Как найти значение суммы или разности дробей

Сложение и вычитание дробей

30 июля 2011

Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

Задача. Найдите значение выражения:

Дроби с одинаковыми знаменателями

Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

Сложение и вычитание дробей с одинаковыми знаменателями

Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

Разберем все это на конкретных примерах:

Задача. Найдите значение выражения:

Вычитание дробей с одинаковыми знаменателями

В первом случае все просто, а во втором внесем минусы в числители дробей:

Пример вычитания дробей с одинаковыми знаменателями

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю», поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

Задача. Найдите значение выражения:

Дроби с разными знаменателями

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Сложение и вычитание дробей с разными знаменателями

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь». Если не помните — обязательно повторите. Примеры:

Задача. Найдите значение выражения:

Дроби с выделенной целой частью

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Сложение и вычитание дробей с выделенной целой частью

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

Смотрите также:

  1. Тест к уроку «Сложение и вычитание дробей» (легкий)
  2. Приведение дробей к общему знаменателю
  3. Тест к уроку «Десятичные дроби» (1 вариант)
  4. Метод узлов в задаче B5
  5. Задача B5: площадь кольца
  6. Сфера, вписанная в куб

Калькулятор дробей

  1. Главная
  2. /
  3. Математика
  4. /
  5. Арифметика
  6. /
  7. Калькулятор дробей

Если вам необходимо произвести математические операции с дробями воспользуйтесь нашим онлайн калькулятором:

Просто заполните необходимые поля и получите ответ и подробное решение.

Данный калькулятор может работать как с положительными, так и с отрицательными дробями.

При этом нужно помнить, что:

− ac = a− c = − ac

Всегда нужно использовать только последний вариант.

Сложение дробей

С одинаковыми знаменателями

При сложении дробей с одинаковыми знаменателями складываются только числители, а знаменатель остаётся прежним.

Формула


ac + bc = a + bc

Пример

Для примера сложим следующие дроби с равными знаменателями:

27 + 47 = 2 + 47 = 67

С разными знаменателями

При сложении дробей с разными знаменателями для начала необходимо привести дроби к общему знаменателю. А затем сложить числители.

Формула (универсальная)


ac + bd = a⋅d + b⋅cc⋅d

Пример №1

Для примера сложим следующие дроби с разными знаменателями:

12+13=1⋅32⋅3+1⋅23⋅2=36+26=3+26=56

Пример №2

Существуют также частные случаи, когда знаменатель одной дроби можно привести к знаменателю второй. Например:

12+14=1⋅22⋅2+14=24+14=2+14=34

Этот же пример можно решить и применяя вышеуказанную универсальную формулу:

12+14=1⋅42⋅4+1⋅24⋅2=48+28=4+28=68=34

Обратите внимание, что мы сократили дробь:

68=3 ⋅ 24 ⋅ 2=34

Сложение смешанных чисел

Смешанные числа – это такие числа, у которых есть как дробная часть, так и целая.

Преобразуя в неправильную дробь

Для начала смешанное число (дробь) нужно преобразовать в неправильную дробь, а потом можно складывать как в предыдущих примерах.

Формула

a bc + d ef = b + a ⋅ cc + e + d ⋅ ff

Пример

Для примера сложим два смешанных числа:

312+123=1+3⋅22+2+1⋅33=72+53=7⋅32⋅3+5⋅23⋅2=216+106=21+106=316=5⋅6+16=5⋅66 + 16=516

Обратите внимание, что из полученной неправильной дроби мы выделили целую часть:

316=5⋅6+16=5⋅66 + 16=516

Складывая целую и дробную части отдельно

Целую и дробную части смешанных чисел можно складывать по отдельности.

Формула

a bc + d ef = (a + d) + (bc + ef)

Пример

Решим предыдущий пример этим способом:

3 12 + 1 23 = (3+1)+(12+23) = 4+1⋅32⋅3+2⋅23⋅2=4+36+46=4+3+46=4+76=4+116 = 516

Вычитание дробей

Вычитание дробей происходит по тем же принципам, что и сложение.

С одинаковыми знаменателями

Формула


acbc = a − bc

Пример

Для примера вычтем одну дробь из другой с равными знаменателями:

3525=3−25=15

С разными знаменателями

Тут также, как и при сложении, дроби нужно подвести под общий знаменатель, а затем вычитать.

