти:
Решение:
Силы, действовавшие на прикрепленный к причалу шар, были скомпенсированы, следовательно:
1. Найдем архимедову силу, которая действовала на прикрепленный к причалу шар:
2. Найдем силу тяжести, действующую на шар:
3. Определим массу шара:
4. По известным массе и объему шара вычислим его среднюю плотность:
5. Плотность воздуха на высоте максимального подъема шара равна средней плотности шара, потому на этой высоте
Ответ:
Итоги:
Взаимодействие тел:
Вы узнали, что причиной изменения скорости движения тел и причиной изменения формы и объема тел является взаимодействие.
Вы ознакомились с разными силами в механике.
Вы продолжили знакомство с физическими телами и веществами и узнали о физических величинах, характеризующих тело, вещество, взаимодействие.
Вы узнали о давлении жидкостей и газов, ознакомились с законом Паскаля, законом Архимеда, доказали наличие атмосферного давления.
- Условия плавания тел в физике
- Гидростатическое взвешивание в физике
- Воздухоплавание в физике
- Машины и механизмы в физике
- Атмосферное давление в физике и его измерение
- Манометры в физике
- Барометры в физике
- Жидкостные насосы в физике
Сила Архимеда
Сила Архимеда — выталкивающая сила, которая действует на погруженное в жидкость (или газ) тело. При этом объём вытесненной жидкости будет равен объёму погруженного тела (или части тела).
Закон Архимеда — вес, который теряет погруженное в жидкость тело, равен весу вытесненной им жидкости.
Эта сила равна весу вытесненного объёма жидкости и действует в направлении, противоположном весу погруженного тела.
Примером силы Архимеда из жизни можно считать ощущение некой невесомости в воде, которое мы чувствуем, когда купаемся (в ванне или озере).
Сила Архимеда (выталкивающая сила) зависит от:
- плотности жидкости (p),
- ускорения свободного падения (g),
- объёма погруженного тела (V).
Согласно легенде, древнегреческий учёный и философ Архимед воскликнул “Эврика!” (“Я нашёл!”) именно в тот момент, когда открыл этот закон.
Сила Архимеда — это векторная величина и измеряется в ньютонах (Н). Ньютон — это интенсивность силы, приложенная к предмету массой 1 кг, при ускорении 1 метр в секунду в секунду (1 м/с²). Ньютоны обозначаются как “Н”, и 1 Н = 1 кг·м/с². Вообще сила — это мера взаимодействия тел, которая измеряется в ньютонах.
Формула силы Архимеда
Можно рассчитать силу Архимеда, которая действует на тело, погруженное в жидкость или газ, по формуле:
Fa — сила Архимеда (в Н);
p — плотность жидкости/газа (в кг/м³);
g — ускорение свободного падения (в м/с²);
V — объём погруженного тела/части тела (в м³ или см³).
Пример:
В ёмкости находится жидкость плотностью 2,58 г/см³. Внутри жидкости находится полностью погруженное тело объёмом 1000 см³. Учитывая, что ускорение свободного падения равно 10 м/с², чему равна выталкивающая сила?
Решение:
Узнайте больше про Ускорение свободного падения (g)
Как узнать, утонет тело или останется на поверхности?
Сила выталкивания не зависит от плотности тела, но это можно использовать, чтобы узнать, будет ли тело плавать на поверхности жидкости, утонет или останется в равновесии. Если:
- плотность тела < плотность жидкости = > тело плавает на поверхности,
- плотность тела = плотность жидкости = > тело остаётся в равновесии с жидкостью,
- плотность тела > плотность жидкости = > тело утонет.
Сила Архимеда и сила тяжести
На тело в жидкости всегда действуют сила тяжести (m × g), сила Архимеда (Fa), могут присутствовать и другие силы (сила упругости, сила натяжения).
Узнайте также про Закон сохранения энергии, Законы Ньютона и Аксиому.