солнечному свету требуется в среднем[Прим. 1] 8 минут 17 секунд, чтобы достигнуть Земли |
|
точные значения | |
---|---|
метров в секунду | 299 792 458 |
Планковских единиц | 1 |
приблизительные значения | |
километров в секунду | 300 000 |
километров в час | 1,08 млрд |
астрономических единиц в сутки | 173 |
приблизительное время путешествия светового сигнала | |
расстояние | время |
один метр | 3,3 нс |
один километр | 3,3 мкс |
от геостационарной орбиты до Земли | 119 мс |
длина экватора Земли | 134 мс |
от Луны до Земли | 1,255 с |
от Солнца до Земли (1 а. е.) | 8,3 мин. |
от Вояджера-1 до Земли | 22 часа 05 минут (на март 2023)[1] |
один световой год | 1 год |
один парсек | 3,26 лет |
от Проксимы Центавра до Земли | 4,24 лет |
от Альфы Центавра до Земли | 4,37 лет |
от ближайшей галактики (Карликовой галактики в Большом Псе) до Земли | 25 000 лет |
через Млечный Путь | 100 000 лет |
от галактики Андромеды до Земли | 2,5 млн лет |
от самой удалённой известной галактики до Земли | 13,4 млрд лет[2] |
Ско́рость све́та в вакууме[Прим. 2] — абсолютная величина скорости распространения электромагнитных волн, в точности равная 299 792 458 м/с (или приблизительно 3×108 м/с). В физике традиционно обозначается латинской буквой «» (произносится как «цэ»), от лат. celeritas (скорость).
Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства геометрии пространства-времени в целом[3]. Из постулата причинности (любое событие может оказывать влияние только на события, происходящие позже него, и не может оказывать влияние на события, произошедшие раньше него[4][5][6]) и постулата специальной теории относительности о независимости скорости света в вакууме от выбора инерциальной системы отсчёта (скорость света в вакууме одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга[7]) следует, что скорость любого сигнала и элементарной частицы не может превышать скорость света[8][9][6]. Таким образом, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.
В вакууме[править | править код]
Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с
Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году[Прим. 3].
На данный момент считают, что скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или 1 079 252 848,8 км/ч. Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[11].
В планковской системе единиц скорость света в вакууме равна 1. Можно сказать, что свет проходит 1 планковскую длину за планковское время, но в планковской системе единиц скорость света является основной единицей, а единицы времени и расстояния — производными (в отличие от СИ, где основными являются метр и секунда).
В природе со скоростью света распространяются (в вакууме):
Массивные частицы могут иметь скорость, приближающуюся почти вплотную к скорости света[Прим. 4], но всё же не достигающую её точно. Например, околосветовую скорость, лишь на 3 м/сек меньше скорости света, имеют массивные частицы (протоны), полученные на ускорителе (Большой адронный коллайдер) или входящие в состав космических лучей.[источник не указан 1996 дней]
В современной физике считается хорошо обоснованным утверждение, что причинное воздействие не может переноситься со скоростью, большей скорости света в вакууме (в том числе посредством переноса такого воздействия каким-либо физическим телом). Существует, однако, проблема «запутанных состояний» частиц, которые, судя по всему, «узнают» о состоянии друг друга мгновенно. Однако и в этом случае сверхсветовой передачи информации не происходит, поскольку для передачи информации таким способом необходимо привлечь дополнительный классический канал передачи со скоростью света[Прим. 5].
Хотя в принципе движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением (например, солнечный зайчик в принципе может двигаться по стене со скоростью, большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой)[13].
В прозрачной среде[править | править код]
Скорость света в прозрачной среде — скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.
Фазовая скорость связывает частоту и длину волны монохроматического света в среде (). Эта скорость обычно (но не обязательно) меньше . Отношение скорости света в вакууме к фазовой скорости света в среде называется показателем преломления среды. Если угловая частота волны в среде зависит от волнового числа нелинейным образом, то групповая скорость равняется первой производной , в отличие от фазовой скорости .[14]
Групповая скорость света определяется как скорость распространения биений между двумя волнами с близкой частотой и в равновесной среде всегда меньше . Однако в неравновесных средах, например, сильно поглощающих, она может превышать . При этом, однако, передний фронт импульса всё равно движется со скоростью, не превышающей скорости света в вакууме. В результате сверхсветовая передача информации остаётся невозможной.
Арман Ипполит Луи Физо на опыте доказал, что движение среды относительно светового луча также способно влиять на скорость распространения света в этой среде.
Вывод скорости света из уравнений Максвелла[править | править код]
Уравнения Максвелла в дифференциальной форме:
– вектор напряженности электрического поля
– вектор напряженности магнитного поля
– вектор магнитной индукции
– вектор электрической индукции
– магнитная проницаемость
– магнитная постоянная
– электрическая проницаемость
– электрическая постоянная
– плотность тока
– плотность заряда
– ротор, дифференциальный оператор,
– дивергенция, дифференциальный оператор,
– оператор Лапласа, ,
Для электромагнитной волны , , поэтому:
Согласно свойству ротора векторного поля . Подставив сюда и , получим:
подставляем сюда из уравнений Максвелла , получаем:
[3] (1)
Уравнение волны:
, где – оператор Д’Аламбера,
(2)
Подставляем (1) в (2), находим скорость:
сA/мкг
кг м/сА
В вакууме ,
м/с
Фундаментальная роль в физике[править | править код]
Лоренц-фактор как функция скорости. Он растет от 1 (для нулевой скорости) до бесконечности (с приближением к )
Скорость, с которой световые волны распространяются в вакууме, не зависит ни от движения источника волн, ни от системы отсчёта наблюдателя[Прим. 6]. Эйнштейн постулировал такую инвариантность скорости света в 1905 году[15]. Он пришёл к этому выводу на основании теории электромагнетизма Максвелла и доказательства отсутствия светоносного эфира[16].
Инвариантность скорости света неизменно подтверждается множеством экспериментов[17]. Существует возможность проверить экспериментально лишь то, что скорость света в «двустороннем» эксперименте (например, от источника к зеркалу и обратно) не зависит от системы отсчёта, поскольку невозможно измерить скорость света в одну сторону (например, от источника к удалённому приёмнику) без дополнительных договоренностей относительно того, как синхронизировать часы источника и приёмника. Однако, если применить для этого синхронизацию Эйнштейна, односторонняя скорость света становится равной двусторонней по определению[18][19].
Специальная теория относительности исследует последствия инвариантности в предположении, что законы физики одинаковы во всех инерциальных системах отсчёта[20][21]. Одним из последствий является то, что — это та скорость, с которой должны двигаться в вакууме все безмассовые частицы и волны (в частности, и свет).
Специальная теория относительности имеет много экспериментально проверенных последствий, которые противоречат интуиции[22]. Такие последствия включают: эквивалентность массы и энергии , сокращение длины (сокращение объектов во время движения)[Прим. 7] и замедление времени (движущиеся часы идут медленнее). Коэффициент , показывающий, во сколько раз сокращается длина и замедляется время, известен как фактор Лоренца (Лоренц-фактор)
где — скорость объекта. Для скоростей гораздо меньших, чем (например, для скоростей, с которыми мы имеем дело в быту) разница между и 1 настолько мала, что ею можно пренебречь. В этом случае специальная теория относительности хорошо аппроксимируется относительностью Галилея. Но на релятивистских скоростях разница увеличивается и стремится к бесконечности при приближении к .
