Как найти значение суммы n членов

        Сумма n первых членов арифметической прогрессии — штука довольно простая и понятная. Как по смыслу, так и по формуле. Но задания на эту тему встречаются самые разные. От примитивных до вполне себе серьёзных. Имеет смысл разобраться, правда?)

        Очень часто во всевозможных задачках на арифметическую прогрессию требуется найти сумму некоторого количества её членов. Если этих самых членов мало, то складывать, конечно, и безо всяких формул можно. А вот если много, то сложение “вручную” уже напрягает, да… В этих случаях и выручает формула.)

        Итак, вот она, формула суммы n первых членов арифметической прогрессии:

        Для начала, как водится, разберёмся с названием и со смыслом формулы суммы. А потом и задачки порешаем. В своё удовольствие.)

        Ключевыми словами в названии формулы являются слова n первых членов”. Эти слова всего лишь означают, что берётся последовательность

        (an): a1, a2, a3, a4, a5, …, an

        и аккуратно суммируются (т.е. складываются) все её члены. С первого члена (a1) по последний (an). Причём складываются именно все члены подряд, без пропусков! Это важно.

        Смысл формулы суммы прост до неприличия. Эта формула позволяет легко и быстро находить сумму любого количества членов любой арифметической прогрессии с первого по n-й. Не складывая все числа по порядочку.)

        А теперь, традиционно, разбираемся со всеми буковками и символами, сидящими в формуле. Это очень многое прояснит.

        Sn — та самая сумма n первых членов, которую мы ищем. Результат сложения всех членов арифметической прогрессии с первого по последний. Ещё раз напоминаю, что сумма считается именно (и только) с первого члена. Дело всё в том, что частенько встречаются задачки типа: “найти сумму пятого и восьмого членов”. Или: “найти сумму всех членов с десятого по тридцатый”. В таких задачках прямое применение формулы суммы не катит, да…)

        a1 — первый член прогрессии. Здесь, думаю, комментарии излишни.)

        an — последний член прогрессии. Под номером n. Да, не очень привычное название, но для работы с суммой — очень удобное.) Что это такое — об этом ниже.

        n — номер последнего члена.

        Вот и всё. Все обозначения расшифрованы. Осталось лишь разобраться, что же такое последний член.

        Для начала задам такой хитрый вопрос: как вы думаете, какой член будет последним, если нам дана бесконечная арифметическая прогрессия? Ответ очевиден: никакой.) Какой бы член an и с каким бы номером n мы ни взяли, для него всегда найдётся следующий, (n+1)-й член.

        Поэтому говорить о конкретной конечной сумме для бесконечной арифметической прогрессии (с бесконечным числом членов) попросту нету никакого смысла. Не существует такой суммы. Бесконечная она… Кстати, в отличие от геометрической прогрессии, сумму бесконечного числа членов которой, в некоторых случаях, найти… можно.) Но о геометрической прогрессии и о такой интересной бесконечной сумме — в соответствующих уроках.)

        Короче говоря, когда мы имеем дело с суммой арифметической прогрессии, то нам всегда требуется некоторый конечный член. Тот член, на котором следует остановиться. Которым следует ограничиться. Чтобы не складывать все члены до бесконечности.) Вот именно этот граничный член an — и есть последний член прогрессии. И все дела.)

        Номер этого самого последнего члена (т.е. n) определяется исключительно заданием. Либо он указан в условии прямым текстом, либо же косвенно, в зашифрованном виде.) А составители заданий, порой, шифруют эту ценную информацию (последний член и номер последнего члена) с безграничной фантазией, да…) Для грамотной расшифровки надо, во-первых, понимать смысл арифметической прогрессии, во-вторых, не бояться и думать головой и… внимательно читать задание.) Иначе — никак. Чуть ниже, в конкретных задачках мы все эти секреты пораскрываем.

Как выводится формула суммы?

        Вывод формулы суммы n первых членов арифметической прогрессии хоть и прост, но весьма оригинален по сравнению с выводом формулы n-го члена.) Для этого придётся нам запустить машину времени и плавно переместиться… нет, не в будущее.) Мы переместимся в Германию конца XVIII века. Жил-был в то время великий немецкий математик Карл Фридрих Гаусс. Король математики! Одарённость его просто не знала границ!

        Так вот, согласно легенде, когда Гаусс был ещё школьником, учитель дал детям задание. Скучно им, видите ли, было на уроке… А именно — посчитать сумму всех натуральных чисел от 1 до 100. Для всего класса это задание и впрямь оказалось работёнкой не из лёгких. На целый урок.) Но… только не для юного вундеркинда Гаусса с его нестандартным мышлением.) Как он выкрутился? Он заметил, что попарные суммы чисел с противоположных концов всегда одинаковы: 1+100=101, 2+99=101, 3+98=101 и так далее.) Всего таких попарных сумм, очевидно, будет 50. Рассуждая таким образом, Гаусс, к удивлению учителя, дал верный ответ за полминуты:

        1+2+3+…+100 = 50·101 = 5050

        И всё! Здорово, правда?)

        Для вывода нашей формулы, мы поступим так же мудро, как и Гаусс. По такому же принципу. Смотрите, сейчас интересно будет! Запишем сначала нашу прогрессию (an) в виде прямой последовательности:

        a1, a2, a3, …, an-2, an-1, an.

        А теперь запишем эту же прогрессию, но в виде обратной последовательности. Член an будет на первом месте, а a1 — на последнем.

        Вот так:

        an, an-1, an-2, …, a3, a2, a1.

        А теперь (внимание!) берём и попарно складываем между собой члены обеих последовательностей — прямой и обратной.

        Вот так:

        

        Получаем ровно “n” попарных сумм. Как вы думаете, что в итоге мы получим, если сложим между собой все эти n сумм? Очевидно, нужную нам сумму n первых членов арифметической прогрессии Sn, но… удвоенную. Что правда то правда: сначала мы складываем все члены с 1-го по n-й, а затем — наоборот. И, если сложить оба результата, то получим, как раз, удвоенную сумму членов с 1-го по n-й. То есть, 2Sn.

        Можно смело записать:

        2Sn = (а1+an)+(a2+an-1)+(a3+an-2)+…+(an-2+a3)+(an-1+a2)+(an+a1)

        А теперь разберёмся со всеми “лишними” скобочками и буковками. Сейчас будет ещё интереснее!

        Как вы уже, возможно, заметили, скобки, стоящие в сумме на одинаковых местах с начала и с конца, совершенно одинаковые! Только слагаемые переставлены местами.) Первые и последние скобки мы трогать не будем. Посмотрим, что получается во вторых и предпоследних скобках. Для этого представим a2 как a1+d, а an-1 представим как and. Прямо по смыслу арифметической прогрессии:

        a2 = a1 + d

        an-1 = an — d

        Подставим это добро во вторую (и предпоследнюю) скобки. Что получим:

        (a2+an-1) = (an-1+a2) = a1 + d + an — d = a1 + an

        Рассуждая аналогичным образом, для третьих скобок с начала и с конца мы получим:

        (a3+an-2) = (an-2+a3) = a1 + 2d + an — 2d = a1 + an

        Ну как? Улавливаете идею? Да! Каждая из попарных сумм членов, стоящих на одинаковых местах с начала и с конца в нашей общей сумме 2Sn, всегда будет одна и та же. И равна a1 + an. То есть, сумме первого и последнего членов. А всего таких попарных сумм у нас сколько? Правильно, “n” штук! Столько же, сколько и членов в прогрессии, да…) Не зря же я картинки рисую иногда.

        Вот и пишем:

        2Sn = (а1+an)·n

        Выражая из этого равенства Sn, получаем требуемую формулу:

        Вот и всё.)

        Ну что, со смыслом формулы разобрались. С выводом — тоже. Я вижу, вам уже не терпится начать решать задачки. Что ж, поехали!

Решение задач на сумму арифметической прогрессии.

        Начнём с несложной задачки. Безо всяких фокусов.)

        1. Дана арифметическая прогрессия:

        24; 23,2; 22,4; 21,6; …

        Найти сумму первых ста её членов.

        Прогрессия нам задана в виде последовательности. Можно, конечно, уловить закономерность, продлить эту последовательность, выписать первые сто её членов, сложить их да посчитать, но… как-то тупо и долго получается, не находите? Но мы же с вами народ учёный. Формулу суммы знаем.) Вот и запустим её в дело.

        Сразу пишем формулу суммы:

        

        А теперь смотрим на формулу и соображаем, какие элементы формулы нам даны, а чего не хватает.

        Первый член a1 известен? Да! Это 24. А последний член an? Пока нет… Но… зато нам известен его номер n! Это 100 (n = 100). В задании прямым текстом сказано: найти сумму первых ста членов. Стало быть, последним членом прогрессии будет сотый член a100. И как его отыскать? Считать и выписывать сто членов? Зачем!?) Ведь мы же не слепые, глазками последовательность видим, а смысл арифметической прогрессии – понимаем.

        Стало быть, можем посчитать разность прогрессии и затем найти интересующий нас сотый член по формуле n-го члена:

an = a1 + (n-1)·d

        Вот и трудимся. Для разности d берём любой член последовательности (кроме первого) и отнимаем предыдущий.  

        ЕЩЁ РАЗ ВНИМАНИЕ!!! Не просто считаем разницу между большим и меньшим соседними членами (типа 23,2-22,4), а именно от выбранного члена (23,2) отнимаем предыдущий (24)!

        Почему ругаюсь? Потому что это весьма и весьма распространённые грабли, на которые наступает значительная часть учеников, теряя драгоценные баллы на контрольных и экзаменах и получая заслуженные минусы. Особенно часто этот косяк встречается в убывающих прогрессиях и в прогрессиях с отрицательными членами.