Формула


acbd = a⋅d − b⋅cc⋅d

Пример

Для примера вычтем одну дробь из другой, с разными знаменателями:

3413=3⋅34⋅31⋅43⋅4=912412=9−412=512

Вычитание смешанных чисел

Для начала смешанные числа преобразуем в неправильные дроби, потом приводим полученные дроби к общему знаменателю, а затем вычтем одну из другой. Далее выделяем целую часть если она есть.

Формула

a bcd ef = b + a ⋅ cce + d ⋅ ff

Пример

312123=1+3⋅222+1⋅33=7253=7⋅32⋅35⋅23⋅2=216106=21−106=116=1⋅6+56=1⋅66 + 56=156

Умножение дробей

При умножении дробей неважно одинаковые или разные у них знаменатели. Числитель одной дроби умножается на числитель другой, а знаменатели тоже перемножаются между собой.

Формула


acbe = a ⋅ bc ⋅ e

Давайте рассмотрим несколько примеров:

Пример №1

Умножим дроби с одинаковыми знаменателями:

1323=1⋅23⋅3=29

Пример №2

Умножим дроби с разными знаменателями:

1324=1⋅23⋅4=212=1⋅26⋅2=16

Пример №3

Умножим смешанные числа:

112223=1+1⋅222+2⋅33=3283=3⋅82⋅3=246=4

Деление дробей

При делении одной дроби на другую также неважно одинаковые или разные у них знаменатели. Чтобы разделить одну дробь на другую нужно перемножить числитель первой дроби и знаменатель второй, а знаменатель первой умножить на числитель второй.

Формула


ac : be = a ⋅ ec ⋅ b

Давайте рассмотрим несколько примеров:

Пример №1

Разделим одну дробь на другую с таким же знаменателем:

23:13=2331=2⋅33⋅1=63=2

Пример №2

Делим дроби с разными знаменателями:

12:23=1232=1⋅32⋅2=34

Пример №3

Деление смешанных чисел:

412:223=1+4⋅22:2+2⋅33=92:83=9238=9⋅32⋅8=2716=1⋅16+1116=1⋅1616 + 1116=11116

См. также

Математика

6 класс

Урок № 40

Сложение и вычитание дробей

Перечень рассматриваемых вопросов:

  • обобщение и систематизация знаний по теме «Сложение и вычитание дробей».

Тезаурус

Сумма дробей с одинаковыми положительными знаменателями есть дробь с тем же знаменателем и числителем, равным сумме числителей.

Разностью двух дробей называют такую дробь, которая в сумме с вычитаемым даёт уменьшаемое.

Наименьший общий положительный знаменатель – это наименьшее положительное число, кратное знаменателям данных дробей.

Наименьшее общее кратное двух чисел – наименьшее натуральное число, которое делится на заданные числа без остатка.

Обязательная литература:

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

На прошлых уроках мы с вами рассматривали, как выполняют сложение и вычитание дробей любого знака. Сегодня вспомним и закрепим эти правила.

Вспомним основные правила сложения и вычитания дробей любого знака.

Правило сложения дробей с одинаковыми знаменателями

Чтобы сложить две дроби с одинаковыми положительными знаменателями, надо сложить их числители, а знаменатель оставить прежним.

Правило сложения дробей с разными знаменателями

Чтобы сложить две дроби с разными знаменателями, надо привести их к общему положительному знаменателю и сложить полученные дроби.

Правило вычитания дробей с одинаковыми знаменателями

Чтобы вычесть две дроби с одинаковым положительными знаменателями, надо из числителя уменьшаемого вычесть числитель вычитаемого, а знаменатель оставить прежним.

Правило вычитания дробей с разными знаменателями

Чтобы найти разность двух дробей с разными знаменателями, надо привести их к общему положительному знаменателю и выполнить вычитание дробей с одинаковыми знаменателями.

Разность дробей a и b равна сумме уменьшаемого и числа, противоположного вычитаемому.

Дроби можно складывать и вычитать по тем же правилам, что и целые числа, то есть сначала определять знак результата, потом выполнять действия с модулями.

Иногда сложение и вычитание дробей выполняется проще, если привести их к наименьшему общему положительному знаменателю.

Дополнительный материал

Решим задачу.

Какую часть пути прошли туристы за три дня?

Решение.

Найдём, какую часть пути туристы прошли в третий день.

Найдём, какую часть пути туристы прошли за три дня.

Для этого сложим все части.

Разбор заданий тренировочного модуля

№ 1. Разместите нужные подписи под изображениями.

Варианты ответов:

Сложение дробей с разными знаками и разными знаменателями.