Объединение результатов специальной теории относительности требует выполнения двух условий: (1) пространство и время являются единой структурой, известной как пространство-время (где связывает единицы измерения пространства и времени), и (2) физические законы удовлетворяют требованиям особой симметрии, которая называется инвариантность Лоренца (Лоренц-инвариантность), формула которой содержит параметр [25]. Инвариантность Лоренца встречается повсеместно в современных физических теориях, таких как квантовая электродинамика, квантовая хромодинамика, стандартная модель физики элементарных частиц и общая теория относительности. Таким образом, параметр встречается повсюду в современной физике и появляется во многих смыслах, которые не имеют отношения собственно к свету. Например, общая теория относительности предполагает, что гравитация и гравитационные волны распространяются со скоростью [26][27]. В неинерциальных системах отсчёта (в гравитационно искривлённом пространстве или в системах отсчёта, движущихся с ускорением), локальная скорость света также является постоянной и равна , однако скорость света вдоль траектории конечной длины может отличаться от в зависимости от того, как определено пространство и время[28].
Считается, что фундаментальные константы, такие как , имеют одинаковое значение во всём пространстве-времени, то есть они не зависят от места и не меняются со временем. Однако некоторые теории предполагают, что скорость света может изменяться со временем[29][30]. Пока нет убедительных доказательств таких изменений, но они остаются предметом исследований[31][32].
Кроме того, считается, что скорость света изотропна, то есть не зависит от направления его распространения. Наблюдения за излучением ядерных энергетических переходов как функции от ориентации ядер в магнитном поле (эксперимент Гугса — Древера), а также вращающихся оптических резонаторов (эксперимент Майкельсона — Морли и его новые вариации), наложили жёсткие ограничения на возможность двусторонней анизотропии[33][34].
В ряде естественных систем единиц скорость света является единицей измерения скорости[35]. В планковской системе единиц, также относящейся к естественным системам, она служит в качестве единицы скорости и является одной из основных единиц системы.
Верхний предел скорости[править | править код]
Согласно специальной теории относительности, энергия объекта с массой покоя и скоростью равна , где — определённый выше фактор Лоренца. Когда равна нулю, равен единице, что приводит к известной формуле эквивалентности массы и энергии . Поскольку фактор приближается к бесконечности с приближением к , ускорение массивного объекта до скорости света потребует бесконечной энергии. Скорость света — это верхний предел скорости для объектов с ненулевой массой покоя. Это экспериментально установлено во многих тестах релятивистской энергии и импульса[36].
Относительность одновременности возникающая при преобразованиях Лоренца. Три цветные системы отсчета связаны с тремя разными наблюдателями, движущимися относительно оси x. По отношению к зеленому наблюдателю красный движется со скоростью +0,28c, а синий с −0,52c. Пусть в ситеме отсчета зеленого наблюдателя событие «B» произошло одновременно с событием «A», тогда для синего событие «B» произойдет раньше, чем «A», а для красного наоборот — «A» раньше, чем «B».
Вообще информация или энергия не могут передаваться в пространстве быстрее, чем со скоростью света. Один из аргументов в пользу этого следует из контринтуитивного заключения специальной теории относительности, известного как относительность одновременности. Если пространственное расстояние между двумя событиями А и В больше, чем промежуток времени между ними, умноженный на , то существуют такие системы отсчёта, в которых А предшествует B, и другие, в которых B предшествует А, а также такие, в которых события А и B одновременны. В результате, если объект двигался бы быстрее скорости света относительно некоторой инерциальной системы отсчёта, то в другой системе отсчёта он бы путешествовал назад во времени, и принцип причинности был бы нарушен[Прим. 8][38]. В такой системе отсчёта «следствие» можно было бы наблюдать раньше его «первопричины». Такое нарушение причинности никогда не наблюдалось[19]. Оно также может приводить к парадоксам, таким как тахионный антителефон[39].
История измерений скорости света[править | править код]
Античные учёные, за редким исключением, считали скорость света бесконечной[40]. В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.
Наблюдения при измерении скорости света при затмениях Ио Юпитером
Первую оценку скорости света произвёл Олаф Рёмер (1676). Он заметил, что, когда Земля на своей орбите находится дальше от Юпитера, затмения Юпитером спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220 000 км/с — неточное значение, но близкое к истинному. В 1676 году он сделал сообщение в Парижской Академии, но не опубликовал свои результаты в виде формальной научной работы. Поэтому научное сообщество приняло идею о конечной скорости света только полвека спустя[41], когда в 1728 году открытие аберрации позволило Дж. Брэдли подтвердить конечность скорости света и уточнить её оценку. Полученное Брэдли значение составило 308 000 км/с[42][43].
Схема опыта Физо по определению скорости света.
1 — Источник света.
2 — Светоделительное полупрозрачное зеркало.
3 — Зубчатое колесо-прерыватель светового пучка.
4 — Удалённое зеркало.
5 — Телескопическая труба.
Впервые измерения скорости света, основанные на определении времени прохождения светом точно измеренного расстояния в земных условиях, выполнил в 1849 году А. И. Л. Физо. В своих экспериментах Физо использовал разработанный им «метод прерываний», при этом расстояние, преодолеваемое светом в опытах Физо, составляло 8,63 км. Полученное в результате выполненных измерений значение оказалось равным 313 300 км/с.
В дальнейшем метод прерываний значительно усовершенствовали и его использовали для измерений М. А. Корню (1876 г.), А. Ж. Перротен (1902 г.) и Э. Бергштранд[sv]. Измерения, выполненные Э. Бергштрандом в 1950 году, дали для скорости света значение 299 793,1 км/с, при этом точность измерений была доведена до 0,25 км/с[42].
Другой лабораторный метод («метод вращающегося зеркала»), идея которого была высказана в 1838 году Ф. Араго, в 1862 году осуществил Леон Фуко. Измеряя малые промежутки времени с помощью вращающегося с большой скоростью (512 об/с) зеркала, он получил для скорости света значение 298 000 км/с с погрешностью 500 км/с. Длина базы в экспериментах Фуко была сравнительно небольшой — двадцать метров[43][42][44][45][46]. В последующем за счёт совершенствования техники эксперимента, увеличения используемой базы и более точного определения её длины точность измерений с помощью метода вращающегося зеркала была существенно повышена. Так, С. Ньюком в 1891 году получил значение 299 810 км/с с погрешностью 50 км/с, а А. А. Майкельсону в 1926 году удалось понизить погрешность до 4 км/с и получить для скорости величину 299 796 км/с. В своих экспериментах Майкельсон использовал базу, равную 35 373,21 м[42].
Дальнейший прогресс был связан с появлением мазеров и лазеров, которые отличаются очень высокой стабильностью частоты излучения, что позволило определять скорость света одновременным измерением длины волны и частоты их излучения. В начале 1970-х годов погрешность измерений скорости света приблизилась к 1 м/с[47]. После проверки и согласования результатов, полученных в различных лабораториях, XV Генеральная конференция по мерам и весам в 1975 году рекомендовала использовать в качестве значения скорости света в вакууме величину, равную 299 792 458 м/с, с относительной погрешностью (неопределённостью) 4⋅10-9[48], что соответствует абсолютной погрешности 1,2 м/с[49].