        Вот и считаем правильно. Например, так:

        d = 23,2 — 24 = -0,8

        Вот так. Разность — отрицательна. Прогрессия — убывает. Как и в задании.)

        Считаем сотый член по формуле n-го члена:

        a100 = a1 + (-0,8)·(100-1) = 24-0,8·99 = -55,2

        Есть. Мы выяснили все интересующие нас параметры в формуле суммы. Осталось подставить их да посчитать:

        

        Ответ: -1560

        Кстати сказать, если подставить в формулу суммы вместо an его выражение через формулу n-го члена, то получим:

        Или, если привести подобные в числителе:

        Эта формула — тоже формула суммы n первых членов арифметической прогрессии. Только записанная в другом виде — через первый член и разность прогрессии. В некоторых задачках эта модифицированная формула здорово выручает, да.) Имеет смысл запомнить. Или, в случае чего, уметь вывести, как здесь. Ведь формулу n-го члена в любом случае надо помнить.)

        Следующая задачка. На основе реального варианта ОГЭ:

        2. Арифметическая прогрессия задана условием: an = -3 + 5n. Найдите сумму первых двадцати её членов.

        Хорошая задачка. Лёгкая.) Настолько лёгкая, что народ тут же косячит… НЕ НАДО писать сразу, что первый член — минус три! Это фатальное заблуждение, да… Ибо прогрессия нам задана видоизменённой формулой n-го члена. Как работать с такой формулой, подробно рассказано по ссылке. Кто не в курсе — кликаем и читаем.) Кто в курсе, делаем всё как положено. А именно — подставляем в формулу вместо n единичку и считаем:

        a1 = -3+5·1 = 2

        Вот так вот. Первый член — двойка, а не минус три…

        Что там нам ещё нужно для суммы? Последний член и номер последнего члена? Пожалуйста! Нас спрашивают про сумму двадцати первых членов. Стало быть, в качестве последнего члена у нас будет выступать a20, а номером n последнего члена будет, знамо дело, двадцатка.

        Вот и считаем a20 подставляя n = 20 в формулу n-го члена:

        a20 = -3+5·20 = 97

        А теперь уже считаем нужную нам сумму:

        

        Ответ: 990

        А теперь задачка более творческая. 🙂

        3. Найти сумму всех натуральных двузначных чисел, кратных четырём.

        Во! Ни первого члена нет, ни последнего, ни номера n, ни прогрессии вообще… Что делать?!

        Что-что… Головой думать, да.) И вытаскивать из условия задачи все элементы формулы суммы арифметической прогрессии. Ибо здесь, как раз, тот самый случай, когда ключевые параметры прогрессии в условии ловко зашифрованы.

        Вот и начинаем расшифровку. Что такое натуральные числа — знаем. То есть, целые положительные. Что такое двузначные числа — тоже знаем. Ну, те, что из двух циферок состоят.) Какое же двузначное число будет первым? 10, ясное дело.) А последнее двузначное число? Очевидно, 99. За ним уже трёхзначные числа пойдут…

        Идём дальше. Кратные четырём… Это что значит? Это значит, делящиеся на четыре нацело! Десятка делится на четыре? Не делится! 11 — тоже не делится. 12… делится! Если ещё немного подумать, то можно сообразить, что последнее такое число будет 96. Отлично! Очень многое проясняется! Теперь уже можно записать последовательность по условию задачки:

        12, 16, 20, …, 92, 96.

        Будет эта последовательность арифметической прогрессией? А как же! Каждый член отличается от предыдущего строго на четвёрку. Если к члену прибавить, скажем, 3 или 5, то новое число уже не поделится нацело на 4.

        Сразу же можем и разность прогрессии посчитать:

        d = 4

        Пригодится.)

        Ну вот. Теперь мы уже с вами знаем кое-какие параметры прогрессии:

        a1 = 12

        d = 4

        an = 96

        А каков будет номер n последнего члена 96? А вот тут два пути решения. Первый путь — для сверхтрудолюбивых, но некультурных. Можно расписать всю прогрессию да посчитать пальчиком количество членов. А второй путь — для ленивых, зато культурных.) Я отношусь к ленивым, поэтому выберу второе. А именно — распишу последний член прогрессии (т.е. 96) по формуле n-го члена, подставляя уже известные нам данные:

        96 = a1 + d(n-1)

        96 = 12 + 4(n-1)

        4(n-1) = 84

        n-1 = 21

        n = 22

        Вот так. Значит, число 96 — это двадцать второй член нашей прогрессии.

        А теперь смотрим на формулу суммы:

        

        Смотрим и… прыгаем от радости!) Ибо мы вытащили из условия задачи все необходимые данные для подсчёта требуемой суммы. Незаметно для себя. Вот они:

        a1 = 12

        a22 = 96

        n = 22

        Sn = S22    

        Осталось лишь подставить да посчитать:

        

        Ответ: 1188

        Рассмотрим теперь ещё один тип популярных задачек. На первый взгляд, всё очень похоже, да не совсем…)

        4. Дана арифметическая прогрессия:

         -30; -29,3; -28,6; …

         Найдите сумму членов с 42-го по 101-й.

        И как вам? Прямое применение формулы суммы разочарует. Напоминаю, что формула считает сумму только с первого члена. А в нашей задаче надо считать сумму с сорок второго… Тупик? Ну да, щас!)

        Можно, конечно, расписать всю прогрессию до 101-го члена и посчитать столбиком на бумажке все члены с 42-го по 101-й. Но возьмутся за это увлекательное занятие только откровенные мазохисты, да…)

        Мы же поступим просто и элегантно.) А именно – разобьём нашу прогрессию на две части. Первая часть будет с первого члена по 41-й. А вторая часть — с 42-го члена по 101-й. Ясно, что если мы посчитаем сумму членов первой части S1-41 и сложим её с суммой членов второй части S42-101, то получим сумму членов прогрессии с первого по сто первый S1-101.

        В математической записи:

        S1-41 + S42-101 = S1-101

        Из этого равенства видно, что найти нужную нам сумму S42-101 можно простым вычитанием:

        S42-101 = S1-101S1-41

        Вот теперь всё встало на свои места! Обе суммы справа считаются с первого члена. Стало быть, к ним уже применима наша стандартная формула суммы. Ну что, начнём?

        Первым делом вытаскиваем из условия задачи ключевые параметры прогрессии:

        a1 = -30

        d = 0,7

        Кроме того, для расчёта сумм S1-41 и S1-101 нам понадобятся 41-й и 101-й члены. Считаем их по формуле n-го члена:

        a41 = a1+40d = -30+40·0,7 = -30+28 = -2

        a101 = a1+100d = -30+100·0,7 = -30+70 = 40

        Теперь считаем суммы S1-41 и S1-101 по формуле:

        

        

        Остались сущие пустяки. От суммы 101 члена отнять сумму 41 члена:

        S42-101 = S1-101S1-41 = 505 — (-656) = 1161

        Ответ: 1161

        Вот и всё.) Обратите внимание на одну очень полезную фишку. Вместо прямого расчёта того что нам нужно (S42-101), мы вычислили то, что, казалось бы, совершенно не нужно (S1-41). А уже потом посчитали и S42-101, отбросив от полного результата ненужное. В злых задачках такой искусный манёвр очень часто спасает.)

        В этом небольшом уроке мы рассмотрели задачки, для успешного решения которых достаточно понимать смысл суммы n первых членов арифметической. Ну и парочку формул знать надо, да.)

        Подытожим наш урок практическим советом:

        При решении любой задачи на сумму членов арифметической прогрессии настоятельно рекомендую выписать две ключевые формулы.

        Формулу n-го члена:

an = a1 + (n-1)·d

        Формулу суммы n первых членов арифметической прогрессии:

        Эти две формулы обязательно подскажут, что именно надо делать, в каком направлении двигаться, чтобы справиться с задачей. Проверено! Помогает.

        А теперь решаем самостоятельно.

        1. Найти сумму всех натуральных двузначных чисел, которые не делятся нацело на четыре.

        Что, круто, да?) Подсказка спрятана в комментарии к последней разобранной задаче №4. Ну и результат предпоследней задачки №3 поможет.)

        2. Арифметическая прогрессия задана условиями:

        a1 = -3,1

        an+1 = an+0,9

        Найдите сумму первых 19 её членов.

        Да-да, это рекуррентная формула, которую многие так не любят. Задачки с такой формулой мы в этом уроке не рассматривали. А чего их рассматривать? Их решать надо.) Материала этого урока вполне достаточно, чтобы справиться с заданием. Про рекуррентную формулу и как именно с ней работать можно прочитать в предыдущем уроке. Не пренебрегайте этой задачкой, такие частенько встречаются в ОГЭ!

        3. Марфуша была сладкоежкой и очень любила пирожные с кремом и шоколадной глазурью. Каждое пирожное стоит 60 рублей. Накопив 2700 рублей, Марфуша решила устроить себе сладкую жизнь: в первый день купить и съесть всего одно пирожное, а в каждый последующий день покупать и съедать на одно пирожное больше. Пока не истратит всю накопленную заначку.

        а) сколько пирожных в итоге купила и съела Марфуша?

        б) сколько дней сладкой жизни получилось у Марфуши?

        Сложно? Поможет дополнительная формула суммы из разобранной задачи №1. Ну и решение квадратных уравнений тоже надо вспомнить, да.)

        Ответы (в беспорядке): 9; 95; 45; 3717.

Калькулятор суммы членов арифметической прогрессии поможет найти сумму членов по двум формулам. Первая формула применяется если вам известны первый член прогрессии, n-й член и количество суммируемых элементов. Вторая формула используется если вы знаете первый член, разность и количество элементов для суммирования.

