Как найти значение силы трения покоя

Каждый из нас знаком с проявлением силы трения. Действительно, любое движение в повседневной жизни, будь то ходьба человека или перемещение транспортного средства, невозможно без участия этой силы. В физике принято изучать три вида сил трения. В данной статье рассмотрим один из них, разберемся, что собой представляет трение покоя.

Брусок на горизонтальной поверхности

Деревянный брусок

Прежде чем переходить к ответам на вопросы, что такое сила трения покоя и чему равна она, рассмотрим простой случай с бруском, который лежит на горизонтальной поверхности.

Проанализируем, какие силы действуют на брусок. Во-первых, это вес самого предмета. Обозначим его буквой P. Он направлен вертикально вниз. Во-вторых, это реакция опоры N. Она направлена вертикально вверх. Второй закон Ньютона для рассматриваемого случая запишется в таком виде:

m*a = P – N.

Знак минус здесь отражает противоположные направления векторов веса и реакции опоры. Поскольку брусок покоится, то величина a равна нулю. Последнее означает, что:

P – N = 0 =>

P = N.

Реакция опоры уравновешивает вес тела и равна ему по абсолютной величине.

Действующая внешняя сила на брусок на горизонтальной поверхности

Препятствующая движению сила трения

Теперь к описанной выше ситуации добавим еще одну действующую силу. Предположим, что человек начал толкать брусок вдоль горизонтальной поверхности. Обозначим эту силу буквой F. Можно заметить удивительную ситуацию: если сила F невелика, то несмотря на ее действие, брусок продолжает покоиться на поверхности. Вес тела и реакция опоры направлены перпендикулярно поверхности, поэтому их горизонтальные проекции равны нулю. Иными словами, силы P и N не могут оказать никакого противодействия величине F. В таком случае, почему брусок остается в состоянии покоя и не движется?

Очевидно, что должна существовать сила, которая направлена против силы F. Этой силой является трение покоя. Она направлена против F вдоль горизонтальной поверхности. Действует она в области контакта нижней грани бруска и поверхности. Обозначим ее символом Ft. Закон Ньютона для горизонтальной проекции запишется в виде:

F = Ft.

Таким образом, модуль силы трения покоя всегда равен абсолютной величине внешних сил, действующих вдоль горизонтальной поверхности.

Начало движения бруска

Чтобы записать формулу трения покоя, продолжим начатый в предыдущих пунктах статьи эксперимент. Будем увеличивать абсолютное значение внешней силы F. Брусок какое-то время еще будет оставаться в покое, но наступит момент, когда он начнет двигаться. В этот момент сила трения покоя приобретет максимальное значение.

Чтобы найти это максимальное значение, возьмем еще один точно такой же брусок, как и первый, и положим его сверху. Площадь контакта бруска с поверхностью не изменилась, однако его вес увеличился вдвое. Экспериментально было установлено, что сила F отрыва бруска от поверхности также увеличилась вдвое. Этот факт позволил записать следующую формулу трения покоя:

Ft = µs*P.

То есть максимальная величина силы трения оказывается пропорциональной весу тела P, где в качестве коэффициента пропорциональности выступает параметр µs. Величина µs называется коэффициентом трения покоя.

Поскольку вес тела в проведенном эксперименте равен силе реакции опоры N, то формулу для Ft можно переписать так:

Ft = µs*N.

В отличие от предыдущего, это выражение можно использовать всегда, даже когда тело находится на наклонной плоскости. Модуль силы трения покоя прямо пропорционален силе реакции опоры, с которой поверхность действует на тело.

Физические причины возникновения силы Ft

Пики и впадины под микроскопом

Вопрос, почему появляется трение покоя, является сложным и требует рассмотрения контакта между телами на микроскопическом и атомарном уровне.

В общем случае можно назвать две физические причины возникновения силы Ft:

  1. Механическое взаимодействие между пиками и впадинами.
  2. Физико-химическое взаимодействие между атомами и молекулами тел.