Существенно, что дальнейшее повышение точности измерений стало невозможным в силу обстоятельств принципиального характера: ограничивающим фактором стала величина неопределённости реализации определения метра, действовавшего в то время. Проще говоря, основной вклад в погрешность измерений скорости света вносила погрешность «изготовления» эталона метра, относительное значение которой составляло 4⋅10-9[49]. Исходя из этого, а также учитывая другие соображения, XVII Генеральная конференция по мерам и весам в 1983 году приняла новое определение метра, положив в его основу рекомендованное ранее значение скорости света и определив метр как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды[50].
Сверхсветовое движение[править | править код]
Из специальной теории относительности следует, что превышение скорости света физическими частицами (массивными или безмассовыми) нарушило бы принцип причинности — в некоторых инерциальных системах отсчёта оказалась бы возможной передача сигналов из будущего в прошлое. Однако теория не исключает для гипотетических частиц, не взаимодействующих с обычными частицами[51], движение в пространстве-времени со сверхсветовой скоростью.
Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически движение тахионов описывается преобразованиями Лоренца как движение частиц с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия — так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее массивной частице (как с вещественной, так и с мнимой массой) достичь скорости света — сообщить частице бесконечное количество энергии просто невозможно.
Следует понимать, что, во-первых, тахионы — это класс частиц, а не один вид частиц, и во-вторых, тахионы не нарушают принцип причинности, если они никак не взаимодействуют с обычными частицами[51].
Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой, в отличие от безмассовых частиц, называемых люксонами. Люксоны в вакууме всегда движутся со скоростью света, к ним относятся фотоны, глюоны и гипотетические гравитоны.
C 2006 года показано, что в так называемом эффекте квантовой телепортации кажущееся взаимовлияние частиц распространяется быстрее скорости света. Например, в 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесённые на 18 км в пространстве запутанные фотонные состояния, показала, что это кажущееся «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый «парадокс Хартмана[en]» — кажущаяся сверхсветовая скорость при туннельном эффекте[52]. Анализ этих и подобных результатов показывает, что они не могут быть использованы для сверхсветовой передачи какого-либо несущего информацию сообщения или для перемещения вещества[53].
В результате обработки данных эксперимента OPERA[54], набранных с 2008 по 2011 год в лаборатории Гран-Сассо совместно с ЦЕРН, было зафиксировано статистически значимое указание на превышение скорости света мюонными нейтрино[55]. Сообщение об этом сопровождалось публикацией в архиве препринтов[56]. Полученные результаты специалисты подвергли сомнению, поскольку они не согласуются не только с теорией относительности, но и с другими экспериментами с нейтрино[57]. В марте 2012 года в том же тоннеле были проведены независимые измерения, и сверхсветовых скоростей нейтрино они не обнаружили[58]. В мае 2012 года OPERA провела ряд контрольных экспериментов и пришла к окончательному выводу, что причиной ошибочного предположения о сверхсветовой скорости стал технический дефект (плохо вставленный разъём оптического кабеля)[59].
См. также[править | править код]
- Переменная скорость света
- Односторонняя скорость света
- Световой год
- Скорость звука
- Планковские единицы
- Рациональная система единиц
Примечания[править | править код]
- Комментарии
- ↑ От поверхности Солнца — от 8 мин 8,3 с в перигелии до 8 мин 25 с в афелии.
- ↑ Скорость распространения светового импульса в среде отличается от скорости его распространения в вакууме (меньше, чем в вакууме), и может быть различной для разных сред. Когда говорят просто о скорости света, обычно подразумевается именно скорость света в вакууме; если же говорят о скорости света в среде, это, как правило, оговаривается явно.
- ↑ В настоящее время наиболее точные методы измерения скорости света основаны на независимом определении значений длины волны и частоты света или другого электромагнитного излучения и последующего расчёта в соответствии с равенством [10].
- ↑ См. например «Частица Oh-My-God».
- ↑ Аналогом может быть посылка наудачу двух заклеенных конвертов с белой и чёрной бумагой в разные места. Открытие одного конверта гарантирует, что во втором будет лежать второй лист — если первый чёрный, то второй белый, и наоборот. Эта «информация» может распространяться быстрее скорости света — ведь вскрыть второй конверт можно в любое время, и там всегда будет этот второй лист. При этом принципиальная разница с квантовым случаем состоит только в том, что в квантовом случае до «открытия конверта»-измерения состояние листа внутри принципиально неопределённо, как у кота Шрёдингера, и там может оказаться любой лист.
- ↑ Однако частота света зависит от движения источника света относительно наблюдателя, благодаря эффекту Доплера.
- ↑ Помимо того, что измеряемые движущиеся объекты оказываются короче вдоль линии относительного движения, они также выглядят повёрнутыми. Этот эффект, известный как вращение Террелла, связан с разницей во времени между пришедшими к наблюдателю сигналами от разных частей объекта[23][24].
- ↑ Считается, что эффект Шарнхорста позволяет сигналам распространяться немногим выше , но особые условия, при которых эффект может возникать, мешают применить этот эффект для нарушения принципа причинности[37].
- Источники
- ↑ Where Are the Voyagers – NASA Voyager. Voyager – The Interstellar Mission. Jet Propulsion Laboratory, California Istitute of Technology. Дата обращения: 12 июля 2011. Архивировано 3 февраля 2012 года.
- ↑ Amos, Jonathan. Hubble sets new cosmic distance record, BBC News (3 марта 2016). Архивировано 4 марта 2016 года. Дата обращения: 3 марта 2016.
- ↑ 1 2 Is The Speed of Light Everywhere the Same? Дата обращения: 10 сентября 2015. Архивировано 8 сентября 2015 года.
- ↑ Начала теоретической физики, 2007, с. 169.
- ↑ Неванлинна, 1966, с. 122.
- ↑ 1 2 Чудинов Э. М. Теория относительности и философия. — М.: Политиздат, 1974. — С. 222—227.
- ↑ Эволюция физики, 1948, с. 167.
- ↑ Начала теоретической физики, 2007, с. 170.
- ↑ Неванлинна, 1966, с. 184.
- ↑ Сажин М. В. Скорость света // Физика космоса : маленькая энциклопедия / Гл. ред. Р. А. Сюняев. — Изд. 2-е, перераб. и доп. — М.: Советская энциклопедия, 1986. — С. 622. — 783 с. — 70 000 экз.
- ↑ ГОСТ 8.417-2002. Государственная система обеспечения единства измерений. Единицы величин. Дата обращения: 14 августа 2012. Архивировано из оригинала 10 ноября 2012 года.
- ↑ Abbott B. P. et al. (LIGO Scientific Collaboration, Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL). Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A // The Astrophysical Journal. — 2017. — Vol. 848. — P. L13. — doi:10.3847/2041-8213/aa920c. [исправить]
- ↑ Болотовский Б. М., Гинзбург В. Л. Эффект Вавилова — Черенкова и эффект Допплера при движении источников со скоростью больше скорости света в вакууме // Успехи физических наук. — Российская академия наук, 1972. — Т. 106, № 4. — С. 577—592. Архивировано 25 сентября 2013 года.
- ↑ Миллер М. А., Суворов E. В. Групповая скорость // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1. — С. 544—545. — 704 с.
- ↑ Stachel, J. J. Einstein from “B” to “Z” – Volume 9 of Einstein studies (нем.). — Springer, 2002. — S. 226. — ISBN 0-8176-4143-2. Архивная копия от 16 ноября 2016 на Wayback Machine
- ↑ Einstein, A. Zur Elektrodynamik bewegter Körper (нем.) // Annalen der Physik. — 1905. — Bd. 17. — S. 890—921. — doi:10.1002/andp.19053221004. English translation: Perrett, W; Jeffery, GB (tr.); Walker, J (ed.) On the Electrodynamics of Moving Bodies. Fourmilab. Дата обращения: 27 ноября 2009. Архивировано 1 февраля 2013 года.