Формулы суммы членов арифметической прогрессии

Чтобы найти сумму первых членов арифметической прогрессии, можно воспользоваться одной из нижеприведенных формул:

1) {S_n=dfrac {a_1+a_n}{2} cdot n},

2) {S_n=dfrac {2a_1+d(n-1)}{2} cdot n}

a1 – первый член прогрессии,

an – член прогрессии под номером n,

d – разность прогрессии (разница между членами прогрессии),

n – номер члена

Примеры нахождения суммы арифметической прогрессии

Задача 1

Дана арифметическая прогрессия: -4; -2; 0… Найдите сумму первых десяти ее членов.

Решение

Первый член прогрессии a1 = -4.

Чтобы найти разность прогрессии, нужно вычесть из второго члена первый. В нашем случае d = a2 – a1 = -2 – (-4) = 2.

Количество суммируемых членов равно 10, т. е. n = 10. Подставим значения во вторую формулу и получим результат:

S_n=dfrac {2a_1+d(n-1)}{2} cdot n = dfrac {2 cdot -4+2(10-1)}{2} cdot 10 = dfrac {-8+18}{2} cdot 10 = 50

Ответ: 50

Используем калькулятор для проверки.

Задача 2

Найдите сумму первых 10 членов арифметической прогрессии -23; -20;…

Решение

Первый член прогрессии a1 = -23.

Найдем шаг прогрессии: d = a2 – a1 = -20 – (-23) = 3.

Найдем десятый член прогрессии по формуле: a_n=a_1+(n-1)cdot d = -23 + (10-1) cdot 3 = -23 + 27 = 4

Чтобы найти разность прогрессии, нужно вычесть из второго члена первый. В нашем случае d = a2 – a1 = -2 – (-4) = 2.

Подставим значения в первую формулу и получим результат:

S_n=dfrac {a_1+a_n}{2} cdot n = dfrac {-23+4}{2} cdot 10 = dfrac {-19}{2} cdot 10 = -9.5 cdot 10 = -95

Ответ: -95

Проверим ответ на калькуляторе .

Нахождение суммы числового ряда. Первая часть.

В теме про основные понятия числовых рядов было указано определение суммы ряда. Вот оно:

Если существует конечный предел $S=lim_{ntoinfty}S_n$, то его называют суммой ряда $sumlimits_{n=1}^{infty}u_n$ и сам ряд именуют сходящимся. Если же $lim_{ntoinfty}S_n=infty$ или $lim_{ntoinfty}S_n$ не существует, то ряд называют расходящимся.

Если понятие “частичная сумма” вызывает вопросы, то советую посмотреть раздел про частичную сумму ряда, обратив внимание на пример №4. В этом примере подробно раскрывается суть частичной суммы и остатка.

В данной теме нас будет интересовать вопрос нахождения сумм числовых рядов по определению. Определение суммы ряда опирается на значение $lim_{ntoinfty}S_n$, поэтому для нахождения суммы нам нужно выполнить два шага:

  1. Составить n-ю частичную сумму $S_n$;
  2. Найти $lim_{ntoinfty}S_n$ (если он существует).

Если конечный $lim_{ntoinfty}S_n$ существует, то его значение и будет суммой рассматриваемого ряда, а сам ряд будет именоваться сходящимся. Если же $lim_{ntoinfty}S_n=infty$ или $lim_{ntoinfty}S_n$ не существует, то ряд будет расходиться. Есть несколько стандартных приёмов, которые применяются для нахождения суммы числовых рядов. Например, для нахождения суммы ряда, общий член которого имеет вид рациональной дроби $u_n=frac{P(n)}{Q(n)}$, вполне подходит такой алгоритм:

  1. Разложить дробь $frac{P(n)}{Q(n)}$ на элементарные дроби (процедура разложения описана тут).
  2. Записать выражение для частичной суммы $S_n$, используя результаты предыдущего пункта.
  3. Перегруппировать слагаемые в выражении для $S_n$, приведя их к удобному для сокращения виду.
  4. Используя результат предыдущего пункта, найти $lim_{ntoinfty}S_n$.

Для нахождения суммы ряда нередко удобно использовать и такое свойство:

Пусть общий член ряда $sumlimits_{n=1}^{infty}u_n$ можно представить в виде $u_n=b_{n+1}-b_n$. Если существует конечный предел $lim_{ntoinfty}b_n=b$, то ряд $sumlimits_{n=1}^{infty}u_n$ сходится. При этом частичная сумма ряда равна $S_{n}=b_{n+1}-b_1$, а сумма ряда $S=b-b_1$.

Доказательство этого свойства может быть интересно не всем читателям, поэтому я скрою его под примечание.

Доказательство свойства: показатьскрыть

Во всех изложенных ниже примерах члены рядов будем обозначать буквами $u_1$ (первый член ряда), $u_2$ (второй член ряда) и так далее. Запись $u_n$ будет обозначать общий член ряда.

Пример №1

Найти сумму ряда $sumlimits_{n=1}^{infty}(-1)^{n+1}$.

Решение

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=(-1)^{n+1}$. Составим n-ю частичную сумму ряда, т.е. просуммируем первые $n$ членов числового ряда:

$$
S_n=u_1+u_2+u_3+u_4+ldots+u_n=\=(-1)^2+(-1)^3+(-1)^4+(-1)^5+ldots+(-1)^{n+1}=1-1+1-1+ldots+(-1)^n.
$$

Вопрос в следующем: чему равна эта сумма? Если в частичных суммах мы станем брать чётное количество слагаемых, они попарно сократятся:

begin{aligned}
& S_2=1-1=0;\
& S_4=1-1+1-1=0;\
& S_6=1-1+1-1+1-1=0;\
& S_8=1-1+1-1+1-1+1-1=0.
end{aligned}

Итак, частичная сумма, содержащая чётное количество слагаемых, равна 0. Т.е. если $n$ – чётное число, то $S_n=0$. Фразу “n – чётное число” можно записать так: $n=2k$, $kin N$. В самом деле, подставляя вместо $k$ значения 1, 2, 3, 4 будем получать $n=2cdot 1=2$, $n=2cdot 2=4$, $n=2cdot 3=6$, $n=2cdot 4=8$ и так далее. Итак, $S_{2k}=0$.

Если мы станем брать нечётное количество слагаемых (1, 3, 5 и т.д.), то сумма станет равна 1:

begin{aligned}
& S_1=1;\
& S_3=1-1+1=1;\
& S_5=1-1+1-1+1=1;\
& S_7=1-1+1-1+1-1+1=1.
end{aligned}

Таким образом, если $n$ – нечётное число, то $S_n=1$. Фразу “n – нечётное число” можно записать так: $n=2k-1$, $kin N$. В самом деле, подставляя вместо $k$ значения 1, 2, 3, 4 будем получать $n=2cdot 1-1=1$, $n=2cdot 2-1=3$, $n=2cdot 3-1=5$, $n=2cdot 4-1=7$ и так далее. Итак, $S_{2k-1}=1$.

Формально равенство $S_{2k-1}=1$ можно доказать с помощью формулы $S_{2k}=S_{2k-1}+u_{2k}$. Так как $S_{2k}=0$, то $S_{2k-1}+u_{2k}=0$, т.е. $S_{2k-1}=-u_{2k}$. Так как $u_{2k}=(-1)^{2k+1}=left((-1)^2right)^kcdot (-1)^1=-1$, то $S_{2k-1}=-(-1)=1$.

Возникает вопрос: как быть с пределом $lim_{ntoinfty}S_n$? Ведь если $n$ – чётное число, т.е. $n=2k$, то:

$$
lim_{ntoinfty}S_n=lim_{ktoinfty}S_{2k}=lim_{ktoinfty}0=0.
$$

С другой стороны, если $n$ – нечётное число, то:

$$
lim_{ntoinfty}S_n=lim_{ktoinfty}S_{2k-1}=lim_{ktoinfty}1=1.
$$

Что мы получили? А получили мы следующее: последовательность частичных сумм ${S_n}$ имеет две подпоследовательности: ${S_{2k-1}}$ и ${S_{2k}}$, пределы которых различны. Следовательно, последовательность ${S_n}$ не имеет предела. Вывод: ряд не имеет суммы, т.е. расходится.

Здесь стоит обратить внимание вот на что: следует различать случаи, когда предел равен бесконечности (см. следующий пример №2), и когда предела попросту не существует. Хотя и в том и в другом случаях ряд будет расходиться.

Ответ: ряд расходится.

Пример №2

Найти сумму ряда $sumlimits_{n=1}^{infty}(3n+1)$.

Решение

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=3n+1$. Составим n-ю частичную сумму ряда, т.е. просуммируем первые $n$ членов заданного числового ряда:

$$
S_n=u_1+u_2+u_3+u_4+ldots+u_n=4+7+10+13+ldots+3n+1.
$$

Эту сумму можно записать в более коротком виде. Дело в том, что последовательность 4, 7, 10, 13 и т.д. есть арифметическая прогрессия, первый член которой равен 4, а разность равна 3. Сумма первых n членов этой прогрессии такова:

$$
4+7+10+13+ldots+3n+1=frac{4+3n+1}{2}cdot n=frac{3n+5}{2}cdot{n}.
$$

Итак, $S_n=frac{3n+5}{2}cdot n$. Найдем $lim_{ntoinfty}S_n$:

$$
lim_{ntoinfty}S_n=lim_{ntoinfty}left(frac{3n+5}{2}cdot nright)=+infty.
$$

Так как $lim_{ntoinfty}S_n=+infty$, то ряд расходится.

Если немного выйти за рамки данной темы, то стоит отметить, что расходимость этого ряда легко доказывается с помощью необходимого признака сходимости.

Ответ: ряд расходится.

Пример №3

Найти сумму ряда $sumlimits_{n=1}^{infty}frac{2}{(2n+1)(2n+3)}$.