Насколько бы гладкой ни была любая поверхность, она обладает неровностями и неоднородностями. Грубо эти неоднородности можно представить в виде микроскопических пиков и впадин. Когда пик одного тела попадает во впадину другого тела, то происходит механическое сцепление между этими телами. Огромное число микроскопических сцепок является одной из причин появления трения покоя.

Вторая причина заключается в физико-химическом взаимодействии между молекулами или атомами, из которых состоят тела. Известно, когда два нейтральных атома приближаются друг к другу, то между ними могут возникать некоторые электрохимические взаимодействия, например, диполь-дипольные или ван-дер-ваальсовые. В момент начала движения брусок вынужден преодолевать эти взаимодействия, чтобы оторваться от поверхности.

Особенности силы Ft

Действие силы трения покоя

Выше уже было отмечено, чему равна сила трения покоя максимальная, а также указано ее направление действия. Здесь перечислим другие характеристики величины Ft.

Трение покоя не зависит от площади контакта. Она определяется исключительно реакцией опоры. Чем больше площадь контакта, тем меньше деформация микроскопических пиков и впадин, однако тем больше их количество. Этот интуитивный факт объясняет, почему максимальная величина Ft не изменится, если брусок перевернуть на грань с меньшей площадью.

Трение покоя и трение скольжения имеют одну и ту же природу, описываются одинаковыми формулами, однако вторая всегда меньше, чем первая. Трение скольжения появляется, когда брусок начинает движение по поверхности.

Сила Ft в большинстве случаев является неизвестной величиной. Формула, которая приведена выше для нее, соответствует максимальному значению Ft в момент начала движения бруска. Чтобы яснее понять названный факт, ниже приведен график зависимости силы Ft от внешнего воздействия F.

График зависимости силы трения

Видно, что с возрастанием F трение покоя растет линейно, достигает максимума, а затем уменьшается, когда тело начинает движение. Во время движения говорить о силе Ft уже нельзя, поскольку ее заменяет трение скольжения.

Наконец, последней важной особенностью силы Ft является то, что она не зависит от скорости перемещения (при относительных больших скоростях Ft уменьшается).

Коэффициент трения µs

Низкий коэффициент трения покоя

Так как в формуле для модуля силы трения фигурирует величина µs, следует сказать о ней несколько слов.

Коэффициент трения µs является уникальной характеристикой двух поверхностей. Он не зависит от веса тела, его определяют экспериментально. Например, для пары дерево-дерево он изменяется от 0,25 до 0,5 в зависимости от типа дерева и качества обработки поверхности трущихся тел. Для смазанной воском деревянной поверхности на мокром снегу µs = 0,14, а для человеческих суставов этот коэффициент принимает весьма низкие значения (≈0,01).

Какое бы значение ни имел µs для рассматриваемой пары материалов, аналогичный коэффициент трения скольжения µk будет всегда меньше. Например, при скольжении дерева по дереву он равен 0,2, а для суставов человека не превышает величины 0,003.

Далее рассмотрим решение двух физических задач, в которых применим полученные знания.

Брусок на наклонной поверхности: расчет силы Ft

Брусок на наклонной поверхности

Первая задача является достаточно простой. Предположим, что на деревянной поверхности лежит брусок из дерева. Его масса равна 1,5 кг. Поверхность наклонена под углом 15o к горизонту. Необходимо определить силу трения покоя, если известно, что брусок не движется.

Подвох этой задачи заключается в том, что многие начинают вычислять реакцию опоры, а затем, используя справочные данные для коэффициента трения µs, пользуются приведенной выше формулой для определения максимального значения Ft. Однако в данном случае Ft не является максимальной. Ее модуль равен лишь внешней силе, которая стремится сдвинуть брусок с места вниз по плоскости. Эта сила равна:

F = m*g*sin(α).

Тогда сила трения Ft будет равна величине F. Подставляя данные в равенство, получаем ответ: сила трения покоя на наклонной плоскости Ft = 3,81 ньютона.