- ↑ Александров Е. Б. Теория относительности: прямой эксперимент с кривым пучком // Химия и жизнь. — 2012. — № 3. Архивировано 4 марта 2016 года.
- ↑
Hsu, J-P; Zhang, Y. Z. Lorentz and Poincaré Invariance. — World Scientific, 2001. — Т. 8. — С. 543ff. — (Advanced Series on Theoretical Physical Science). — ISBN 981-02-4721-4. - ↑ 1 2 Zhang, Y. Z. Special Relativity and Its Experimental Foundations (англ.). — World Scientific, 1997. — Vol. 4. — P. 172—173. — (Advanced Series on Theoretical Physical Science). — ISBN 981-02-2749-3. Архивная копия от 19 мая 2012 на Wayback Machine Архивированная копия. Дата обращения: 24 января 2013. Архивировано 19 мая 2012 года.
- ↑
d’Inverno, R. Introducing Einstein’s Relativity (англ.). — Oxford University Press, 1992. — P. 19—20. — ISBN 0-19-859686-3. - ↑
Sriranjan, B. Postulates of the special theory of relativity and their consequences // The Special Theory to Relativity. — PHI Learning, 2004. — С. 20 ff. — ISBN 81-203-1963-X. - ↑ Roberts, T; Schleif, S; Dlugosz, JM (ed.) What is the experimental basis of Special Relativity? Usenet Physics FAQ. University of California, Riverside (2007). Дата обращения: 27 ноября 2009. Архивировано 1 февраля 2013 года.
- ↑
Terrell, J. Invisibility of the Lorentz Contraction (англ.) // Physical Review : journal. — 1959. — Vol. 116, no. 4. — P. 1041—1045. — doi:10.1103/PhysRev.116.1041. — Bibcode: 1959PhRv..116.1041T. - ↑
Penrose, R. The Apparent Shape of a Relativistically Moving Sphere (англ.) // Proceedings of the Cambridge Philosophical Society (англ.) (рус. : journal. — 1959. — Vol. 55, no. 01. — P. 137—139. — doi:10.1017/S0305004100033776. — Bibcode: 1959PCPS…55..137P. - ↑
Hartle, J. B. Gravity: An Introduction to Einstein’s General Relativity (англ.). — Addison-Wesley, 2003. — P. 52—9. — ISBN 981-02-2749-3. - ↑
Hartle, J. B. Gravity: An Introduction to Einstein’s General Relativity (англ.). — Addison-Wesley, 2003. — P. 332. — ISBN 981-02-2749-3. - ↑ The interpretation of observations on binary systems used to determine the speed of gravity is considered doubtful by some authors, leaving the experimental situation uncertain; seeSchäfer, G; Brügmann, M. H. Propagation of light in the gravitational filed of binary systems to quadratic order in Newton’s gravitational constant: Part 3: ‘On the speed-of-gravity controversy’ // Lasers, clocks and drag-free control: Exploration of relativistic gravity in space (англ.) / Dittus, H; Lämmerzahl, C; Turyshev, S. G.. — Springer, 2008. — ISBN 3-540-34376-8.
- ↑ Gibbs, P Is The Speed of Light Constant? Usenet Physics FAQ. University of California, Riverside (1997). Дата обращения: 26 ноября 2009. Архивировано 17 ноября 2009 года.
- ↑
Ellis, GFR; Uzan, J-P. ‘c’ is the speed of light, isn’t it? (англ.) // American Journal of Physics : journal. — 2005. — Vol. 73, no. 3. — P. 240—247. — doi:10.1119/1.1819929. — Bibcode: 2005AmJPh..73..240E. — arXiv:gr-qc/0305099.. — «The possibility that the fundamental constants may vary during the evolution of the universe offers an exceptional window onto higher dimensional theories and is probably linked with the nature of the dark energy that makes the universe accelerate today.». - ↑ An overview can be found in the dissertation of Mota, DF (2006), Variations of the fine structure constant in space and time, arΧiv:astro-ph/0401631 [astro-ph].
- ↑
Uzan, J-P. The fundamental constants and their variation: observational status and theoretical motivations (англ.) // Reviews of Modern Physics : journal. — 2003. — Vol. 75, no. 2. — P. 403. — doi:10.1103/RevModPhys.75.403. — Bibcode: 2003RvMP…75..403U. — arXiv:hep-ph/0205340. - ↑
Amelino-Camelia, G (2008), Quantum Gravity Phenomenology, arΧiv:0806.0339 [gr-qc]. - ↑ Herrmann, S; Senger, A; Möhle, K; Nagel, M; Kovalchuk, EV; Peters, A. Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level (англ.) // Physical Review D : journal. — 2009. — Vol. 80, no. 100. — P. 105011. — doi:10.1103/PhysRevD.80.105011. — Bibcode: 2009PhRvD..80j5011H. — arXiv:1002.1284.
- ↑ Lang, K. R. Astrophysical formulae. — 3rd. — Birkhäuser (англ.) (рус., 1999. — С. 152. — ISBN 3-540-29692-1.
- ↑ Tomilin K. A. Natural Systems of Units: To the Centenary Anniversary of the Planck System (англ.). Proc. of the XXII Internat. Workshop on high energy physics and field theory (июнь 1999). Дата обращения: 22 декабря 2016. Архивировано 12 мая 2016 года.
- ↑ Fowler, M Notes on Special Relativity 56. University of Virginia (март 2008). Дата обращения: 7 мая 2010. Архивировано 1 февраля 2013 года.
- ↑
Liberati, S; Sonego, S; Visser, M. Faster-than-c signals, special relativity, and causality (англ.) // Annals of Physics (англ.) (рус. : journal. — 2002. — Vol. 298, no. 1. — P. 167—185. — doi:10.1006/aphy.2002.6233. — Bibcode: 2002AnPhy.298..167L. — arXiv:gr-qc/0107091. - ↑
Taylor, EF; Wheeler, J. A. Spacetime Physics. — W. H. Freeman (англ.) (рус., 1992. — С. 74—5. — ISBN 0-7167-2327-1. - ↑
Tolman, R. C. Velocities greater than that of light // The Theory of the Relativity of Motion. — Reprint. — BiblioLife (англ.) (рус., 2009. — С. 54. — ISBN 978-1-103-17233-7. - ↑ Гиндикин С. Г. Рассказы о физиках и математиках. — издание третье, расширенное. — М.: МЦНМО, 2001. — С. 105—108. — ISBN 5-900916-83-9. Архивная копия от 11 июля 2020 на Wayback Machine
- ↑ Стюарт, 2018, с. 178.
- ↑ 1 2 3 4 Ландсберг Г. С. Оптика. — М.: Физматлит, 2003. — С. 384—389. — 848 с. — ISBN 5-9221-0314-8.
- ↑ 1 2 Бонч-Бруевич А. М. Скорость света // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 548—549. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
- ↑ Léon Foucault. Détermination expérimentale de la vitesse de la lumière ; description des appareils (фр.) // Comptes rendus hebdomadaires des séances de l’Académie des Sciences. — Paris, 1862. — Vol. 55. — P. 792—796. Архивировано 24 сентября 2015 года.
- ↑ Léon Foucault. Détermination expérimentale de la vitesse de la lumière ; parallaxe du Soleil (фр.) // Comptes rendus hebdomadaires des séances de l’Académie des Sciences. — Paris, 1862. — Vol. 55. — P. 501—503. Архивировано 24 сентября 2015 года.
