9. Преобразование числовых и буквенных выражений
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Числовые тригонометрические выражения
(blacktriangleright) Алгоритм применения формул приведения:
Шаг 1: определить, меняется ли функция на кофункцию: [sin
longleftrightarrow cos] [mathrm{tg} longleftrightarrow mathrm{ctg}]
Шаг 2: определить знак, который имеет изначальная функция, поняв, в какой четверти тригонометрической окружности находится изначальный угол (предполагая, что (alpha) – острый)
(blacktriangleright) Если угол можно представить в виде ((pi npm
alpha)), где (n) – натуральное, то функция на кофункцию не меняется.
Пример: (sin (pi npm alpha)=bigodot sin alpha), где на месте (bigodot) должен стоять знак синуса для угла ((pi npm alpha))
(blacktriangleright) Если угол можно представить в виде (left(dfrac{pi}2npm alpharight)), где (n) – нечетное число, то функция на кофункцию меняется
Пример: (sin left(dfrac{pi}2npm alpharight)=bigodot cos
alpha), где на месте (bigodot) должен стоять знак синуса для угла (left(dfrac{pi}2npm alpharight))
(blacktriangleright) Основные формулы:
[begin{array}{|ccc|}
hline sin^2 alpha+cos^2 alpha =1&& mathrm{tg} alpha cdot
mathrm{ctg}alpha
=1\ &&\
mathrm{tg} alpha=dfrac{sin alpha}{cos alpha}&&mathrm{ctg}
alpha
=dfrac{cos alpha}{sin alpha}\&&\
cos {2alpha}=cos^2 alpha – sin^2 alpha&&cos
{2alpha}=1-2sin^2
alpha\&&\
cos {2alpha}=2cos^2alpha -1&&sin {2alpha}=2sin alpha cos
alpha\
hline
end{array}]
Задание
1
#573
Уровень задания: Легче ЕГЭ
Найдите значение выражения (2sin^2 30^circ + cos^2 30^circ).
Используя основное тригонометрическое тождество, исходное выражение можно преобразовать следующим образом: [2sin^2 30^circ + cos^2 30^circ = sin^2 30^circ + (sin^2 30^circ + cos^2 30^circ) = sin^2 30^circ + 1.] Так как (sin 30^circ = 0,5), то значение исходного выражения равно (0,5^2 + 1 = 1,25).
Ответ: 1,25
Задание
2
#2958
Уровень задания: Равен ЕГЭ
Найдите значение выражения [dfrac{24}{sin^2127^circ+1+sin^2217^circ}]
Заметим, что (217^circ=90^circ+127^circ). Так как по формуле приведения (sin(90^circ+alpha)=cos alpha), то [sin
217^circ=sin (90^circ+127^circ)=cos 127^circ] Следовательно, выражение можно переписать в виде: [dfrac{24}{sin^2127^circ+cos^2127^circ+1}=dfrac{24}{1+1}=12,] так как по основному тригонометрическому тождеству (sin^2alpha+cos^2alpha=1) для любого угла (alpha).
Ответ: 12
Задание
3
#2626
Уровень задания: Равен ЕГЭ
Найдите значение выражения
[sqrt{48}-sqrt{192}sin^2dfrac{19pi}{12}]
(Задача от подписчиков.)
Заметим, что (192=48cdot 4), следовательно, (sqrt{192}=2sqrt{48}). Таким образом, выражение примет вид (по формуле косинуса двойного угла (cos2x=1-2sin^2x)):
[sqrt{48}left(1-2sin^2dfrac{19pi}{12}right)=
sqrt{48}cdot cosdfrac{19pi}6]
Т.к. (dfrac{19pi}6=dfrac{18pi+pi}6=3pi+dfrac{pi}6), то по формуле приведения:
[sqrt{48}cosleft(3pi+dfrac{pi}6right)=
sqrt{48}cdot left(-cosdfrac{pi}6right)=-sqrt{48}cdot
dfrac{sqrt3}2=-4sqrt3cdot dfrac{sqrt3}2=-6.]