Решение

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=frac{2}{(2n+1)(2n+3)}$. Составим n-ю частичную сумму ряда, т.е. просуммируем первые $n$ членов заданного числового ряда:

$$
S_n=u_1+u_2+u_3+u_4+ldots+u_n=frac{2}{3cdot 5}+frac{2}{5cdot 7}+frac{2}{7cdot 9}+frac{2}{9cdot 11}+ldots+frac{2}{(2n+1)(2n+3)}.
$$

Почему я пишу именно $frac{2}{3cdot 5}$, а не $frac{2}{15}$, будет ясно из дальнейшего повествования. Однако запись частичной суммы ни на йоту не приблизила нас к цели. Нам ведь нужно найти $lim_{ntoinfty}S_n$, но если мы просто запишем:

$$
lim_{ntoinfty}S_n=lim_{ntoinfty}left(frac{2}{3cdot 5}+frac{2}{5cdot 7}+frac{2}{7cdot 9}+frac{2}{9cdot 11}+ldots+frac{2}{(2n+1)(2n+3)}right),
$$

то эта запись, совершенно верная по форме, ничего нам не даст по сути. Чтобы найти предел, выражение частичной суммы предварительно нужно упростить.

Для этого есть стандартное преобразование, состоящее в разложении дроби $frac{2}{(2n+1)(2n+3)}$, которая представляет общий член ряда, на элементарные дроби. Вопросу разложения рациональных дробей на элементарные посвящена отдельная тема (см., например, пример №3 на этой странице). Раскладывая дробь $frac{2}{(2n+1)(2n+3)}$ на элементарные дроби, будем иметь:

$$
frac{2}{(2n+1)(2n+3)}=frac{A}{2n+1}+frac{B}{2n+3}=frac{Acdot(2n+3)+Bcdot(2n+1)}{(2n+1)(2n+3)}.
$$

Приравниваем числители дробей в левой и правой частях полученного равенства:

$$
2=Acdot(2n+3)+Bcdot(2n+1).
$$

Чтобы найти значения $A$ и $B$ есть два пути. Можно раскрыть скобки и перегруппировать слагаемые, а можно просто подставить вместо $n$ некие подходящие значения. Сугубо для разнообразия в этом примере пойдём первым путём, а следующем – будем подставлять частные значения $n$. Раскрывая скобки и перегруппировывая слагаемые, получим:

$$
2=2An+3A+2Bn+B;\
2=(2A+2B)n+3A+B.
$$

В левой части равенства перед $n$ стоит ноль. Если угодно, левую часть равенства для наглядности можно представить как $0cdot n+ 2$. Так как в левой части равенства перед $n$ стоит ноль, а в правой части равества перед $n$ стоит $2A+2B$, то имеем первое уравнение: $2A+2B=0$. Сразу разделим обе части этого уравнения на 2, получив после этого $A+B=0$.

Так как в левой части равенства свободный член равен 2, а в правой части равенства свободный член равен $3A+B$, то $3A+B=2$. Итак, имеем систему:

$$
left{begin{aligned}
& A+B=0;\
& 3A+B=2.
end{aligned}right.
$$

Можно решать эту систему методом Крамера, методом Гаусса или с помощью обратной матрицы. Однако проще всего банально выразить из первого уравнения $A=-B$ и подставить во второе:

$$
3cdot (-B)+B=2;; -2B=2; ; B=-1.
$$

Так как $B=-1$, то $A=-B=1$. Подставляя найденные значения $A=1$ и $B=-1$ в формулу $frac{2}{(2n+1)(2n+3)}=frac{A}{2n+1}+frac{B}{2n+3}$, будем иметь:

$$
frac{2}{(2n+1)(2n+3)}=frac{1}{2n+1}+frac{-1}{2n+3}=frac{1}{2n+1}-frac{1}{2n+3}.
$$

Итак, $u_n=frac{1}{2n+1}-frac{1}{2n+3}$. Используем полученное разложение для того, чтобы упростить формулу частичной суммы ряда. Покажу сначала решение стандартным путём, принятым в большинстве решебников и методичек.

Первый способ упрощения формулы для частичной суммы.

Мы получили разложение общего члена ряда на две дроби: $u_n=frac{1}{2n+1}-frac{1}{2n+3}$. Чтобы этот результат был более наглядным, я распишу несколько первых членов ряда по этой формуле:

begin{aligned}
& u_1=frac{2}{3cdot 5}=frac{1}{3}-frac{1}{5};\
& u_2=frac{2}{5cdot 7}=frac{1}{5}-frac{1}{7};\
& u_3=frac{2}{7cdot 9}=frac{1}{7}-frac{1}{9};\
& u_4=frac{2}{9cdot 11}=frac{1}{9}-frac{1}{11}.
end{aligned}

Давайте распишем частичную сумму, учитывая полученное разложение каждого элемента:

$$
S_n=u_1+u_2+u_3+u_4+ldots+u_n=frac{1}{3}-frac{1}{5}+frac{1}{5}-frac{1}{7}+frac{1}{7}-frac{1}{9}+frac{1}{9}-frac{1}{11}+ldots+frac{1}{2n+1}-frac{1}{2n+3}.
$$

Как видите, все слагаемые этой суммы сокращаются, – кроме первого и последнего:

Сумма

Итак, $S_n=frac{1}{3}-frac{1}{2n+3}$. Этот способ упрощения формулы для частичной суммы имеет простую суть: разложить общий член ряда на элементарные дроби, а потом сократить слагаемые.

Однако можно ли считать вышеуказанные рассуждения строгим доказательством? Полагаю, что в общем случае нет, и поясню почему. Дело в том, что мы должны “увидеть” (как любят писать некоторые авторы – “легко увидеть”), что слагаемые сокращаются. А если мы “увидим” не все слагаемые, которые останутся после сокращения? Где гарантии, что мы сократим именно то, что нужно? Нет гарантий. Понятно, что в случае рассматриваемой конкретной задачи всё тривиально и очевидно, но далеко не все частичные суммы рядов имеют такую простую структуру.

Формулу $S_n=frac{1}{3}-frac{1}{2n+3}$ можно принять в качестве гипотезы, которую ещё нужно доказать. Доказательство удобнее всего проводить методом математической индукции. Так как доказательством заинтересуются не все читатели, то я его скрыл под примечание.

Доказательство формулы $S_n=frac{1}{3}-frac{1}{2n+3}$: показатьскрыть

В стандартном курсе высшей математики обычно довольствуются “вычёркиванием” сокращающихся слагаемых, не требуя никаких доказательств. Итак, мы получили выражение для n-й частичной суммы: $S_n=frac{1}{3}-frac{1}{2n+3}$. Найдём значение $lim_{ntoinfty}S_n$:

$$
lim_{ntoinfty}S_n=lim_{ntoinfty}left(frac{1}{3}-frac{1}{2n+3}right)=frac{1}{3}-0=frac{1}{3}.
$$

Вывод: заданный ряд сходится и сумма его $S=frac{1}{3}$.

Второй способ упрощения формулы для частичной суммы.

Этот способ основан на свойстве, записанном в начале страницы. По сути, он схож с предыдущим, – разница лишь в применении уже готовой теоремы, доказанной нами ранее. Вернёмся к записи общего члена ряда:

$$
u_n=frac{1}{2n+1}-frac{1}{2n+3}
=frac{-1}{2n+3}-frac{-1}{2n+1}
$$

Обозначим $b_n=frac{-1}{2n+1}$, тогда $b_{n+1}=frac{-1}{2(n+1)+1}=frac{-1}{2n+3}$. Таким образом, $u_{n}=b_{n+1}-b_{n}$. При этом $lim_{ntoinfty}b_n=0$. Согласно упомянутому свойству, ряд $sumlimits_{n=1}^{infty}u_n$ сходится. При этом его сумма равна $S=0-b_1=frac{1}{3}$. Если есть необходимость, можно записать и частичную сумму ряда:

$$
S_n
=b_{n+1}-b_1
=frac{-1}{2n+3}-left(-frac{1}{3}right)
=frac{1}{3}-frac{1}{2n+3}
$$

Третий способ упрощения формулы для частичной суммы.

Честно говоря, я сам предпочитаю большей частью именно этот способ 🙂 Давайте запишем частичную сумму в сокращённом варианте:

$$
S_n=sumlimits_{k=1}^{n}u_k=sumlimits_{k=1}^{n}frac{2}{(2k+1)(2k+3)}.
$$

Мы получили ранее, что $u_k=frac{1}{2k+1}-frac{1}{2k+3}$, поэтому:

$$
S_n=sumlimits_{k=1}^{n}frac{2}{(2k+1)(2k+3)}=sumlimits_{k=1}^{n}left(frac{1}{2k+1}-frac{1}{2k+3}right).
$$

Сумма $S_n$ содержит конечное количество слагаемых, поэтому мы можем переставлять их так, как нам заблагорассудится. Я хочу сначала сложить все слагаемые вида $frac{1}{2k+1}$, а уж затем переходить к слагаемым вида $frac{1}{2k+3}$. Это означает, что частичную сумму мы представим в таком виде:

$$
S_n
=frac{1}{3}-frac{1}{5}+frac{1}{5}-frac{1}{7}+frac{1}{7}-frac{1}{9}+frac{1}{9}-frac{1}{11}+ldots+frac{1}{2n+1}-frac{1}{2n+3}=\
=frac{1}{3}+frac{1}{5}+frac{1}{7}+frac{1}{9}+ldots+frac{1}{2n+1}-left(frac{1}{5}+frac{1}{7}+frac{1}{9}+ldots+frac{1}{2n+3}right).
$$

Конечно, развёрнутая запись крайне неудобна, поэтому представленное выше равенство оформим более компактно:

$$
S_n=sumlimits_{k=1}^{n}left(frac{1}{2k+1}-frac{1}{2k+3}right)=sumlimits_{k=1}^{n}frac{1}{2k+1}-sumlimits_{k=1}^{n}frac{1}{2k+3}.
$$

Теперь преобразуем выражения $frac{1}{2k+1}$ и $frac{1}{2k+3}$ к одному виду. Приведём, например, дробь $frac{1}{2k+3}$ к виду $frac{1}{2k+1}$. Выражение в знаменателе дроби $frac{1}{2k+3}$ я представлю в таком виде:

$$
frac{1}{2k+3}=frac{1}{2k+2+1}=frac{1}{2(k+1)+1}.
$$

И сумму $sumlimits_{k=1}^{n}frac{1}{2k+3}$ теперь можно записать так:

$$
sumlimits_{k=1}^{n}frac{1}{2k+3}=sumlimits_{k=1}^{n}frac{1}{2(k+1)+1}=sumlimits_{k=2}^{n+1}frac{1}{2k+1}.
$$

Если равенство $sumlimits_{k=1}^{n}frac{1}{2k+3}=sumlimits_{k=2}^{n+1}frac{1}{2k+1}$ не вызывает вопросов, то пойдём далее. Если же вопросы есть, то прошу развернуть примечание.