- ↑ Léon Foucault. Experimental Determination of the Velocity of Light: Description of the Apparatus (англ.) // Philosophical Magazine. Fourth Series. — London, 1863. — Vol. 25. — P. 76—79.
- ↑ Evenson K. M., Wells J. S., Petersen F. R., Danielson B. L., Day G. W. Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser (англ.) // Phys. Rev. Lett.. — 1972. — Vol. 29, no. 19. — P. 1346—1349. — doi:10.1103/PhysRevLett.29.1346.
- ↑ Указанная погрешность представляет собой утроенное стандартное отклонение.
- ↑ 1 2 Рекомендованное значение скорости света Архивная копия от 7 октября 2008 на Wayback Machine (англ.) Резолюция 2 XV Генеральной конференции по мерам и весам (1975)
- ↑ Определение метра Архивная копия от 26 июня 2013 на Wayback Machine (англ.) Резолюция 1 XVII Генеральной конференции по мерам и весам (1983)
- ↑ 1 2 Введение в рассмотрение полевой квантовой природы этих сверхсветовых частиц, возможно, позволяет обойти это ограничение через принцип переинтерпретации наблюдений.
- ↑ Давидович М. В. О парадоксе Хартмана, туннелировании электромагнитных волн и сверхсветовых скоростях // Успехи физических наук. — М.: Российская академия наук, 2009 (апрель). — Вып. 179. — С. 443. Архивировано 24 октября 2020 года.
- ↑ И. Иванов. Проведены новые эксперименты по проверке механизма квантовой запутанности. Архивная копия от 31 августа 2008 на Wayback Machine Элементы.ру.
- ↑ Oscillation Project with Emulsion-tRacking Apparatus. Дата обращения: 23 сентября 2011. Архивировано 11 октября 2012 года.
- ↑ OPERA experiment reports anomaly in flight time of neutrinos from CERN to Gran Sasso. Дата обращения: 10 января 2016. Архивировано 5 апреля 2013 года.
- ↑ OPERA Collaboration (Adam T. et al.) (2011), Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arΧiv:1109.4897..
- ↑ И.Иванов. Эксперимент OPERA сообщает о наблюдении сверхсветовой скорости нейтрино. Архивная копия от 25 сентября 2012 на Wayback Machine Элементы.ру, 23 сентября 2011 года.
- ↑ ICARUS Collaboration et al. Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam // Physics Letters B. — 2012. — Vol. 713 (18 июля). — P. 17–22. — arXiv:1203.3433. — doi:10.1016/j.physletb.2012.05.033.
- ↑ Эксперимент OPERA окончательно «закрыл» сверхсветовые нейтрино Архивная копия от 7 июля 2012 на Wayback Machine.
Литература[править | править код]
- Александров Е. Б., Александров П. А., Запасский В. С., Корчуганов В. Н., Стирин А. И. Эксперименты по прямой демонстрации независимости скорости света от скорости движения источника // Успехи физических наук. — Российская академия наук, 2011. — Вып. 12.
- Физические величины: Справочник./А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; под ред. И. С. Григорьева, Е. З. Мейлихова М.: Энергоатомиздат, 1991, — 1232 с.— ISBN 5-283-04013-5.
- Эйнштейн А., Инфельд Л. Эволюция физики. — М.: ОГИЗ, 1948. — 267 с.
- Медведев Б. В. Начала теоретической физики. — М.: Физматлит, 2007. — 600 с.
- Неванлинна Р. Пространство, время и относительность. — М.: Мир, 1966. — 229 с.
- Иэн Стюарт. Математика космоса. Как современная наука расшифровывает Вселенную = Stewart Ian. Calculating the Cosmos: How Mathematics Unveils the Universe. — Альпина Паблишер, 2018. — 542 p. — ISBN 978-5-91671-814-0.
- И.В.Савельев “Курс общей физики” том II
Ссылки[править | править код]
- Скорость света — статья в Физической энциклопедии
- Скорость света на astronet.ru
- Rømer, O (1676). “Démonstration touchant le mouvement de la lumière trouvé par M. Römer de l’Academie Royale des Sciences” (PDF). Journal des sçavans [фр.]: 223—36.
- Halley, E (1694). “Monsieur Cassini, his New and Exact Tables for the Eclipses of the First Satellite of Jupiter, reduced to the Julian Stile and Meridian of London”. Philosophical Transactions of the Royal Society. 18 (214): 237—56. Bibcode:1694RSPT…18..237C. DOI:10.1098/rstl.1694.0048.
- Fizeau, HL (1849). “Sur une expérience relative à la vitesse de propagation de la lumière” (PDF). Comptes rendus de l’Académie des sciences [фр.]. 29: 90—92, 132.
- Foucault, JL (1862). “Détermination expérimentale de la vitesse de la lumière: parallaxe du Soleil”. Comptes rendus de l’Académie des sciences [фр.]. 55: 501—03, 792—96.
Ничто во Вселенной не может быть быстрее скорости света. Узнайте в этой статье, что представляет собой эта особая величина и как на самом деле можно измерить скорость света.
Скорость света c — это одна из самых важных фундаментальных констант в физике. Значение скорости света — 299 792 458 м / (с точностью до ±1,2 м/с) [1] (что примерно равно 300 000 километров в секунду). Это означает, что за одну секунду свет преодолевает расстояние в 300 000 километров. Например, если вы стоите на Луне и светите сильным источником света в сторону Земли, свет проходит 1,25 секунды, прежде чем его можно будет увидеть здесь.
На самом деле, это значение скорости является точным, поскольку, по международному соглашению, определение метра гласит, что один метр — это длина, которую свет проходит в вакууме за 1 / 299792458 секунд.
Заметим, однако, что это действительно только скорость света в вакууме. Если свет проходит через среду, даже если это всего лишь воздух, эта скорость уменьшается.
Помните! Скорость света c точно определена как 299 792 458 метров в секунду. Ничто не движется быстрее света.
Насколько велика скорость света?
Трудно представить, насколько велика скорость света. Лучше всего представить себе это в сравнении со скоростями, которые вам более знакомы. В следующей таблице рассмотрим, как быстро движутся другие вещи в нашей повседневной жизни по сравнению со скоростью света.
Объект | Скорость в м/с (с округлением) |
Человек | 1,5 |
Гоночный автомобиль | 100 |
Звуковые волны | 343 |
Сверхзвуковой самолет | 400 |
Скорость света | 300 000 000 |
Однако это скорость света в вакууме (например, в космическом пространстве). Если свет движется в среде, такой как воздух, его скорость иногда значительно уменьшается.
Скорость света — это максимальная скорость всей материи и информации. На обычных путях ничто не движется быстрее, чем скорость света в вакууме c. Это означает, что не только свет, но и все остальное подчиняется этому ограничению скорости. К ним относятся, например, электромагнитное излучение и гравитационные волны. Такие волны и частицы движутся со скоростью света, независимо от скорости и направления их источника. Это относится и к движущемуся объекту. Например, если поезд едет с включенными фарами, свет все равно будет двигаться со скоростью света, независимо от того, насколько быстро движется поезд. Частицы и материя, чья масса не равна нулю, могут приближаться к скорости света, но никогда не достигают ее.