Сложение отрицательных дробей с разными знаменателями

Вычитание дробей с одинаковыми знаменателями

Для ответа на вопрос задания вспомним действия с рациональными числами и внимательно посмотрим на знаки между предложенными дробями.

Правильный ответ:

  1. Вычитание дробей с одинаковыми знаменателями.
  2. Сложение дробей с разными знаками и разными знаменателями.
  3. Сложение отрицательных дробей с разными знаменателями

№ 2. Вставьте в текст нужные слова.

Чтобы сложить две дроби с разными …, надо привести их к общему положительному … и … полученные дроби.

Варианты слов для вставки:

знаменателями

числителями

знаменателю

числителю

сложить

вычесть

Для ответа на вопрос задания обратимся к теоретическому материалу урока.

Правильный ответ:

Чтобы сложить две дроби с разными знаменателями, надо привести их к общему положительному знаменателю и сложить полученные дроби.

Сложение и вычитание алгебраических дробей

  • Сложение и вычитание с одинаковыми знаменателями
  • Сложение и вычитание с разными знаменателями

Сложение и вычитание с одинаковыми знаменателями

Чтобы выполнить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, надо найти сумму или разность числителей, а знаменатель оставить без изменений.

Пример 1. Выполните сложение алгебраических дробей:

а)   a + 3  +  a – 3 ;
b b

б)   2b – 1  +  b + 4  .
2 2

Решение: Складываем числители дробей и выполняем приведение подобных членов (если они есть):

а)   a + 3  +  a – 3  =  (a + 3) + (a – 3)  =
b b b

a + 3 + a3  =  2a  ;
b b
б)   2b – 1  +  b + 4  =  (2b – 1) + (b + 4)  =
2 2 2

2b1 + b + 4  =  3b + 3  .
2 2

Пример 2. Выполните вычитание алгебраических дробей:

а)   x + 5  –  5x  ;
3 3

б)   a + b  –  a + 4  .
a – 5 a – 5

Решение: Вычитаем из числителя первой дроби числитель второй дроби и выполняем приведение подобных членов (если они есть):

а)   x + 5  –  5x  =  x + 5 – 5x  =  5 – 4x  ;
3 3 3 3
б)   a + b  –  a + 4  =  (a + b) – (a + 4)  =
a – 5 a – 5 a – 5

a + ba – 4  =  b – 4  .
a – 5 a – 5

Сложение и вычитание алгебраических дробей с одинаковыми знаменателями в виде общих формул:

a  +  b   =   a + b      и      a    b   =   a b  ,
c c c c c c

где  c≠0.

Если дроби имеют знаменатели, состоящие из противоположных выражений, то есть выражений, отличающихся только знаком, надо тождественно преобразовать одну из дробей, чтобы привести их к общему знаменателю. Преобразование выполняется в соответствии с правилами знаков:

Данное преобразование можно рассматривать как умножение числителя и знаменателя дроби на  -1.  Следовательно, если числитель и знаменатель алгебраической дроби заменить на противоположные выражения, то получится дробь, равная данной. Полученную дробь можно переписать, поставив один из минусов перед дробью:

a  =  a  = – a  = – a  .
b b b b

Также, любую отрицательную дробь можно сделать положительной, перенеся минус, стоящий перед дробью, в числитель или знаменатель:

a  =  a  =  a  .
b b b

Пример 1. Найдите сумму дробей:

Решение: Чтобы выполнить сложение, поменяем знаки перед второй дробью и в её знаменателе на противоположные:

5a  +  3a  =  5a  –  3a  =
bc cb bc -(cb)

5a  –  3a  =  2a  .
bc bc bc

Пример 2. Найдите разность дробей:

n + 5  –  2n  .
n2m mn2

Решение: Чтобы выполнить вычитание, перенесём знак минус, стоящий перед второй дробью, в её знаменатель:

n + 5  –  2n  =  n + 5  +  2n  =
n2m mn2 n2m -(mn2)

n + 5  +  2n  =  3n + 5  .
n2m n2m n2m

Сложение и вычитание с разными знаменателями

Чтобы найти сумму или разность алгебраических дробей с разными знаменателями, надо:

  • найти общий знаменатель,
  • привести алгебраические дроби к общему знаменателю,
  • выполнить сложение или вычитание,
  • сократить полученную дробь, если это возможно.

Пример 1. Выполните сложение дробей:

Решение: Находим общий знаменатель. Он будет равен произведению знаменателей данных дробей:

(a + b)(ab).