Как мы получили преобразованную сумму? показатьскрыть

Таким образом, частичную сумму можно представить в следующем виде:

$$
S_n=sumlimits_{k=1}^{n}frac{1}{2k+1}-sumlimits_{k=1}^{n}frac{1}{2k+3}=sumlimits_{k=1}^{n}frac{1}{2k+1}-sumlimits_{k=2}^{n+1}frac{1}{2k+1}.
$$

Заметьте, что суммы $sumlimits_{k=1}^{n}frac{1}{2k+1}$ и $sumlimits_{k=2}^{n+1}frac{1}{2k+1}$ отличаются лишь пределами суммирования. Сделаем эти пределы одинаковыми. Начнём с первой суммы.

Сделаем так, чтобы верхний предел суммирования стал равен $n+1$. Если $k=n+1$, то $frac{1}{2k+1}=frac{1}{2n+3}$. Прибавляя и вычитая из первой суммы $frac{1}{2n+3}$, получим:

$$
sumlimits_{k=1}^{n}frac{1}{2k+1}
=sumlimits_{k=1}^{n}frac{1}{2k+1}+frac{1}{2n+3}-frac{1}{2n+3}
=sumlimits_{k=1}^{n+1}frac{1}{2k+1}-frac{1}{2n+3}
$$

Для второй суммы $sumlimits_{k=2}^{n+1}frac{1}{2k+1}$ сделаем так, чтобы нижний предел суммирования был равен 1. Если $k=1$, то $frac{1}{2k+1}=frac{1}{3}$. Прибавляя и вычитая $frac{1}{3}$, получим:

$$
sumlimits_{k=2}^{n+1}frac{1}{2k+1}
=sumlimits_{k=2}^{n+1}frac{1}{2k+1}+frac{1}{3}-frac{1}{3}
=sumlimits_{k=1}^{n+1}frac{1}{2k+1}-frac{1}{3}
$$

С учётом полученных результатов, выражение для $S_n$ примет такой вид:

$$
S_n
=sumlimits_{k=1}^{n+1}frac{1}{2k+1}-frac{1}{2n+3}-left(sumlimits_{k=1}^{n}frac{1}{2k+1}-frac{1}{3}right)
=frac{1}{3}-frac{1}{2n+3}
$$

Если пропустить все пояснения, то процесс нахождения сокращённой формулы для n-й частичной суммы примет такой вид:

$$
S_n=sumlimits_{k=1}^{n}u_k
=sumlimits_{k=1}^{n}frac{2}{(2k+1)(2k+3)}
=sumlimits_{k=1}^{n}left(frac{1}{2k+1}-frac{1}{2k+3}right)=\

=sumlimits_{k=1}^{n}frac{1}{2k+1}-sumlimits_{k=1}^{n}frac{1}{2k+3}
=sumlimits_{k=1}^{n}frac{1}{2k+1}-sumlimits_{k=2}^{n+1}frac{1}{2k+1}=\

=sumlimits_{k=1}^{n+1}frac{1}{2k+1}-frac{1}{2n+3}-left(sumlimits_{k=1}^{n+1}frac{1}{2k+1}-frac{1}{3}right)
=frac{1}{3}-frac{1}{2n+3}
$$

Напомню, что мы приводили дробь $frac{1}{2k+3}$ к виду $frac{1}{2k+1}$. Разумеется, можно поступить и наоборот, т.е. представить дробь $frac{1}{2k+1}$ в виде $frac{1}{2k+3}$. Конечное выражение для частичной суммы не изменится. Процесс нахождения частичной суммы в этом случае я скрою под примечание.

Как найти $S_n$, если приводить к виду иной дроби? показатьскрыть

Итак, $S_n=frac{1}{3}-frac{1}{2n+3}$. Находим предел $lim_{ntoinfty}S_n$:

$$
lim_{ntoinfty}S_n=lim_{ntoinfty}left(frac{1}{3}-frac{1}{2n+3}right)=frac{1}{3}-0=frac{1}{3}.
$$

Заданный ряд сходится и сумма его $S=frac{1}{3}$.

Ответ: $S=frac{1}{3}$.

Продолжение темы нахождения суммы ряда будет рассмотрено во второй и третьей частях.

Определение

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.

Другими словами, последовательность (аn) – арифметическая прогрессия, если для любого натурального числа n выполняется условие аn+1n+d, где d – некоторое число. Из данного равенства следует, что можно найти это число d, если вычесть из последующего члена предыдущий, то есть d = аn+1–аn. Число d называют разностью арифметической прогрессии.

Арифметической прогрессией, например, является ряд чисел 3; 8; 13; 18….., так как разница между числами равна 5, мы видим, что каждое последующее на 5 больше предыдущего.

Если известен первый член арифметической прогрессии a1 и разность d, то можно вычислить любой член арифметической прогрессии:

a2 = a1 + d;

a3 = a2 + d = a1+2d;

a4 = a3 + d = a1+3d.

Этот ряд можно продолжать до бесконечности, поэтому надо запомнить, что n-ый член арифметической прогрессии можем получить быстрее, если к первому члену прогрессии добавить (n−1) разностей, то есть:

Формула n-ого члена арифметической прогрессии

an = a1 + d(n−1)

где n – порядковый номер члена арифметической прогрессии, a1 – первый член прогрессии, d – разность арифметической прогрессии

Формулу используют, чтобы вычислить заданный член арифметической прогрессии (например, пятнадцатый, двухсотый и т.д.), если известны первый член последовательности и ее разность. Рассмотрим на примерах применение данной формулы.

Пример №1. Найти а20 арифметической прогрессии (аn), если а1=14, d=5. Составляем формулу для а20 и подставляем в нее данные: а20= a1 + d(20−1)=14+5(20−1)=109. Таким образом, мы вычислили, что на 20-ом месте в данной арифметической прогрессии стоит число 109.

Найти а7 арифметической прогрессии (аn), если а1=−8, d=−3. Аналогично работаем, составляя формулу и подставляя в нее данные значения (обращаем внимание на знаки чисел, чтобы не допустить ошибок): а7= a1 + d(7−1)= −8−3(7−1)= −26.

Дана арифметическая прогрессия 10; 12; 14;…… Найти а12. Здесь для нахождения а12 надо сначала найти разность d: d=12−10=2, то есть из последующего вычтем предыдущее. Можно было 14−12, порядок здесь не имеет значения, главное берем два соседних члена прогрессии. Теперь можем составлять формулу и находить а12: а12= a1 + d(12−1)=10+2(12−1)=32.

Утверждение

Любая арифметическая прогрессия может быть задана формулой вида an=kn+b, где k и b некоторые числа. Верно и обратное утверждение: если последовательность чисел задана формулой вида an=kn+b, где k и b некоторые числа, то она является арифметической.

Так, например, формула an=5n+1 задает арифметическую прогрессию, в которой разность d равна 1; по данной формуле можно найти любой член последовательности, например, найдем 20-ый член, подставляя в формулу число 20: a20=5×20+1=101.

Свойство арифметической прогрессии

Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Формула:

аn=(аn-1+ аn+1):2

Другими словами, используя данное свойство, мы можем найти член арифметической прогрессии, стоящий между двумя известными членами, без использования разности d. Рассмотрим это на примерах.

Пример №2. Найти а10 арифметической прогрессии (аn), если а9=24; а11=38. Здесь используем свойство, так как видим, что у а10 известны соседние члены. Значит, а10=(а911):2=(24+38):2=31. Таким образом, десятый член равен 31.

Дана арифметическая прогрессия …..23; х; 35. Найти х. Применяем свойство для нахождения х: х=(23+35):2=29. Для наглядности запишем, что ряд чисел выглядит так: …23; 29; 35.

Формулы суммы n первых членов арифметической прогрессии

Для нахождения суммы (обозначим ее буквой S) большого количества членов арифметической прогрессии существует формула, позволяющая это сделать быстро.

Формула суммы членов арифметической прогрессии с известными членами

Sn=
(a1+an
)n
2

В данной формуле мы видим, что для нахождения суммы нужны первый и последний член прогрессии. Но встречаются случаи, когда аn не известно, но известна разность. Тогда для нахождения суммы применяют вторую формулу.

Формула суммы членов арифметической прогрессии с первым членом и разностью

Sn=2a1+d(n1)2n

Рассмотрим на примерах применение данных формул.

Пример №3. Найти сумму первых пятидесяти членов арифметической прогрессии (аn), если а1=11, а50=39.