Скорость света в различных средах
В прозрачных средах, таких как воздух или стекло, свет распространяется медленнее, чем скорость света в вакууме. То же самое относится и к электромагнитным волнам в проводниках. Они также движутся медленнее скорости света. Это отношение скорости света c к скорости в среде v называется показателем преломления n= c / v.
Скорость света в воздухе.
В воздухе этот показатель преломления для видимого света составляет 1,0003. Поэтому в воздухе свет проходит на около 90 километров в секунду медленнее, чем в вакууме, то есть c / 1,0003 ≈ 299910 км / с .
Скорость света в воде.
В воде коэффициент преломления составляет около 1,3 , поэтому скорость света снижается до 230 769 километров в секунду, то есть c / 1,3 ≈ 230 769 км / с .
Скорость света в стекле.
В стекле коэффициент преломления равен 1,5. Если вы рассчитаете это, как и раньше, то получите скорость около 200 000 километров в секунду, то есть c / 1,5 ≈ 200 000 км / с .
Измерение скорости света
Когда вы включаете дома свет, кажется, что свет сразу же заполняет комнату. Но если смотреть на него на очень больших расстояниях и с помощью более совершенных измерительных приборов, чем ваш невооруженный глаз, конечная скорость света становится очевидной.
Существует множество подобных экспериментов. Однако в одном интересном варианте в качестве мишени используется наша Луна.
Представьте, что вы поместили зеркало на поверхность Луны. Теперь вы используете лазер, чтобы направить свет с Земли на это зеркало, и ждете, сколько времени пройдет, пока вы увидите отраженный свет. Только примерно через 2,5 секунды вы увидите вспышку зеркала.
Так с какой скоростью v движется свет вашего лазера?
Вы можете рассчитать её. Луна находится на расстоянии 384 400 километров от Земли. Ваш лазерный свет должен преодолеть это расстояние дважды. Один раз, чтобы добраться от вашего местонахождения до Луны, а затем еще раз, чтобы вернуться от Луны обратно к вам. Лазеру требуется 2,5 секунды, чтобы преодолеть это расстояние.
v = расстояние / время = 2 * 384 400 км / 2,5 с = 307 520 км / с .
Это не совсем соответствует реальному значению около 300 000 километров в секунду, но очень близко. С помощью более точных измерительных приборов можно более точно определить скорость света.
Кстати, свету требуется еще больше времени, чтобы пройти путь от Солнца до Земли. Свету, излучаемому Солнцем, требуется в среднем 8 минут и 17 секунд, чтобы достичь нас на Земле.
Определение скорости света сыграло в науке очень важную роль. Была не только выяснена природа света, но и установлено, что никакое тело не может двигаться со скоростью, превышающей скорость света в вакууме. Это стало ясно после создания теории относительности.
[2]
Единицы измерения
Теперь вы увидели, что скорость указывается в метрах в секунду, а также в километрах в секунду или километрах в час. С помощью простых вычислений вы можете самостоятельно перевести значения в соответствующие единицы измерения.
Чтобы было легче вычислить, мы округлим и скажем, что скорость света составляет 300 000 000 метров в секунду (300 000 000 м/с).
Скорость света в км / с .
Пересчет в километры в секунду относительно прост. В одном километре 1000 метров. Вы знаете, что свет распространяется со скоростью 300 000 000 метров в секунду, тогда 300 000 000 м / 1000 = 300 000 км.
Это означает, что за одну секунду ваш свет распространяется на 300 000 километров.
Скорость света в км / ч .
Теперь вы знаете, какое расстояние проходит свет за одну секунду. Теперь вам просто нужно экстраполировать это на часы. В часе 60 минут. В одной минуте 60 секунд, тогда 60 * 60 с = 3600 с. Таким образом, в одном часе 3600 секунд.
В итоге получаем: ( 300 000 км * 3600 ) / ( 1 c * 3600 ) = 1 080 000 000 км / 3600 с = 1 080 000 000 км / ч.
Поэтому свет распространяется в вакууме со скоростью примерно 1 080 000 000 000 км/ч (километров в час).
Скорость света в электродинамике
Классическая физика описывает свет как тип электромагнитной волны. Кроме того, уравнения Максвелла описывают классическое поведение электромагнитных волн.
Законы Максвелла предскажут волны в пустоте со скоростью: c = 1 / ε0 * μ0 , где ε0 — электрическая постоянная и μ0 — магнитная постоянная.
В современной квантовой физике теория квантовой электродинамики (КЭД) описывает электромагнитное поле. В этом случае свет является фундаментальным возбуждением (также называемым квантом) электромагнитного поля. Это возбуждение принимает форму фотона. В рамках КЭД фотоны являются безмассовыми частицами. Поэтому, согласно специальной теории относительности, они движутся через вакуум со скоростью света.
Список использованных источников
- Википедия
- Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни/ Г. Я. Мякишев, Б. Б. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 19-е изд. — М. : Просвещение, 2010. — 399 с.
- Касьянов В. А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. – М.: Дрофа, 2005.
Физические свойства света с древних времен интересовали ученых, однако измерить его скорость удалось относительно недавно. Ранние цивилизации, например, древние греки, пытались дать количественную оценку свойствам света, но пришли к мнению, что такие измерения сделать невозможно. Поскольку распространение света — самое быстрое из известных физических явлений, для ее измерения потребовалась разработка современного хронометрического оборудования, и только в 1973 году удалось установить, что скорость света в вакууме составляет 299 792 458 метров в секунду.
Одним из первых установленных фактов о свете был то, что свет распространяется быстрее, чем звук. Когда что-то издавало громкий хлопок, сопровождающийся яркой вспышкой, например, выстрел из пушки или удар молнии, то свет всегда доходил до наблюдателя раньше звука.
Трудность в количественном определении этой задержки заключалась в огромной разнице в скоростях двух явлений и отсутствии точных часов. Звук распространяется со скоростью 331,3 м/с (при температуре 00 ° C, 0% влажности и атмосферном давлении 788 мм рт. ст.), тогда как свет движется со скоростью 299 792 458 м/с.
Ранним исследователям казалось, что свет перемещается мгновенно. В течение многих столетий скорость света была философской концепцией. Мнения об этом разделялись: одни считали, что скорость света бесконечна, другие утверждали, что она должна быть конечна и измерима.
Изобретение более точных часов помогло произвести первое измерение скорости света. Один из первых экспериментов, дающих приблизительную оценку, провел Оле Кристенсен Ремер в 1676 году. В своих измерениях он использовал орбитальное движение спутника Юпитера Ио.
Когда Юпитер находился ближе всего к Земле Ремер зафиксировал точный момент, когда Ио вошел в тень Юпитера и через несколько месяцев сравнил это время со временем вхождения Ио в тень Юпитера, когда Юпитер находился на большем расстоянии от Земли. Таким образом, по его расчетам скорость света составила 220 000 000 м/с.
В 1728 году более точные расчеты сделал Джеймс Брэдли, который сопоставил движение звезд в разное время по сравнению со скоростью Земли на ее орбите. Его расчеты, согласно которым свет движется со скоростью 298 000 000 м/с, признали более точными.
По мере развития технологий изготовления часовых механизмов и увеличения их точности, появилась возможность измерения все более коротких промежутков времени. Первые измерения скорости света в лабораторных условиях были произведены в 1849 году Ипполитом Физо, разработавшим для этого специальный аппарат.