Ответ: -6
Задание
4
#2434
Уровень задания: Равен ЕГЭ
Найдите значение выражения
[8left(sindfrac{pi}{12}cosdfrac{pi}{12}-1right)]
По формуле синуса двойного угла (sin2alpha=2sinalphacosalpha) имеем: (sinalphacosalpha=frac12sin2alpha). Следовательно,
[8left(dfrac12sin2cdotdfrac{pi}{12}-1right)=8left(dfrac12sindfrac{pi}6-1right)=
8left(dfrac12cdot dfrac12-1right)=-6.]
Ответ: -6
Задание
5
#2625
Уровень задания: Равен ЕГЭ
Найдите значение выражения
[dfrac{32}{sinleft(-dfrac{35pi}4right)cdot cos dfrac{25pi}4}]
(Задача от подписчиков.)
Т.к. синус — нечетная функция, то есть (sin (-alpha)=-sin
alpha), то (sinleft(-frac{35pi}4right)=-sin frac{35pi}4).
Заметим, что :
(dfrac{35pi}4=dfrac{36pi
-pi}4=9pi-dfrac{pi}4);
(dfrac{25pi}4=dfrac{24pi+pi}4=6pi+dfrac{pi}4).
Таким образом, по формулам приведения:
(sin
dfrac{35pi}4=sinleft(9pi-dfrac{pi}4right)=sindfrac{pi}4);
(cos
dfrac{25pi}4=cosleft(6pi+dfrac{pi}4right)=cosdfrac{pi}4).
Следовательно, выражение принимает вид:
[dfrac{32}{-sindfrac{pi}4cosdfrac{pi}4}=
-dfrac{32}{dfrac{sqrt2}2cdot dfrac{sqrt2}2}=-64.]
Ответ: -64
Задание
6
#581
Уровень задания: Равен ЕГЭ
Найдите значение выражения (dfrac{7sin{11^circ}}{cos{79^circ}}).
Используя формулу приведения (sin(90^circ pm alpha) = cos alpha), исходное выражение можно преобразовать следующим образом: [dfrac{7sin{11^circ}}{cos{79^circ}} = dfrac{7sin{(90^circ – 79^circ)}}{cos{79^circ}} = dfrac{7cos{79^circ}}{cos{79^circ}} = 7.]
Ответ: 7
Задание
7
#1841
Уровень задания: Равен ЕГЭ
Найдите значение выражения (dfrac{15}{sin{(-frac{20pi}{3})}
cdot cos{(-frac{43pi}{6})}}).
Используя формулы приведения, а также четность косинуса и нечетность синуса, исходное выражение можно преобразовать следующим образом: [dfrac{15}{-sin{left(6pi + frac{2pi}{3}right)} cdot
cos{left(7pi + frac{pi}{6}right)}} =
dfrac{15}{-sin{left(frac{2pi}{3}right)} cdot
(-cos{left(frac{pi}{6}right)})} =
dfrac{15}{-frac{sqrt{3}}{2} cdot ({-frac{sqrt{3}}{2})}} = 20.]
Ответ: 20
УСТАЛ? Просто отдохни
План урока:
Основное тригонометрическое тождество
Тригонометрические функции суммы и разности
Формулы двойного угла
Формулы понижения степени
Формулы приведения
Сумма тригонометрических функций
Произведение тригонометрических функций
Основное тригонометрическое тождество
Несложно догадаться, что синус и косинус угла – это величины, связанные друг с другом. Отложим на единичной окружности произвольный угол α и опустим из точки А перпендикуляр на ось Ох, в некоторую точку В:
Изучим треугольник АОВ. Он прямоугольный, а потому для него можно записать теорему Пифагора:
АВ2 + ОВ2 = ОА2
Мы рассматриваем единичную окружность, а потому ОА = 1, ОВ = соsα, AB = sinα. Подставив эти величины в равенство, получим тождество:
sin2α + соs2α = 1
Его называют основным тригонометрическим тождеством, ведь именно оно связывает значение двух прямых тригонометрических ф-ций – синуса и косинуса.
Задание. В прямоугольном треугольнике есть угол α. Известно, что sin α = 0,8. Чему равен соsα?