Для решения лучше использовать первую формулу, так как здесь есть первый и последний члены: а1=11, а50=39. Поэтому составляем формулу, подставляем в нее данные значения и вычисляем:

S50=(a1+a50
)50
2
=(11+39)502=25002=1250

Найти сумму первых десяти членов арифметической последовательности 3; 18; …. В данном случае задание можно выполнить двумя способами, как по первой формуле, так и по второй, а затем выяснить, какой способ короче, а значит, рациональнее.

Способ №1 (по первой формуле): надо найти разность d, затем десятый член прогрессии, а затем сумму:

d=18-3=15; а10=3+15(10-1)=138

S10=(a1+a10
)10
2
=(3+138)102=705

Способ №2 (по второй формуле): надо знать разность d, d=18-3=15. Теперь подставим значения во вторую формулу и сосчитаем результат:

S10=2a1+d(101)210=2×3+15(101)210=705

Результаты в обоих случаях получились у нас одинаковые. А если сравнить два способа, то видно, что второй способ быстрее, тем более что в большинстве случаев разность арифметической прогрессии можно вычислить устно.

Таким образом, выбор формулы для нахождения суммы n первых членов арифметической прогрессии зависит от заданного условия.

Задание OM1420223

Миша решил заказать себе такси. Подача машины и первые пять минут поездки в совокупности стоят 159 рублей, а стоимость каждой последующей минуты поездки фиксирована. Стоимость поездки с 6 по 15 минуту (включительно) составила 80 рублей, а с 6 по 25 минуту – 160 рублей. Найти итоговую стоимость поездки, если она длилась 1 час.


Выпишем, что мы имеем по условию задачи в левый столбец, а в правый запишем то, что из этого следует

Известно Решение
Подача и первые 5 минут – 159 руб
Стоимость с 6 по 15 минуту – 80 рублей

Стоимость с 6 по 25 минуту – 160 рублей.

Разница во времени 10 минут стоит 80 руб
Значит, 1 минута стоит 8 руб (80:10=8)
1 час – ? руб 1 час=60 мин; убираем 5 минут, которые включены в подачу машины, значит, надо найти стоимость 55 минут: 558=440 руб

Прибавляем стоимость подачи: 440+159=599 рублей

Ответ: 599

pазбирался: Даниил Романович | обсудить разбор

Задание OM1420221

В амфитеатре 12 рядов. В первом ряду 18 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько всего мест в амфитеатре?


Из условия задачи видно, что имеем дело с арифметической прогрессией, так как сказано, что в каждом следующем на 2 места больше, чем в предыдущем.

Выписываем, что нам известно и определяем, что нужно найти: всего 12 рядов, значит n=12; в первом ряду 18 мест, значит, а1=18; так как в каждом последующем ряду мест на 2 больше, то разность арифметической прогрессии d=2. Надо найти, сколько всего мест в амфитеатре, т.е. найти сумму арифметической прогрессии S12.

Для нахождения суммы имеем формулу Sn=a1+an2×n, то есть для нашей задачи S12=a1+a122×12. У нас нет а12, найдем его по формуле n-ого члена арифметической прогрессии: a12=a1+d(n-1)=18+2(12-1)=18+22=40. Подставим данные в формулу суммы:

S12=18+402×12=348

Следовательно, 348 мест всего в амфитеатре.

Проверка: можно проверить решение следующим способом, просто прибавляя по 2 места в каждый ряд до 12-ого, а затем сложить количество мест. Записать можно так: 18+20+22+24+26+28+30+32+34+36+38+40=348. Этим же способом, кстати, можно решить задачу, если от волнения забыли про арифметическую прогрессию.

Ответ: 348

pазбирался: Даниил Романович | обсудить разбор

Задание 14OM21R

При проведении опыта вещество равномерно охлаждали в течение 10 минут. При этом каждую минуту температура вещества уменьшалась на 80С. Найдите температуру вещества (в градусах Цельсия) через 6 минут после начала проведения опыта, если его начальная температура составляла -60С.


Можно решить данную задачу логическим путем, т.е. без формулы. Так как начальная температура была -6, а потом уменьшалась на 8 градусов в течение 6 минут, то можно сделать следующее:

-6-8=-14 через 1 минуту

-14-8=-22 через 2 минуты

-22-8=-30 через 3 минуты

-30-8=-38 через 4 минуты

-38-8=-46 через 5 минут

-46-8=-54 через 6 минут

Значит, наш ответ -540С

Вторым способом является решение по формуле n-ого члена арифметической прогрессии, которая есть также и в справочном материале, т.е. an=a1+d(n – 1). В данном случае a1=-6; d=-8, n=7 (так как ЧЕРЕЗ 6 минут). Подставим значения в формулу: a7=-61-8(7 – 1). Вычислим: a6=-6-85=-6-48=-54.

Ответ: -54

pазбирался: Даниил Романович | обсудить разбор

Задание OM1407

К концу 2008 года в городе проживало 38100 человек. Каждый год число жителей города возрастало на одну и ту же величину. В конце 2016 года в городе проживало 43620 человек. Какова была численность населения этого города к концу 2012 года?


Содержание данной задачи говорит нам о том, что здесь есть арифметическая прогрессия, так как число жителей города возрастало на одну и ту же величину.

Рассмотрим данные:

2008 г – 38100 человек

2012 г – ? человек

2016 г. – 43620 человек

Удобно решить данную задачу способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn , где k>n. Число d (разность прогрессии) будет являться ежегодным приростом населения.

Итак, можно вычислить прирост населения с 2008 по 2016 ежегодно:

(43620 – 38100):(2016 – 2008)= 5520:8=690 человек.

Теперь можно найти, сколько человек проживало в конце 2012 года.

38100+690(2016 – 2012)= 40860 человек

Ответ: 40860

pазбирался: Даниил Романович | обсудить разбор

Задание OM1406

Митя играет в компьютерную игру. Он начинает с 0 очков, а для перехода на следующий уровень ему нужно набрать не менее 30000 очков. После первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8 очков и так далее. Таким образом, после каждой следующей минуты игры количество добавляемых очков удваивается. Через сколько минут Митя перейдет на следующий уровень?


Анализируя содержание задачи, можно сказать, что мы имеем дело с геометрической прогрессией, так как после первой минуты игры добавляется 2 очка, после второй – 4 очка, после третьей – 8, а это значит, что с каждой последующей минутой количество очков удваивается. То есть знаменатель геометрической прогрессии q равен 2, b1=2 по условию (после 1 минуты 2 очка). Так как очки суммируются, то будем использовать формулу суммы n первых членов геометрической прогрессии Sn=b1(qn1)q1, где Sn>30000, так как для перехода на следующий уровень ему нужно набрать не менее 30000 очков.

Подставляем наши данные в формулу: 2(2n1)21>30000

Упрощаем выражение: так как в знаменателе дроби получается 1, то получим 2(2n-1)>30000; делим обе части на 2: 2n-1>15000; переносим 1 в правую часть и получим: 2n>15001. Теперь надо подобрать число n, при котором будет верно наше неравенство. Делать это можно постепенно, возводя 2 в степени, а можно запомнить, что 210=1024. Тогда легко будет добраться до числа, которое меньше 15001, а это 214=16384, где 16384<15001. Следовательно, наш ответ 14 минут.

Ответ: 14

pазбирался: Даниил Романович | обсудить разбор

Задание OM1405

В течение 25 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 7-й день акция стоила 777 рублей, а в 12-й день – 852 рубля?


В содержании задачи есть фраза, что акции дорожали ежедневно на одну и ту же сумму, следовательно, имеем арифметическую прогрессию. Итак, определяем, что известно: в 7-й день акция стоила 777 рублей, это а7=777; в 12-й день – 852 рубля, это а12=852. Известно, что акции дорожали 25 дней, а найти надо стоимость акции в последний, т.е. в 25-ый день, значит, будем искать а25.

1 способ:

В данной арифметической прогрессии нет первого члена, не идет речь про сумму, поэтому воспользуемся формулой аn=ak+d(n – k), где n>k. Числа n и k – это порядковые номера. Составим формулу для наших данных и подставим в неё значения: а127+d(12-7); 852=777+d(12 – 7). Упростим выражение и найдем разность d, 852–777= d(12 – 7); 75= d∙5; отсюда d=75:5=15. Итак, мы нашли, что акции ежедневно дорожали на 15 рублей.

Теперь, зная число d, мы можем найти а25 через, например, а12, используя всё ту же формулу. Получаем: а2512+d(25-12); а25=852+15(25-12)=852+15∙13= 852+195=1047. Значит, 1047 рублей стоила акция в последний день.

2 способ:

Можно решить данную задачу другим способом по формуле связи между любыми двумя членами арифметической прогрессии: d=anakkn , где k>n. Составим формулу для наших а12 и а7, а затем подставим в нее данные: d=a12a7127; d=852777127=15. Теперь по этой же формуле найдем а25, связывая его с а12: d=a25a122512; 15=a2585213; найдем отсюда а25, а25=15∙13+852=1047.

Ответ: 1047

pазбирался: Даниил Романович | обсудить разбор

Задание OM1404

Грузовик перевозит партию щебня массой 176 тонн, ежедневно увеличивая норму перевозки на одно и то же число тонн. Известно, что в первый день было перевезено 6 тонн щебня. Определите, сколько тонн щебня было перевезено в последний день, если вся работа была выполнена за 11 дней.


В условии задачи встречаются слова, что норма увеличивалась на одно и то же число. И это значит, что мы имеем арифметическую прогрессию, в которой а1=6, так как в первый день перевезли 6 тонн. Далее, известно, что вся работа была выполнена за 11 дней, значит число n=11. Так как масса всего щебня равна 176, то это число является суммой нашей прогрессии, т.е. S11=176. Требуется найти, сколько тонн было перевезено в последний день, а он – 11, значит, найти надо а11.