Он использовал луч света, сфокусированный на зеркале, расположенном на расстоянии нескольких тысяч метров. Заставляя свет проходить сквозь вращающееся зубчатое колесо, он обнаружил, что при определенном повороте свет будет проходить через зубчатое колесо как в прямом, так и в обратном направлениях. Расчет, основанный на комбинации расстояния источника света от зубчатого колеса, количества зубьев в колесе и скорости его вращения, обеспечивал скорость 313 000 000 м/с.
Подобный эксперимент позже был повторен с использованием вращающихся зеркал и призмы, в результате в 1926 году скорости света была дана оценка в 299 796 000 м/с.
Для дальнейшего уточнения этой величины потребовалось применение осциллографов, измеряющих задержки светового импульса от лазера или светодиода.
Одним из интересных свойств света является то, что его наблюдаемая скорость снижается, когда он проходит через среду, отличную от вакуума. Так преломление света при его переходе из воздуха в воду является видимым проявлением замедления света при его движении в более плотной среде. Это привело ученых к изучению концепции «медленного света» путем увеличения показателя преломления различных сред. Можно увеличить путь, по которому проходят фотоны. Для этого нужны среды с особыми свойствами, например, конденсат Бозе-Эйнштейна (такое состояние вещества, основу которого составляют бозоны, при температуре близкой к абсолютному нулю). В конденсате Бозе-Эйнштейна ученым удалось замедлить измеряемую скорость света до 1 м/с.
С 1983 года скорость света стала рассматриваться как константа. В качестве постоянной величины она используется, как абсолютная мера расстояния (1 метр = путь, пройденный светом за 1/299 792 458 секунды).
Действительно, как? Как измерить самую высокую скорость во Вселенной в наших скромных, Земных условиях? Нам уже не нужно ломать над этим голову – ведь за несколько веков столько людей трудилось над этим вопросом, разрабатывая методы измерения скорости света. Начнем рассказ по порядку.
Скорость света – скорость распространения электромагнитных волн в вакууме. Она обозначается латинской буквой c. Скорость света равняется приблизительно 300 000 000 м/с.
Сначала над вопросом измерения скорости света вообще никто не задумывался. Есть свет – вот и отлично. Затем, в эпоху античности, среди ученых философов господствовало мнение о том, что скорость света бесконечна, то есть мгновенна. Потом было Средневековье с инквизицией, когда главным вопросом мыслящих и прогрессивных людей был вопрос «Как бы не попасть в костер?» И только в эпохи Возрождения и Просвещения мнения ученых расплодились и, конечно же, разделились.
Так, Декарт, Кеплер и Ферма были того же мнения, что и ученые античности. А вот Галилео Галилей считал, что скорость света конечна, хоть и очень велика. Собственно, он и произвел первое измерение скорости света. Точнее, предпринял первую попытку по ее измерению.
Опыт Галилея
Опыт Галилео Галилея был гениален в своей простоте. Ученый проводил эксперимент по измерению скорости света, вооружившись простыми подручными средствами. На большом и известном расстоянии друг от друга, на разных холмах, Галилей и его помощник стояли с зажженными фонарями. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. К сожалению, для того, чтобы этот эксперимент увенчался успехом, Галилею и его помощнику нужно было выбрать холмы, которые находятся на расстоянии в несколько миллионов километров друг от друга. Хотелось бы напомнить, что вы можете заказать эссе, оформив заявку на сайте.
Опыты Рёмера и Брэдли
Первым удачным и на удивление точным опытом по определению скорости света был опыт датского астронома Олафа Рёмера. Рёмер применил астрономический метод измерения скорости света. В 1676 он наблюдал в телескоп за спутником Юпитера Ио, и обнаружил, что время наступления затмения спутника меняется по мере отдаления Земли от Юпитера. Максимальное время запаздывания составило 22 минуты. Посчитав, что Земля удаляется от Юпитера на расстояние диаметра земной орбиты, Рёмер разделил примерное значение диаметра на время запаздывания, и получил значение 214000 километров в секунду. Конечно, такой подсчет был очень груб, расстояния между планетами были известны лишь примерно, но результат оказался относительно недалек от истины.
Опыт Брэдли. В 1728 году Джеймс Брэдли оценил скорость света наблюдая абберацию звезд. Абберация – это изменение видимого положения звезды, вызванное движением земли по орбите. Зная скорость движения Земли и измерив угол абберации, Брэдли получил значение в 301000 километров в секунду.
Опыт Физо
К результату опыта Рёмера и Брэдли тогдашний ученый мир отнесся с недоверием. Тем не менее, результат Брэдли был самым точным на протяжении сотни с лишним лет, аж до 1849 года. В тот год французский ученый Арман Физо измерил скорость света методом вращающегося затвора, без наблюдений за небесными телами, а здесь, на Земле. По сути, это был первый после Галилея лабораторный метод измерения скорости света. Приведем ниже схему его лабораторной установки.
Свет, отражаясь от зеркала, проходил через зубья колеса и отражался от еще одного зеркала, удаленного на 8,6 километров. Скорость колеса увеличивали до того момента, пока свет не становился виден в следующем зазоре. Расчеты Физо дали результат в 313000 километров в секунду. Спустя год подобный эксперимент с вращающимся зеркалом быо проведен Леоном Фуко, получившим результат 298000 километров в секунду.
С появлением мазеров и лазеров у людей появились новые возможности и способы для измерение скорости света, а развитие теории позволило также рассчитывать скорость света косвенно, без проведения прямых измерений.
Самое точное значение скорости света
Человечество накопило огромный опыт по измерению скорости света. На сегодняшний день самым точным значением скорости света принято считать значение 299 792 458 метров в секунду, полученное в 1983 году. Интересно, что дальнейшее, более точное измерение скорости света, оказалось невозможным из-за погрешностей в измерении метра. Сейчас значение метра привязано к скорости света и равняется расстоянию, которое свет проходит за 1 / 299 792 458 секунды.
Напоследок, как всегда, предлагаем посмотреть познавательное видео. Друзья, даже если перед Вами стоит такая задача, как самостоятельное измерение скорости света подручными средствами, Вы можете смело обратиться за помощью к нашим авторам. Заказать контрольную работу онлайн вы можете оформив заявку на сайте Заочника. Желаем Вам приятной и легкой учебы!
О существовании такого понятия как «скорость света» многие знают еще с раннего детства. Большому количество людей известно, что свет движется очень быстро. Но не все знают подробно о явлении.
Многие обращали внимание на то, что во время грозы существует задержка между вспышкой молнии и звуком грома. Вспышка, как правило, доходит до нас быстрее. Это значит, что она имеет большую быстроту, чем звук. С чем это связано? Что такое скорость света и как её измеряют?
Что такое скорость света?
Давайте для начала разберемся, что такое скорость света. По-научному, это такая величина, которая показывает, насколько быстро перемещаются лучи в вакууме или в воздухе. Также нужно знать, что такое свет. Это излучение, которое воспринимается человеческим глазом. От условий окружения зависит быстрота, а также другие свойства, например, преломление.
Интересный факт: свету требуется 1,25 секунды, чтобы добраться от Земли до спутника — Луны.
Что такое скорость света своими словами?
Если объяснять простыми словами, скорость света — это временной промежуток, за который световой луч проходит какое-нибудь расстояние. Время принято измерять в секундах. Однако некоторые ученые используют другие единицы измерения. Расстояние тоже измеряется по-разному. В основном — это метр. То есть, эту величину считают в м/с. Физика объясняет это следующим образом: явление, которое движется с определенной скоростью (константой).