Брусок на наклонной поверхности: расчет максимального угла наклона

Теперь решим такую задачу: деревянный брусок находится на деревянной наклонной плоскости. Полагая коэффициент трения равным 0,4, необходимо найти максимальный угол наклона α плоскости к горизонту, при котором брусок начнет скользить.

Скольжение начнется, когда проекция веса тела на плоскость станет равной максимальной силе трения покоя. Запишем соответствующее условие:

F = Ft =>

m*g*sin(α) = µs*m*g*cos(α) =>

tg(α) = µs =>

α = arctg(µs).

Подставляя в последнее уравнение значение µs = 0,4, получаем α = 21,8o.

На прошлом уроке мы познакомились с таким видом взаимодействия между телами, как трение (возникает при их соприкосновении друг с другом и препятствует их относительному движению).

Мы более подробно рассматривали трение скольжения и трение качения. Эти виды трения возникают, когда тела движутся. Но есть еще один вид трения, о котором мы упоминали, — это трение покоя.

На данном уроке мы разберем более подробно этот вид взаимодействия между телами.

Трение покоя

Трение покоя возникает между покоящимися относительно друг друга телами. Посмотрите на рисунок 1. Тело находится на наклонной поверхности, но не скользит вниз, хотя на него и действует сила тяжести. Оно удерживается на месте благодаря действию силы трения покоя.

Рисунок 1. Покоящееся тело на наклонной поверхности

Рассмотрим пример, когда тело находится на горизонтальной поверхности (рисунок 2). На полу стоит холодильник, и мы хотим его передвинуть. Мы нажимаем на холодильник, но он не двигается с места. Почему так происходит?

Рисунок 2. Пример трения покоя

Мы нажали на холодильник недостаточно сильно — это очевидно. Со стороны физики же, сила тяги, которая была приложена к холодильнику, уравновешивается силой трения между полом и ножками холодильника. Эта сила и называется силой трения покоя.

Сила трения покоя

Сила трения покоя — это сила трения, действующая между неподвижными относительно друг друга телами.

  • Эта сила всегда будет противоположно направлена приложенной к телу силе
  • Модуль силы трения покоя всегда равен модулю приложенной внешней силе
  • Чем больше приложенная к телу сила, тем больше сила трения покоя
  • Сила трения покоя имеет некое максимальное значение. Если величина приложенной к телу силы превысит это значение, тело придет в движение
  • Сила трения покоя при движении тела в жидкости или газе равна нулю

Измерение силы трения покоя

Силу трения покоя можно измерить с помощью динамометра. На прошлом уроке мы измеряли силу трения скольжения и силу трения качения, двигая брусок равномерно по горизонтальной поверхности.

В этот раз наша задача заключается в том, чтобы приложить такую силу, под действием которой брусок максимально долго не сдвинется с места (рисунок 3). Таким образом мы определим максимальную силу трения покоя.

Рисунок 3. Измерение силы трения покоя

Итак, прицепим брусок к динамометру. Аккуратно натягиваем пружину динамометра. Значение прибора, когда тело сдвинется с места и начнет двигаться равномерно, — и есть значение максимальной силы трения покоя.

Если далее мы зафиксируем силу трения скольжения во время равномерного движения бруска, то увидим, что сила трения скольжения будет меньше силы трения покоя (рисунок 4).

Вспомните свои усилия, когда вы пытаетесь передвинуть какой-нибудь тяжелый предмет. Самое сложное — это сдвинуть его с места, а дальше толкать намного легче.

Рисунок 4. Измерение силы трения скольжения

Сила трения покоя составила $2.4 space Н$, а сила трения скольжения — $2 space Н$.

Так мы можем сказать, что максимальная сила трения покоя больше силы трения скольжения, а сила трения скольжения больше силы трения качения.