Итак, если нам встретилась сумма арифметической прогрессии, значит, нам надо воспользоваться формулой суммы n первых членов арифметической прогрессии Sn=а1+аn2n, куда мы и подставим все данные: 176=6+а11211.

Разделим обе части на 11, получим 16= 6+а112 ; умножим 16 на 2 (правило пропорции): 32=6+а11. Отсюда найдем а11=32–6=26. Итак, мы нашли, что 26 тонн щебня было перевезено в последний день.

Ответ: 26

pазбирался: Даниил Романович | обсудить разбор

Задание OM1403

Для получения витамина D могут быть рекомендованы солнечные ванны. Загорать лучше утром до 10 часов или вечером после 17 часов. Михаилу назначили курс солнечных ванн. Михаил начинает курс с 15 минут в первый день и увеличивает время этой процедуры в каждый следующий день на 15 минут. В какой по счету день продолжительность процедуры достигнет 1 часа 15 минут?


Из содержания данной задачи видно, что время процедуры увеличивалось с каждым днем на одно и то же количество времени – на 15 минут, следовательно, это арифметическая прогрессия. Так как в первый день курс был 15 минут, то а1=15; так как время ежедневно увеличивалось на 15 минут, то значит разность d=15; зная, что продолжительность процедуры должна достигнуть 1 ч 15 мин, т.е. достигнуть 75 минут (1 час=60 мин, плюс 15 минут), то это число 75 и будет являться n членом арифметической прогрессии. Требуется найти, в какой по счету день продолжительность процедуры достигнет этих 75 минут, т.е. найдем число n.

Теперь берем формулу n члена арифметической прогрессии аn=a1+d(n – 1) и подставляем в неё наши данные: 75=15+15(n – 1); упростим данное выражение: 75-15=15(n – 1); 60=15(n – 1); разделим на 15 обе части: 4=n – 1; найдем отсюда, что n=5. Таким образом, на пятый день продолжительность процедуры достигнет 75 минут.

Ответ: 5

pазбирался: Даниил Романович | обсудить разбор

Задание OM1402

Улитка ползет от одного дерева до другого. Каждый день она проползает на одно и то же расстояние меньше, чем в предыдущий день. Известно, что за первый и последний дни улитка проползла в сумме 7,5 метров. Определите, сколько дней улитка потратила на весь путь, если расстояние между деревьями равно 60 метрам.


Анализируя содержание задачи, мы видим, что улитка проползала ежедневно на одно и то же расстояние меньше, чем в предыдущий день. А это значит, что имеем арифметическую прогрессию. По условию определяем данные: так как в первый и последний дни она проползла 7,5 м, то имеем, что а1n=7,5. Так как расстояние между деревьями равно 60 м, то имеем сумму n первых членов прогрессии, т.е. Sn=60. Так как найти надо количество дней, которое она потратила на весь путь, то искомым числом будет число n.

Зная формулу суммы n первых членов арифметической прогрессии

Sn=а1+аn2n, имеем 60=7,5  n2. Отсюда находим n, умножая сначала 60 на 2 (по определению пропорции), затем 120 делим на 7,5 и получаем, что n=16. Таким образом, улитка потратила на весь путь 16 дней.

Ответ: 16

pазбирался: Даниил Романович | обсудить разбор

Задание OM1401

При проведении химической реакции в растворе образуется нерастворимый осадок. Наблюдения показали, что каждую минуту образуется 0,2 г осадка. Найдите массу осадка (в граммах) в растворе спустя семь минут после начала реакции.


При анализе содержания задачи мы видим, что каждую минуту количество осадка увеличивается на одно и то же число, на 0,2 г. А это значит, что имеем арифметическую прогрессию, в которой первый член равен 0,2, так как по условию в первую минуту образовалось 0,2 г осадка. Разность арифметической прогрессии равна также 0,2, так как каждую минуту на это количество увеличивается количество осадков. Найти нужно седьмой член последовательности.

Итак, имеем а1=0,2; d=0,2. Ищем а7. По определению n-ого члена арифметической прогрессии имеем формулу аn=a1+d(n – 1). Подставим в нее наши данные: а7=a1+d(7 – 1)=0,2+0,2·6=1,4

Ответ: 1,4

pазбирался: Даниил Романович | обсудить разбор

Даниил Романович | Просмотров: 8.2k

Арифметическая прогрессия — коротко о главном

Определение арифметической прогрессии:

Арифметическая прогрессия — это числовая последовательность, в которой разница между соседними числами одинакова и равна ( displaystyle d).

Например:

  • ( {{a}_{1}}=3)
  • ( displaystyle {{a}_{2}}=3+d=7~Rightarrow d=7-3=4)
  • ( displaystyle {{a}_{3}}=7+4=11) и т.д.

Арифметическая прогрессия бывает возрастающей (( displaystyle d>0)) и убывающей (( displaystyle d<0)).

Формула нахождения n-ого члена арифметической прогрессии:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) , где ( displaystyle n)– количество чисел в прогрессии.

Как найти член прогрессии, если известны его соседние члены:

( {{text{a}}_{text{n}}}=frac{{{text{a}}_{text{n}+1}}+{{text{a}}_{text{n}-1}}}{2}) — где ( displaystyle n) – количество чисел в прогрессии.

Сумма членов арифметической прогрессии:

1-й способ: ( {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

2-й способ: ( displaystyle {{s}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Числовая последовательность

Итак, сядем и начнем писать какие-нибудь числа. Например: ( displaystyle 4,text{ }7,text{ }-8,text{ }13,text{ }-5,text{ }-6,text{ }0,text{ }ldots )

Писать можно любые числа, и их может быть сколько угодно (в нашем случае их ( displaystyle 7)). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое – второе и так далее до последнего, то есть, можем их пронумеровать.

Это и есть пример числовой последовательности.

Числовая последовательность – это множество чисел, каждому из которых можно присвоить уникальный номер.

Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и ( displaystyle n)-ное число) всегда одно.

Число с номером ( displaystyle n) называется ( displaystyle n)-ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например, ( displaystyle a)), и каждый член этой последовательности – той же буквой с индексом, равным номеру этого члена: ( displaystyle {{a}_{1}},text{ }{{a}_{2}},text{ }…,text{ }{{a}_{10}},text{ }…,text{ }{{a}_{n}}).

Арифметическая прогрессия — определения

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна d.

Например:

( begin{array}{l}{{a}_{1}}=3\{{a}_{2}}=3+d=7~~~Rightarrow ~d=7-3=4\{{a}_{3}}=7+4=11end{array})

Такая числовая последовательность называется арифметической прогрессией.

Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность.

Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Арифметическая прогрессия – это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается d.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

  • ( displaystyle 3;text{ }6;text{ }9;text{ }12;text{ }15;text{ }17ldots )
  • ( displaystyle 1;text{ }12;text{ }23;text{ }34;text{ }45text{ }ldots )
  • ( displaystyle -5;text{ }-1;text{ }3;text{ }7;text{ }11;text{ }15ldots )
  • ( displaystyle -6;text{ }5;text{ }17;text{ }28;text{ }39ldots )

Разобрался? Сравним наши ответы:

Является арифметической прогрессией – 2, 3.

Не является арифметической прогрессией – 1, 4.

Вернемся к заданной прогрессии (( displaystyle 3;text{ }7;text{ }11;text{ }15;text{ }19ldots )) и попробуем найти значение ее 6-го члена.

Существует два способа его нахождения.

Нахождения n-ого члена арифметической прогрессии

Способ I

Мы можем прибавлять к предыдущему значению числа прогрессии ( d=4) , пока не дойдем до ( displaystyle 6)-го члена прогрессии. Хорошо, что суммировать нам осталось немного – всего три значения:

( begin{array}{l}{{a}_{4}}=11+4=15\{{a}_{5}}=15+4=19\{{a}_{6}}=19+4=23end{array})

Итак, 6-ой член описанной арифметической прогрессии равен 23.

Способ II

А что если нам нужно было бы найти значение ( displaystyle 140)-го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.

А теперь очень важно! Чтобы облегчить себе работу, нужно найти закономерность, потом описать ее формулой и потом пользоваться этой формулой, чтобы вычислять в разы быстрее.

Это и есть математика!

Важно научиться находить закономерности, а потом уже запоминать формулы. Потому что, даже если ты забудешь формулу, ты сможешь ее вывести. И, самое главное, ты сможешь проверить подходит та или иная формула для решения задачи, а не просто подставлять их как обезьянка. 

Давай попробуем вывести формулу. Это легко и тебе понравится! Чтобы найти закономерности, надо пользоваться тем, что мы знаем.

Что мы знаем?

  • У нас есть арифметическая прогрессия: 3, 7, 11, 15, 19 и т.д.
  • У нас есть номера прогрессии: 1, 2, 3, 4, 5, и т.д.
  • Мы все время прибавляем 4, значит разница прогрессии d = 4.

Чему равен 2-й член арифметической прогрессии? Попробуй сначала написать числами, а потом в более общем виде, заменив числа буквами.

7=3+4 или 7=3+d

Закономерности пока не видны. Ок. Идем дальше. Чему равен 3-й член арифметической прогрессии?

11=3+4+4 или 11=3+d+d

Похоже что вырисовывается закономерность! Чтобы узнать значение 2-го члена прогрессии, мы прибавляли одно d, а чтобы узнать 3-го — два d! Иными словами, нам надо прибавлять каждый раз на одно d меньше, чем номер члена прогрессии.

Давай проверим? Чему равен 4-й член арифметической прогрессии?