Чтобы легче понять, давайте рассмотрим следующий пример. Велосипедист движется с быстротой 20 км/ч. Хочет догнать водителя автомобиля, скорость которого равна 25 км/ч. Если посчитать, то авто едет на 5 км/час быстрее велосипедиста. С лучами света дела обстоят по-другому. Как быстро бы ни двигался первый и второй человек, свет, относительно них, движется с постоянной быстротой.
Чему равна скорость света?
При нахождении не в вакууме, на свет влияют различные условия. Вещество, через которое проходят лучи, в том числе. Если без доступа кислорода количество метров в секунду не меняется, то в среде с доступом воздуха значение изменяется.
Свет проходит медленнее через различные материалы, такие как стекло, вода и воздух. Этому явлению дан показатель преломления, чтобы описать, насколько они замедляют движение света. Стекло имеет показатель преломления 1,5, это означает, что свет проходит через него со скоростью около 200 тысяч километров в секунду. Показатель преломления воды равен 1,3, а показатель преломления воздуха — немного больше 1, это означает, что воздух лишь слегка замедляет свет.
Следовательно, после прохождения через воздух или жидкость, скорость замедляется, становится меньшей, чем в вакууме. Например, в различных водоемах скорость передвижения лучей равна 0.75 от быстроты в космосе. Также при стандартном давлении в 1.01 бар, показатель замедляется на 1.5-2%. То есть при земных условиях скорость света варьируется в зависимости от условий окружающей среды.
Для такого явление придумали специальное понятие — рефракция. То есть преломление света. Это широко используется в различных изобретениях. К примеру, рефрактор — телескоп с оптической системой. Также с помощью этого также создают бинокли и другую технику, суть работы которой заключается в использовании оптики.
В общем, меньше всего луч поддается рефракции, проходя через обычный воздух. При прохождении через специально созданное оптическое стекло, скорость равняется примерно 195 тысячам километров в секунду. Это практически на 105 тыс км/сек меньше константы.
Самое точное значение скорости света
Ученые-физики за многие года накопили опыт исследований скорости световых лучей. На текущий момент самое точное значение скорости света — 299 792 километра в секунду. Константу установили в 1933 году. Число актуально до сих пор.
Однако в дальнейшем появились сложности с определением показателя. Это произошло из-за погрешностей в измерении метра. Сейчас само значение метра напрямую зависит от скорости света. Оно равняется расстоянию, которое лучи проходят за определенное количество секунд — 1/скорость света.
Чему равна скорость света в вакууме?
Поскольку в вакууме на свет не влияют различные условия, то его скорость не меняется так, как на Земле. Скорость света в вакууме равна 299 792 километрам в секунду. Такой показатель является предельным. Считается, что ничто в мире не может двигаться быстрее, даже космические тела, которые движутся довольно быстро.
К примеру, истребитель, Боинг Х-43, который превышает скорость звука практически в 10 раз (более 11 тысяч км/ч), летит медленнее, чем луч. Последний движется более, чем на 96 тысяч километров в час быстрее.
Как измеряли скорость света?
Самые первые ученые пытались измерить эту величину. Использовались разные методы. В период античности, люди науки считали, что она бесконечная, поэтому невозможно ее измерить. Это мнение осталось надолго, вплоть до 16-17 века. В те времена появились другие ученые, которые предположили, что луч имеет конец, а скорость можно измерить.
Известный астроном из Дании Олаф Рёмер вывел знания о скорости света на новый уровень. Он заметил, что затмение спутника Юпитера опаздывает. Ранее на это никто не обращал внимание. Следовательно, он решил посчитать скорость.
Он выдвинул приблизительную скорость, которая была равна около 220 тысячам километров в секунду. Позже за исследования взялся ученый из Англии Джеймс Брэдли. Он хоть и не был прав полностью, но слегка приблизился к текущим результатам исследований.
Через некоторое время большинство ученых заинтересовались этой величиной. В исследованиях принимали участие люди науки из разных стран. Однако до 70-х годов 20 века каких либо грандиозных открытий не было. С 1970-х, когда придумали лазеры и мазеры (квантовые генераторы), ученые провели исследования и получили точную скорость. Текущее значение актуально с 1983 года. Исправляли лишь небольшие погрешности.
Опыт Галилея
Ученый из Италии удивил всех исследователей тех годов простотой и гениальностью своего опыта. Ему удалось провести измерение скорости света с помощью обычных инструментов, которые находились у него под рукой.
Он и его помощник взобрались на соседние холмы, предварительно рассчитав расстояние между ними. Они взяли зажженные фонари, оборудовали их заслонками, которые открывают и закрывают огни. Поочередно, открывая и закрывая свет, они пытались рассчитать скорость света. Галилео и помощник заранее знали, с какой задержкой будут открывать и закрывать свет. Когда один открыл, то же делает и другой.
Однако эксперимент был провальным. Чтобы все получилось, ученым пришлось бы стоять на расстоянии в миллионы километров друг от друга.
Опыт Рёмера и Брэдли
Об этом исследовании уже было кратко написано выше. Это один из самых прогрессивных опытов того времени. Рёмер использовал знания в астрономии для измерения скорости передвижения лучей. Происходило это в 76 году 17 века.
Исследователь наблюдал за Ио (спутником Юпитера) через телескоп. Он обнаружил следующую закономерность: чем больше наша планета удаляется от Юпитера, тем большая задержка в затмении Ио. Самая большая задержка составляла 21-22 минуты.
Предположив, что спутник отдаляется на расстояние равное длине диаметра орбиты, ученый разделил расстояние на время. В результате он получил 214 тысячи километров в секунду. Хоть это исследование считается очень примерным, потому что расстояние было примерным, он приблизился к текущему показателю.
В 18-м веке Джеймс Брэдли дополнил исследование. Для этого он использовал аберрацию — изменение положение космического тела из-за движения Земли вокруг солнца. Джеймс измерил угол аберрации, и, зная скорость движения нашей планеты, он получил значение в 301 тысячу километров в секунду.
Опыт Физо
Исследователи и обычные люди отнеслись скептически к опыту Рёмера и Джеймса Брэдли. Несмотря на это, результаты были самыми близкими к истине и актуальными на протяжении более века. В 19 столетии Арман Физо — ученый из столицы Франции, Парижа, внес вклад в измерение этой величины. Он использовал способ вращающегося затвора. Также, как и Галилео Галилей со своим помошником, Физо не наблюдал за небесными телами, а исследовал в лабораторных условиях.
Принцип опыта прост. Луч света был направлен на зеркало. Отражаясь от него, свет проходил через зубцы колеса. Затем попадал на еще одну отражающую поверхность, которая была расположена на расстоянии в 8.6 км. Колесо вращали, увеличивая скорость, пока луч не будет видно в следующем зазоре. После подсчетов, ученый получил результат 313 тыс. км/сек.
Позже исследование повторил французский физик и астроном Леон Фуко, получив результат 298 тыс. км/сек. Самый точный результат на то время. Позже измерения проводились при помощи лазеров и мазеров.
Возможна ли сверхсветовая скорость?
Существуют объекты быстрее скорости света. Например, солнечные зайчики, тень, колебания волн. Хотя теоретически они могут развить сверхсветовую скорость, энергия, которую они выделяют не будет совпадать с вектором их движения.
Если световой луч проходит, к примеру, через стекло или воду, то его могут обогнать электроны. Они не ограничены в скорости передвижения. Следовательно, в таких условиях свет не движется быстрее всех.
Этот феномен назван эффектом Вавилова — Черенкова. Чаще всего встречается в глубоких водоемах и реакторах.
Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.