Условие возникновения Действует между телами, покоящимися относительно друг друга
Физическая природа силы Электромагнитная природа обусловлена взаимодействием атомов или молекул элементов поверхностей взаимодействующих тел
Направление силы

T1_X2.png

Рис. (1). Направление силы трения покоя

Сила трения покоя  (vec{F}_{п}) направлена против направления возможного перемещения тел по касательной к поверхности контакта, вызванного действием внешней силы (vec{F}) (рис. (1))

Формула

Graph1.png

Рис. (2). Изображение графика зависимости

силы трения покоя от внешней силы

1) (F_{п}=F) (рис. (2));

2) (F_{п.мах}=mu N),  ((1))

(mu) — коэффициент трения;

3) размерность ([mu]=1)

Особенности Значение коэффициента трения (mu) определяется структурой трущихся поверхностей
Границы применимости При точных расчётах учитывают, что значение предельной силы трения покоя больше значения, определяемого формулой ((1))

2. Сила трения скольжения

Условие возникновения Относительное перемещение контактирующих тел
Физическая природа силы Электромагнитная природа обусловлена атомно-молекулярным взаимодействием контактирующих поверхностей
Направление силы

T2_X2.png

Рис. (3). Направление силы трения скольжения

Сила трения скольжения направлена против направления относительного перемещения тел, вызванного внешней силой (vec{F}) (рис. (3))

Формула

(закон Кулона — Амонтона)

Graph2.png

Рис. (4). Изображение графика зависимости силы

трения скольжения от внешней силы

(F_{тр}=F_{п.мах}=mu N) ((2))

Особенности Значение коэффициента трения (mu) определяется структурой трущихся поверхностей
Границы применимости Формула ((2)) справедлива при небольших значениях относительной скорости тел
Условие возникновения Относительное перемещение тел, сопровождающееся их вращением
Природа силы Электромагнитная природа обусловлена деформацией поверхностей взаимодействующих тел и межмолекулярным взаимодействием поверхностей взаимодействующих тел
Направление силы

T3_X2.png

Рис. (5). Направление сил трения качения и полной реакции

В случае качения цилиндра радиусом (R) и массой (M) под действием горизонтально направленной силы (F) (рис. (5)):

1) сила трения (vec{F}_{тр}) качения направлена против внешней силы (vec{F});

2) полная реакция опоры: (vec{R}=vec{F}_{тр}+vec{N}),

где (vec{N}) — сила реакция опоры, направленная перпендикулярно горизонтальной опоре

Формула

(F_{тр}=frac{f}{R} · Mg),

где (f) — коэффициент трения качения, ([f]=м)

Особенности Значение коэффициента трения качения (f) существенно меньше коэффициента трения скольжения (mu)
Границы применимости Скорости качения существенно меньше скорости деформации взаимодействующих поверхностей

Источники:

Рис. 1. Направление силы трения покоя. © ЯКласс.

Рис. 2. Изображение графика зависимости силы трения покоя от внешней силы. © ЯКласс.

Рис. 3. Направление силы трения скольжения. © ЯКласс.

Рис. 4. Изображение графика зависимости силы трения скольжения от внешней силы. © ЯКласс.

Рис. 5. Направление сил трения качения и полной реакции. © ЯКласс.

Физика, 10 класс

Урок 10. Силы трения

Перечень вопросов, рассматриваемых на уроке:

  1. Сухое и жидкое (вязкое) трение.
  2. Максимальная сила трения покоя.
  3. Формула для вычисления силы трения скольжения.
  4. Особенности сил сопротивления при движении твердых тел в жидкостях и газах.
  5. Формулы вычисления сил сопротивления при движении твердых тел в жидкостях и газах.

Глоссарий по теме:

Сухое трение – трение, возникающее при соприкосновении двух твёрдых тел при отсутствии между ними жидкой или газообразной прослойки.

Сила трения покоя – сила трения, действующая между двумя телами, неподвижными относительно друг друга.

Максимальная сила трения покоя – наибольшее значение силы трения, при котором скольжение еще не наступает.

Сила трения скольжения – сила, возникающая между соприкасающимися телами при их относительном движении.