Решение. Подставим в основное тригон-кое тождество значение sinα = 0,8 и получим уравнение:
sin2α + соs2α = 1
0,82 + соs2α = 1
0,64 + соs2α = 1
соs2α = 1 – 0,64
соs2α = 0,36
соsα = – 0,6 или соsα = 0,6
Нашли два возможных значения косинуса. Но по условию α – это острый угол, ведь в прямоугольном треугольнике угол не может быть больше 90°. То есть угол α относится к первой четверти, а потому его косинус положителен. Значит, соsα = 0,6.
Ответ: 0,6.
Рассмотренный пример показал, что одному заданному значению синуса соответствует сразу два противоположных друг другу значения косинуса. Верно и обратное. Действительно, отложим по оси Ох некоторую величину соsα и проведем вертикальную линию, чтобы найти соответствующие ему значения синуса. Она пересечет единичную окружность в двух точках с противоположными ординатами:
По этой причине при решении задач на использование основного тригон-кого тождества обычно указывают, к какой четверти относится угол α.
Задание. Вычислите sinα, если соsα = 0,28 и α принадлежит IV четверти.
Решение.
sin2α + соs2α = 1
0,282 + sin2α = 1
0,0784 + sin2α = 1
sin2α = 1 – 0,0784
sin2α = 0,9216
sin α = –0,96 или sin α = 0,96
Так как α принадлежит IV четверти, то sinα должен быть отрицательным, поэтому sinα = – 0,96.Напомним, что в IV четверти значение косинуса положительно, ведь соответствующая ей дуга единичной окружности располагается правее оси Оу, то есть абсциссы точек, принадлежащих ей, положительны.
Ответ: – 0,96.
Задание. Найдите tgα, если sinα = 5/13 и π/2 < α < π.
Решение. Здесь задача уже в два действия! Сначала определим соsα:
sin2α + соs2α = 1
соs2α = 1 – sin2α = 1 – (5/13)2 = 169/169 – 25/169 = 144/169
соsα = – 12/13 или соsα = 12/13
Условие π/2 < α < π указывает на то, что угол относится ко II четверти, в которой косинус отрицателен, поэтому соsα = – 12/13.
Далее находим тангенс, просто деля синус на косинус:
tgα = sinα:соsα = (5/13):(12/13) = (5/13)•(13/12) = 5/12
Ответ: 5/12
Рассмотренный пример показал нам, что, зная синус, можно рассчитать не только косинус, но и тангенс. А возможно ли совершить обратное действие, найти по тангенсу синус или косинус? Да, но для этого нужно получить новую тригонометрическую формулу.
Запишем тождество
sin2α + соs2α = 1
Далее поделим его на величину соs2α:
Крайнее левое слагаемое – это величина tg2α, а следующая дробь равна единице, так как у неё совпадают числитель и знаменатель:
В итоге нам удалось получить ф-лу, которая связывает значение тангенса и косинуса угла. Есть такая формула и для котангенса. Для ее получения необходимо поделить основное тригон-кое тождество на sin2α:
Задание. Известно, что tgα = 0,75. Найдите соsα и sinα, если угол α принадлежит III четверти.
Решение.
Просто подставляем в ф-лу известное значение тангенса и решаем получившееся уравнение. Для простоты вычислении заменим десятичную дробь 0,75 на обычную 3/4:
Так как угол относится к III четверти, где косинус отрицателен, то
соsα = – 0,8
Синус угла найдем, используя основное тригон-кое тождество:
sin2α + соs2α = 1
sin2α = 1 – соs2α = 1 – (– 0,8)2 = 1 – 0,64 = 0,36
sinα = – 0,6 или sinα = 0,6
С учетом того, что в III четверти синус становится отрицательным, следует выбрать вариант sinα = – 0,6
Ответ: sinα = – 0,6; соsα = – 0,8.
Иногда ф-лы используют не для вычисления значений тригон-ких выражений, а для упрощения выражений. Из тождества sin2α + соs2α = 1 несложно получить из выражения
sin2α = 1 – соs2α
и
соs2α = 1 – sin2α
которые помогают в работе с длинными ф-лами.
Задание. Упростите выражение
4sin2α + 9соs2α – 6
таким образом, чтобы в нем не содержалось синуса.