Как находить общий знаменатель, Вы можете узнать на странице Приведение алгебраических дробей к общему знаменателю. Далее умножаем числитель каждой дроби на дополнительный множитель:

2a(ab) = 2a2 – 2ab;

b(a + b) = ab + b2.

Общий знаменатель можно свернуть в разность квадратов. В итоге у нас получится:

2a  +  b  =  2a2 – 2ab  +  ab + b2  =
a + b ab a2b2 a2b2

2a2 – 2ab + ab + b2  =  2a2 – ab + b2  .
a2b2 a2b2

Пример 2. Выполните вычитание дробей:

Решение: Разложим знаменатель первой дроби на множители:

a2ab = a(ab).

Так как данное выражение делится на знаменатель второй дроби, то возьмём его в качестве общего знаменателя. Значит, теперь нам надо умножить числитель второй дроби на дополнительный множитель  a:

2 · a = 2a.

Получаем:

b  –  2a  =  b – 2a  .
a(ab) a(ab) a(ab)

Пример 3. Выполните сложение:

Решение: Запишем первое слагаемое в виде дроби и приведём её к знаменателю  1 – x:

x x2  =  x  +  x2  =
1 – x 1 1 – x

x(1 – x)  +  x2  =  xx2  +  x2  .
1 – x 1 – x 1 – x 1 – x

Теперь можно выполнить сложение дробей с одинаковыми знаменателями:

xx2  +  x2  =  xx2 + x2  =  x  .
1 – x 1 – x 1 – x 1 – x

Точно также можно выполнять сложение и вычитание алгебраических дробей с любыми многочленами.

Давайте разберемся, как складывать и вычитать обыкновенные дроби. Данный навык необходим для решения множества задач как и в школьном курсе, так и при сдаче ОГЭ или ЕГЭ по математике. Итак, перейдем к рассмотрению различных примеров.


Сложение и вычитание дробей с одинаковыми знаменателями


Начнем с рассмотрения самого простого примера – сложения и вычитания дробей с одинаковыми знаменателями. В данном случае необходимо просто произвести действия с числителями – сложить их или вычесть.

При сложении и вычитании дробей с одинаковыми знаменателями знаменатель не изменяется!

Главное не производить никакие операции сложения и вычитания в знаменателе, но некоторые школьники забывают об этом. Чтобы лучше понять это правило, прибегнем к принципу визуализации, или говоря простыми словами, рассмотрим жизненный пример:

У Вас есть половина яблока – это ½ от всего яблока. Вам дают еще одну половину, то есть еще ½. Очевидно, что теперь у Вас целое яблоко (не считая, что оно разрезано 🙂 ). Поэтому ½ + ½ = 1, а не что-то другое, как, например, 2/4. Или же у Вас забирают эту половину:  ½ – ½ = 0. В случае вычитания с одинаковыми знаменателями получается вообще особый случай – при вычитании одинаковых знаменателей, мы получим 0, а на 0 делить нельзя, и данная дробь не будет иметь смысла.

Приведем напоследок пример:

сложение и вычитание дробей


Сложение и вычитание дробей с разными знаменателями


Что же делать, если знаменатели разные? Для этого нам необходимо вначале привести дроби к одному знаменателю, а затем действовать как я указал выше.

Приводить дробь к общему знаменателю можно двумя способами. Во всех способах используется одно правило – при умножении числителя и знаменателя на одно и то же число дробь не изменяется.

Существует два способа. Первый – самый простой – так называемый “крест-накрест”. Он заключается в том, что первую дробь мы умножаем на знаменатель второй дроби (и числитель и знаменатель), а вторую дробь умножаем на знаменатель первой (аналогично и числитель и знаменатель). После этого действуем как в случае с одинаковыми знаменателями – теперь они действительно одинаковые!

Пример:

крест-накрест

Предыдущий способ универсален, однако в большинстве случаев у дробей знаменателей можно найти наименьшее общее кратное – число, на которое делится и первый знаменатель и второй, причем самое маленькое. В данном методе нужно уметь видеть такие НОКи, потому что специальный поиск их достаточно ёмкий и уступает по скорости методу “крест-накрест”. Но в большинстве случаев НОКи довольно хороши видны, если набить глаз и достаточно тренироваться.

Пример:

НОК

Надеюсь, что теперь Вы в совершенстве владеете методами сложения и вычитания дробей!

Даниил Романович | Просмотров: 2.5k

Добавить комментарий