Трение качения – сопротивление движению, возникающее при перекатывании тел друг по другу т.е. сопротивление качению одного тела (катка) по поверхности другого

Основная и дополнительная литература по теме урока:

  1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 113 – 122.
  2. Парфентьева Н. А. Сборник задач по физике. 10-11 классы. Базовый уровень.

Открытые электронные ресурсы:

http://kvant.mccme.ru/1978/05/kuda_napravlena_sila_treniya.htm

http://kvant.mccme.ru/1985/10/trenie_vrednoe_poleznoe_intere.htm

Теоретический материал для самостоятельного изучения

Трение – физическое явление, сопровождающее всякое движение на Земле. При любом механическом движении тела соприкасаются либо друг с другом, либо с окружающей их сплошной жидкой или газообразной средой. В результате соприкосновения возникает сила трения, которая препятствует движению. Трение может быть полезно, и тогда мы стремимся его увеличить. В случаях, когда трение вредно, принимаются меры для его уменьшения.

История открытия. Свой вклад в попытки объяснить природу трения внесли многие ученые, начиная с Аристотеля, Леонардо да Винчи, Амонтона, Леонарда Эйлера, Кулона. Дальнейший вклад в теорию трения сделали Майер, Джоуль, Гельмгольц, Кузнецов, Дерягин, Томлинсон, Рейнольдс, Штрибек, Боуден и другие.

Различают следующие виды трения:

  1. сухое;
  2. жидкое (вязкое).

Сухое трение бывает трех видов:

  1. трение покоя;
  2. трение скольжения;
  3. трение качения.

Причины возникновения силы трения:

  1. шероховатость поверхностей соприкасающихся тел.
  2. взаимное притяжение молекул соприкасающихся тел.

Сухое трение − трение, возникающее при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Силы сухого трения всегда направлены по касательной к соприкасающимся поверхностям.

Сухое трение, возникающее при относительном покое тел, называют трением покоя.

Сухое трение, возникающее при относительном движении тел, называют трением скольжения.

Трение качения возникает, когда одно тело катится по поверхности другого тела.

Закон, выражающий зависимость максимального значения модуля силы трения покоя от модуля силы нормальной реакции опоры впервые экспериментально установил французский военный инженер и учёный-физик Шарль Огюстен де Кулон. Согласно этому закону, максимальное значение модуля силы трения покоя прямо пропорционально модулю силы нормальной реакции опоры

Fтр.макс = µN,

где Fтр.макс – модуль максимальной силы трения покоя, µ- коэффициент пропорциональности, называемый коэффициентом трения покоя.

Коэффициент трения µ характеризует обе трущиеся поверхности и зависит не только от материала этих поверхностей, но и от качества их обработки. Коэффициент трения определяется экспериментально.

Трение скольжения. Сила трения скольжения также направлена вдоль поверхности соприкосновения тел, но в отличие от силы трения покоя, которая противоположна внешней силе, стремящейся сдвинуть тело, сила трения скольжения всегда направлена противоположно относительной скорости. Модуль силы трения скольжения, как и максимальной силы трения покоя, тоже пропорционален прижимающей силе, а значит, нормальной силе реакции опоры:

При не слишком больших относительных скоростях движения сила трения скольжения мало отличается от максимальной силы трения покоя. Поэтому приближенно можно считать ее постоянной и равной максимальной силе трения покоя:

Fтр ≈ Fтр.макс = µN.

Важно! Сила трения зависит от относительной скорости движения тел. В этом ее главное отличие от сил тяготения и упругости, зависящих только от расстояний.

При движении твердого тела в жидкости или газе возникает силa жидкого (вязкого) трения. Сила жидкого трения значительно меньше силы сухого трения. Эта сила направлена против скорости тела относительно среды и тормозит движение.