Решение. Произведем замену sin2α = 1 – соs2α:
4sin2α+ 9соs2α – 6 = 4(1 – соs2α)+ 9соs2α – 6 =
= 4 – 4 соs2α + 9соs2α – 6 = 5соs2α – 2
Видим, что получилось значительно более простое выражение.
Ответ: 5соs2α – 2.
Задание. Избавьтесь от синуса в выражении
sin4α – соs4α
Решение. Воспользуемся ф-лой разности квадратов:
sin4α – соs4α = (sin2α – соs2α)(sin2α + соs2α) = (sin2α – соs2α)•1 =
= 1 – соs2α– соs2α = 1 – 2 соs2α
Ответ:1 – 2 соs2α.
Задание. Упростите дробь
Решение.
Ответ: ctg6α.
Тригонометрические функции суммы и разности
Легко проводить вычисления, когда все тригонометрические действия выполняются над одним углом α. Однако иногда в задачах добавляется ещё один угол, который обычно обозначают как β. Существуют ф-лы, с помощью которых можно вычислять тригон-кие ф-ции от суммы и разности углов α и β.
Вывод этих ф-л достаточно сложен, поэтому сначала мы просто без доказательства приведем две из них, позволяющие вычислять синус суммы и косинус суммы:
Достаточно запомнить их, а далее следующие формулы можно выводить из них. Так, если вместо β подставить угол (–β), то получим формулы для разности. При этом мы используем тот факт, что синус – нечетная ф-ция, то естьsin (– β) = – sinβ, а косинус – четная ф-ция, то есть соs (– β) = соsβ:
Теперь поступим также с ф-лой для косинуса разности:
Итак, нам удалось получить ф-лы для нахождения синуса и косинуса суммы и разности углов.
С помощью этих формул возможно вычислить значение тригон-ких ф-ций для некоторых нестандартных углов. (Стандартными считаются углы в 0°, 30°, 45°, 60° и 90°, ведь для них значение тригон-ких ф-ций можно узнать из таблички.)
Задание. Вычислите соs 150°.
Решение. В табличке стандартных углов есть углы, равные 90° и 60°. Их сумма как раз равна 150°. Поэтому запишем:
Задание. Вычислите синус, косинус и тангенс для угла 15°.
Решение. Угол в 15° можно представить как разность 45° – 30°. Тогда синус будет вычисляться так:
Далее вычислим косинус:
Можно выполнить проверку. Полученные значения должны удовлетворять основному тригон-кому тождеству. И действительно:
Проверка пройдена: сумма квадратов синуса и косинуса оказалась равной единице. Теперь посчитаем tg 15°, используя определение тангенса:
Задание. Вычислите значение тригонометрического выражения
sinπ/7 соsπ/42 + sinπ/42 соsπ/7
Решение: Значение тригон-ких ф-ций для углов π/7 и π/42 мы не знаем, однако это не помешает вычислениям. Можно заметить, что исходное выражение представляет собой синус суммы π/7 и π/42:
sinπ/7 соsπ/42 + sinπ/42 соsπ/7 = sin (π/7 + π/42) = sinπ/6 = 1/2
Ответ: 1/2.
Задание. Упростите выражение
Решение.
Вынесем за скобки множитель 2:
Теперь произведем замену:
C учетом этого можно переписать выражение и использовать ф-лу суммы косинусов:
Ответ: 2соs (π/6 + α).
Формулы двойного угла
Что будет, если формулу синуса суммы подставить не два различных угла α и β, а два одинаковых угла α и α? Получится ф-ла для синуса двойного угла:
Аналогично можно составить ф-лу и для косинуса двойного угла:
Итак, справедливы следующие ф-лы:
Задание. Вычислите sin 120° и соs 120°.
Решение.
Задание. Упростите выражение
соs2t– соs 2t
Решение.
соs2t – соs 2t = соs2t – (соs2 t – sin2t) = соs2t – соs2 t + sin2t = sin2t
Ответ: sin2t.
Задание. Докажите, что функция
является периодической и имеет период, равный π.
Решение. Используем ф-лу квадрата суммы:
Таким образом, исходную ф-цию можно переписать в виде
у = 1 + sin 2x
По определению, ф-ция является периодической с периодом Т, если выполняется условие у(х + Т) = у(х). Поэтому подставим в нашу ф-цию величину х + π:
Получили, что у(х + π) = y(x), то есть ф-ция имеет период, равный π.