15=3+4+4+4 или 15=3+d+d+d

Бинго! Закономерность подтверждается. Теперь осталось описать закономерность формулой и пользоваться ею!

Если нам нужно найти значение числа прогрессии с порядковым номером n, мы прибавляем к первому члену арифметической прогрессии число d, которое на одно значение меньше порядкового номера искомого числа. 

А теперь запомни эту формулу и используй ее для быстрого счета. А если забудешь — то легко выведешь.

Например, посмотрим, из чего складывается значение ( displaystyle 4)-го члена данной арифметической прогрессии:

( begin{array}{l}{{a}_{4}}={{a}_{1}}+dleft( 4-1 right)\{{a}_{4}}=3+4left( 4-1 right)=15end{array})

Попробуй самостоятельно найти таким способом значение члена ( displaystyle n=6) данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

( begin{array}{l}{{a}_{6}}={{a}_{1}}+dleft( 6-1 right)\{{a}_{6}}=3+4left( 6-1 right)=3+4cdot 5=3+20=23end{array})

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли ( displaystyle d) к предыдущему значению членов арифметической прогрессии.

Попробуем «обезличить» данную формулу – приведем ее в общий вид и получим:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)) – уравнение арифметической прогрессии.

Кстати, таким образом мы можем посчитать и ( displaystyle 140)-ой член данной арифметической прогрессии (да и ( displaystyle 169)-ый тоже можем, да и любой другой вычислить совсем несложно).

Попробуй посчитать значения ( displaystyle 140)-го и ( displaystyle 169)-го членов, применив полученную формулу.

( begin{array}{l}…\{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=3+4left( 140-1 right)=3+4cdot 139=3+556=559\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=3+4left( 169-1 right)=3+4cdot 168=3+672=675end{array})

Возрастающие и убывающие арифметические прогрессии

Возрастающие – прогрессии, в которых каждое последующее значение членов больше предыдущего. 

Например:

( displaystyle begin{array}{l}4;text{ }6;text{ }8;text{ }10;text{ }12\-2;text{ }4;text{ }10;text{ }16;text{ }20end{array})

Убывающие – прогрессии, в которых каждое последующее значение членов меньше предыдущего. 

Например:

( displaystyle begin{array}{l}12;text{ }10;text{ }8;text{ }6;text{ }4\4;text{ }0;text{ }-4;text{ }-8;text{ }-12.end{array})

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.

Проверим это на практике.

Нам дана арифметическая прогрессия, состоящая из следующих чисел: ( displaystyle 13;text{ }8;text{ }4;text{ }0;text{ }-4.)

Проверим, какое получится ( displaystyle 4)-ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:

( {{text{a}}_{text{n}}}={{text{a}}_{1}}+text{d}left( text{n}-1 right))

Заметим, что так как арифметическая прогрессия убывающая, то значение ( displaystyle d) будет отрицательным, ведь каждый последующий член меньше предыдущего.

( displaystyle d=8-13=-5)

( {{a}_{4}}={{a}_{1}}+dleft( 4-1 right))

Так как ( displaystyle d=-5), то:
( {{a}_{4}}=13-5left( 4-1 right)=13-15=-2)

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.

Попробуй самостоятельно найти ( displaystyle 140)-ой и ( displaystyle 169)-ый члены этой арифметической прогрессии.

Сравним полученные результаты:

( begin{array}{l}{{a}_{140}}={{a}_{1}}+dleft( 140-1 right)\{{a}_{140}}=13-5left( 140-1 right)=13-5cdot 139=13-695=-682\{{a}_{169}}={{a}_{1}}+dleft( 169-1 right)\{{a}_{169}}=13-5left( 169-1 right)=13-5cdot 168=13-840=-827end{array})

Свойство арифметической прогрессии (или как найти n-й член прогрессии, зная соседние)

Усложним задачу — выведем свойство арифметической прогрессии.

Допустим, нам дано такое условие:

( displaystyle 4;text{ }x;text{ }12ldots ) — арифметическая прогрессия, найти значение ( displaystyle x).

Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Пусть ( displaystyle {{a}_{1}}=4), а ( displaystyle {{a}_{3}}=12), тогда:

( displaystyle begin{array}{l}{{a}_{3}}={{a}_{1}}+dleft( 3-1 right)\12=4+2d~~Rightarrow ~d=frac{12-4}{2}=4\{{a}_{2}}=x={{a}_{1}}+d\{{a}_{2}}=x=4+4=8end{array})

Абсолютно верно.

Получается, мы сначала находим ( displaystyle d), потом прибавляем его к первому числу и получаем искомое ( displaystyle x).

Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа ( displaystyle 4024;~x;6072)?

Согласись, есть вероятность ошибиться в вычислениях.

А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы?

Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как ( {{text{a}}_{text{n}}}), формула его нахождения нам известна – это та самая формула, выведенная нами в начале:

( {{a}_{n}}={{a}_{1}}+dleft( n-1 right)), тогда:

  • предыдущий член прогрессии это ( {{a}_{n}}-d): ( {{a}_{n-1}}={{a}_{1}}+dleft( n-1 right)-d)
  • последующий член прогрессии это ( {{a}_{n}}+d): ( {{a}_{n+1}}={{a}_{1}}+dleft( n-1 right)+d)

Просуммируем предыдущий и последующий члены прогрессии:

( {{a}_{1}}+dleft( n-1 right)-d+{{{a}}_{1}}+text{d}left( text{n}-1 right)+text{d}=2left( {{a}_{1}}+dleft( n-1 right) right)text{ }!!~!!text{ })

Получается, что сумма предыдущего и последующего членов прогрессии – это удвоенное значение члена прогрессии, находящегося между ними.

Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на ( 2).

( {{a}_{n}}=frac{{{a}_{n+1}}+{{a}_{n-1}}}{2}) – свойство членов арифметической прогрессии.

Попробуем посчитать значение ( x), используя выведенную формулу:

( x=frac{4+12}{2}=8)

Все верно, мы получили это же число. Закрепим материал.

Посчитай значение ( x) для прогрессии ( displaystyle 4024;~x;6072) самостоятельно, ведь это совсем несложно.

( x=frac{4024+6072}{2}=5048)

Молодец! Ты знаешь о прогрессии почти все!

Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» – Карл Гаусс…

Сумма первых n членов арифметической прогрессии

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу:

«Сосчитать сумму всех натуральных чисел от ( displaystyle 1) до ( displaystyle 40) (по другим источникам до ( displaystyle 100)) включительно».

Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.

Допустим, у нас есть арифметическая прогрессия, состоящая из ( displaystyle 6)-ти членов: ( displaystyle 6;text{ }8;text{ }10;text{ }12;text{ }14;text{ }16…)

Нам необходимо найти сумму данных ( displaystyle 6) членов арифметической прогрессии.

Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ( displaystyle 100) ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.

Попробовал? Что ты заметил? Правильно! Их суммы равны

А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии?

Конечно, ровно половина всех чисел, то есть ( frac{6}{2}=3).

Исходя из того, что сумма двух членов арифметической прогрессии равна ( 22), а подобных равных пар ( 3), мы получаем, что общая сумма равна:

( displaystyle Stext{ }=text{ }22cdot 3text{ }=text{ }66).

Таким образом, формула для суммы первых ( displaystyle n) членов любой арифметической прогрессии будет такой:

( displaystyle {{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}), где ( displaystyle n) – количество значений.

В некоторых задачах нам неизвестен ( displaystyle n)-й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу ( displaystyle n)-го члена. ( {{a}_{n}}={{a}_{1}}+dleft( n-1 right))

Что у тебя получилось?

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n), где ( displaystyle n) – количество значений.

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма ( displaystyle 40) чисел, начиная от ( displaystyle 1)-го, и сумма ( displaystyle 100) чисел начиная от ( displaystyle 1)-го.

Сколько у тебя получилось?

У Гаусса получилось, что сумма ( displaystyle 100 ) членов равна ( displaystyle 5050), а сумма ( displaystyle 40 ) членов ( displaystyle 820).

Так ли ты решал?

  • ( {{S}_{40}}=frac{left( 1+40 right)cdot 40}{2}=frac{41cdot 40}{2}=frac{1640}{2}=820)
  • ( {{S}_{100}}=frac{left( 1+100 right)cdot 100}{2}=frac{101cdot 100}{2}=5050)

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.

Например, представь Древний Египет и самую масштабную стройку того времени – строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.

Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется ( displaystyle 6) блочных кирпичей.

Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом:

( displaystyle 6;text{ }5;text{ }4;text{ }3;text{ }2; 1).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Разность арифметической прогрессии ( displaystyle ~=text{ }dtext{ }=text{ }-1).

Количество членов арифметической прогрессии ( displaystyle=6).

Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\~~{{S}_{6}}=frac{left( 6+1 right)cdot 6}{2}=frac{7cdot 6}{2}=21\~end{array})

Способ 2.

( displaystyle {{S}_{n}}=frac{2{{a}_{1}}+dleft( n-1 right)}{2}cdot n)

( {{S}_{n}}=frac{2cdot 6+1left( 6-1 right)}{2}cdot 6=frac{12+5cdot 6}{2}=frac{7cdot 6}{2}=frac{42}{2}=21)

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде.

Сошлось?

Молодец, ты освоил сумму ( displaystyle n)-ных членов арифметической прогрессии.

Конечно, из ( displaystyle 6) блоков в основании пирамиду не построишь, а вот из ( displaystyle 60)?

Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.

Справился?

Верный ответ – ( displaystyle 1830) блоков:

( begin{array}{l}{{S}_{n}}=frac{left( {{a}_{1}}+{{a}_{n}} right)cdot n}{2}\{{S}_{60}}=frac{left( 60+1 right)cdot 60}{2}=frac{61cdot 60}{2}=61cdot 30=1830.end{array})

Добавить комментарий