Главная особенность силы сопротивления состоит в том, что она появляется только при наличии относительного движения тела и окружающей среды. Сила трения покоя в жидкостях и газах полностью отсутствует. Поэтому усилием рук можно сдвинуть тяжелую баржу в воде, а сдвинуть поезд усилием рук невозможно.

Модуль силы сопротивления Fc зависит от размеров, формы и состояния поверхности тела, свойств среды (жидкости или газа), в которой тело движется, и, наконец, от относительной скорости движения тела и среды.

Примерный характер зависимости модуля силы сопротивления от модуля относительной скорости тела показан на рисунке

При относительной скорости, равной нулю, сила сопротивления не действует на тело (Fc=0). С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем все быстрее и быстрее. При малых скоростях движения силу сопротивления можно считать прямо пропорциональной скорости движения тела относительно среды:

Fc = k1v, (1)

где k1– коэффициент сопротивления, зависящий от формы, размеров, состояния поверхности тела и свойств среды – ее вязкости.

Вычислить коэффициент k1 теоретически для тел сколько-нибудь сложной формы не представляется возможным, его определяют опытным путем.

При больших скоростях относительного движения сила сопротивления пропорциональна квадрату скорости:

Fc = k2v2, (2)

где k2 – коэффициент сопротивления, отличный от k1.

Только опытным путём можно определить, какая из формул – (1) или (2) – подходит для использования в конкретной практической задаче.

Итак, основными особенностями силы сопротивления, действующей на тело, являются:

1) отсутствие силы трения покоя; 2) зависимость от относительной скорости движения.

Примеры и разбор решения заданий

1. Какая сила не позволяет человеку сдвинуть с места дом?

  1. Силы трения скольжения;
  2. сила трения покоя;
  3. сила тяжести.

Ответ: 2) Сила трения покоя.

2. Деревянный ящик равномерно движется по поверхности длинного стола. Сила давления ящика на поверхность равна 30 Н, сила трения 6 Н. Найдите коэффициент трения скольжения.

Решение.

Воспользуемся формулой, которая связывает силу давления на плоскость, силу трения и коэффициент трения Fтр = µP. Из этой формулы легко получить формулу для расчёта коэффициента трения µ = Fтр / P. Подставляя в неё численные значения, получаем:

µ = Fтр / P = 6Н/30Н = 0,2.

Ответ: 0,2.

3. Кубик из детского конструктора покоится на наклонной плоскости, образующей угол α = 40° с горизонтом. Сила трения покоя равна 0,32 Н. Определите значение силы тяжести, которая действует на кубик.

Решение.

По условию задачи кубик покоится. Следовательно, сумма всех действующих на него сил равна нулю. В проекции на ось, идущей вдоль склона плоскости, получаем соотношение: mg sin α – Fтр = 0. Из него выражаем формулу для расчета силы тяжести, действующей на кубик

Ответ: 0,5 Н.

Сила трения покоя


Сила трения покоя

4.3

Средняя оценка: 4.3

Всего получено оценок: 180.

4.3

Средняя оценка: 4.3

Всего получено оценок: 180.

Действия тел друг на друга, создающие ускорения, называют силами: все силы можно разделить на два вида: силы, действующие при непосредственном соприкосновении и силы, действующие независимо от того соприкасаются тела или нет, силы которые могут действовать на расстоянии. Сила трения возникает при соприкосновении тел и основная черта силы трения состоит в том, что она препятствует движению соприкасающихся тел или возникновению этого движения. Различают силы трения покоя, скольжения и качения.

Где мы встречаемся с силой трения

В повседневной жизни с силой трения мы сталкиваемся ежедневно. Например, сила трения помогает нам удерживать в руках предметы и ходить по земной поверхность. В зимнее время тротуары посыпают песком для увеличения той самой силы трения, и предотвращения падений на скользкий снег. Приведем еще несколько примеров на эту тему:

  • Лыжи, санки и сноуборды, конечно, прекрасно скользят по снегу спускаясь с горы, но остановятся через некоторое время на горизонтальной поверхности;
  • Автомобили и мотоциклы прекращают движение после остановки двигателя без помощи тормозов — тормозит сила трения. Правда, тормозной путь будет больше;
  • Гвозди и клинья обеспечивают сцепление за счет силы трения;
  • Узлы на веревках, тросах и шнурках не развязываются благодаря трению;
  • Предметы устойчиво стоят на столах и не падают от дуновения ветерка по той же причине;
  • Петли скрипящих дверей смазывают маслом, чтобы уменьшить силу трения;
  • Музыкальные инструменты (струнные и щипковые) звучат благодаря трению.