Задание. Выведите формулы синуса и косинуса тройного угла.
Решение. Для их получения следует использовать ф-лу синуса суммы углов, в которую подставляют вместо β величину 2α:
Аналогично можно получить и ф-лу для косинуса тройного угла:
Формулы понижения степени
Если нам необходимо узнать косинус угла, который вдвое больше табличного, мы используем ф-лу:
соs 2α = соs2α – sin2α
А что делать, если нам надо вычислить косинус угла, который вдвое меньше известного? Попробуем преобразовать ф-лу косинуса двойного угла:
В результате нам удалось получить тождество, позволяющее по косинусу удвоенного угла найти косинус самого угла! Однако значительно чаще в тригонометрии это равенство записывают в обратном порядке:
и называют ф-лой понижения степени. Действительно, в левой части стоит косинус в квадрате, а справа – косинус без квадрата, но вычисляется он от угла 2α, а не α.
Попробуем получить аналогичную ф-лу и для синуса. Для этого используем основное тригон-кое тождество:
С помощью этих ф-л можно вычислять тригон-кие ф-ции для некоторых малых углов. Так, ранее мы с использованием ф-лу разности синусов определили, что
При этом мы представляли угол 15° как разность 45° – 30°. Но как посчитать соs 7,5°? Этот угол невозможно представить как разницу или сумму известных нам табличных углов (0°, 30°; 45°; 60° и 90°). Однако поможет ф-ла понижения степени. Действительно, ведь 2•7,5° = 15°. Тогда можно записать:
Мы нашли соs2 7,5°. Чтобы узнать соs 7,5°, необходимо извлечь квадратный корень:
Так как угол 7,5° принадлежит I четверти, то его косинус должен быть положительным, поэтому можно записать:
Видно, что получается довольно громоздкое выражение. Используя ф-лу понижения степени, можно найти косинус и угла, который ещё вдвое меньше, то есть равен 3,75°, но в результате получится ещё более громоздкое выражение.
Задание. Вычислите sinπ/8.
Решение. Угол π/4 является табличным (его градусная мера составляет 45°). Поэтому можно записать:
Эти примеры показывают, что тригон-кие ф-ции многих нестандартных углов можно выразить, используя квадратные корни. Возникает вопрос – а любую ли тригонометрическую ф-цию можно выразить таким способом? Оказывается, что нет. Например, sin 10° невозможно найти ни в одной, даже самой подробной тригонометрической таблице. Мы не будем это доказывать, но эту величину невозможно представить в виде выражения, используя арифметические операции и корни. Однако существуют приближенные методы, позволяющие с любой наперед заданной точностью вычислять значение тригонометрических ф-ций.
Формулы приведения
Возможно, вы уже заметили, что синусы и косинусы принимают одинаковые значения в углах, чья сумма равна 90°. Например, sin30° = соs60° = 1/2, и при этом 30° + 60° = 90°. Также мы знаем, что sin 45° = соs 45° (45° + 45° = 90°) и sin60° = соs30° (60° + 30°). В чем причина такой закономерности и справедлива ли она для нестандартных углов?
Используя ф-лу синуса разности, мы можем записать, что
Полученная ф-ла sin (90° – α) = соsα называется формулой приведения. При ее выводе мы использовали тот факт, что sin 90° = 1, а соs 90° = 0, поэтому формула получилась очень простой. Однако синусы и косинусы других углов, кратных 90° (или кратных π/2, если измерять углы в радианах), также равны 0, 1 или – 1, поэтому для них тоже можно получить подобные простые ф-лы, например:
Похожих ф-л можно написать несколько десятков! Все их запоминать не надо, так как существует особое мнемоническое правило, позволяющее записать необходимую ф-лу.
Пусть есть некоторое тригон-кое выражение вида
f(k ± α)
где f – тригонометрическая ф-ция (sin; соs; tg; ctg)
k– угол, кратный π/2 (π/2, π, 3π/2, 2π)
Мы хотим заменить ее другой ф-цией, только от угла α. На первом шаге мы смотрим на слагаемое k. Если оно кратно π (– π, π, 2π), то ф-ция f остается неизменной. Если же слагаемое k – это число π/2 или 3π/2, то ф-цию f надо поменять на так называемую кофункцию (синус меняем на косинус, тангенс на котангенс и наоборот).