Рис. 1. Примеры проявления силы трения.

Дадим общее определение силы трения:

Сила трения — это сила, возникающая при контакте двух тел и препятствующая их относительному движению. Сила трения направлена против движения.

Сила трения может быть как полезной, и тогда ее действие стараются усилить, так и нежелательной. В последнем случае стараются всевозможными методами снизить трение. Как правило, для этого применяются различного рода смазки в виде масел. Например, эффективность двигателя внутреннего сгорания в наибольшей степени зависит от трения поршней о стенки цилиндров. Производители масел стараются снизить трение и увеличить срок службы двигателя.

Причины возникновения силы трения

Первая причина — не идеальность поверхностей. Казалось бы гладкие на вид и на ощупь поверхности всегда имеют какое то количество бугорков, шероховатостей и царапин, которые мы не можем разглядеть. При движении тела (или при попытке движения) эти дефекты цепляются друг за друга, что в сумме дает некоторую силу, препятствующую движению.

Граница раздела трущихся поверхностей: царапины, бугры, дефекты:

Рис. 2. Граница раздела трущихся поверхностей: царапины, бугры, дефекты.

Вторая причина — сила трения возникает благодаря существованию сил взаимодействия молекул и атомов соприкасающихся тел. Взаимодействие возникает между электрическими зарядами, которые имеют частицы (электроны, протоны), входящие в состав атомов.

Сила трения покоя

Существует или нет сила трения, когда тела находятся в состоянии покоя? Да, существует. Например, если нам понадобится дома передвинуть фортепиано или что-то из мебели, то для этого придется приложить ощутимое усилие, которое только достигнув некой стартовой величины, позволит начать движение. Еще один пример: тело, лежащее на наклонной плоскости неподвижно, удерживается силой трения, хотя на него действует сила тяжести. В обоих случаях действующая на тела сила уравновешивается силой трения. Сила, возникающая при отсутствии относительного движения тел, называется силой трения покоя.

Тело на наклонной плоскости, удерживается силой трения

Рис. 3. Тело на наклонной плоскости, удерживается силой трения.

Сила трения покоя Fтр равна по модулю внешней силе Fвн, направленной по касательной к поверхности соприкосновения тел, и противоположна ей по направлению:

$ Fтр = – Fвн $ (1).

Равенство (1) называется формулой силы трения покоя.

Силу трения покоя тела, лежащего на горизонтальной поверхности можно измерить с помощью динамометра, зацепив его за выступ (крюк) на теле. Натягивая постепенно пружину динамометра мы достигнем некоторого значения, когда тело сдвинется с места, а после этого начнет двигаться равномерно. Это и будет величина силы трения покоя.

На тело в процессе равномерного движения будет действовать уже сила трения скольжения. Оказывается, что сила трения скольжения может быть меньше, чем сила трения покоя. Это происходит потому, что коэффициент трения скольжения зависит от скорости скольжения одного тела относительно другого.

Заключение

Что мы узнали?

Итак, мы узнали по какой причине вообще возникает сила трения. Сила трения покоя существует даже при отсутствии перемещения тел относительно друг друга. Формула (1) показывает, что сила трения равна внешней силе по модулю, и направлена в противоположную сторону.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

  • Александр Коновалов

    4/5

  • Устиния Воронова

    4/5

Оценка доклада

4.3

Средняя оценка: 4.3

Всего получено оценок: 180.


А какая ваша оценка?

Добавить комментарий