Далее надо определить знак, стоящий перед новой ф-цией. Для этого мы предполагаем, что α – это острый угол, то есть он принадлежит I четверти. Далее с учетом этого предположения смотрим, в какую четверть попадает угол k ± α, и какое значение принимает там исходная тригонометрическая ф-ция. Если она отрицательна, то перед новой тригонометрической ф-цией надо поставить минус. В противном случае ничего ставить не надо.
Лучше всего изучить это алгоритм на примерах.
Задание. Упростите выражение соs (π/2 + α).
Решение. Первый шаг – смотрим на слагаемое под знаком косинуса. Это число π/2. Оно НЕ кратно π, а потому мы должны поменять косинус на синус:
sinα
Второй шаг – надо определить, надо ли ставить минус перед синусом. Если α – это острый угол, то угол (π/2 + α) попадет во II четверть:
Во второй четверти косинус отрицателен, а потому перед синусом следует поставить минус:
соs (π/2 + α) = – sinα
Ответ: – sinα.
Важное примечание. В этом примере для составления формулы приведения мы «предположили», что угол α является острым. В результате нам удалось получить формулу соs (π/2 + α) = – sinα. Однако отметим, что полученная нами формула выполняется для абсолютно любых значений угла α, а не только для 0° < α < 90°. Предположение об остроте угла – это лишь часть мнемонического правила для составления формул приведения, позволяющая быстро определить, надо ли в ней перед тригонометрической функцией ставить знак минус или не надо.
Это мнемоническое правило работает абсолютно точно, однако надо понимать, что всё-таки для строгого вывода формул приведения следует использовать формулу косинуса суммы
соs (π/2 + α) = cosπ/2 cos α – sin π/2 sin α = 0•cos α – 1•sin α = – sin α
Получили тот же результат, что и с помощью формулы приведения. При этом нам не потребовалось предположение об остроте угла α, то есть формула верна для любых α. Но практика показывает, что люди просто не могут запомнить формулу косинусов суммы. Поэтому для «упрощения жизни» школьникам рассказывают об относительно простом мнемоническом правиле.
Задание. Составьте ф-лу приведения для выражения tg (α – π).
Решение. Сначала смотрим на слагаемое под знаком тангенса. Это число (– π), кратное π. Поэтому сама ф-ция не меняется на кофункцию:
tgα
Примем, что угол α принадлежит I четверти, тогда угол α – π будет ему противоположен и окажется в III четверти:
Тангенс в III четверти положителен. Значит, минуса перед тангенсом ставить не надо:
tg (α– π) = tgα
Задание. Вычислите sin 7π/6.
Решение. Представим угол 7π/6 как сумму: 7π/6 = π + π/6. Получается, нам надо вычислить величину sin (π + π/6). Составим ф-лу приведения для выражения π + α Так как в скобках стоит слагаемое π, то ф-ция sin остается, а не меняется на косинус:
sinα
Угол (π + α) относится к III четверти, где синус отрицателен. Следовательно, надо добавить знак минус:
sin (π + α) = – sinα
Остается подставить вместо α величину π/6:
sin (π + π/6) = – sinπ/6 = – 1/2
Ответ: – 1/2.
Задание. Чему равен ctg7π/4?
Решение. Угол 7π/4 можно представить как 3π/2 + π/4. Найдем ф-лу приведения для ctg (3π/2 + α). Из-за слагаемого 3π/2, не кратного π, ф-ция должна измениться с котангенса на тангенс:
ctg (3π/2 + α) = tgα
Угол 3π/2 + α попадает в IV четверть, где котангенс отрицателен. Поэтому необходимо добавить знак минуса перед ф-цией:
ctg (3π/2 + α) = –tgα
Ф-ла приведения получена. Осталось подставить в неё значение α = π/4:
ctg (7π/4) = ctg (3π/2 + π/4) = – tgπ/4 = – 1
Ответ: – 1.
Откуда же возникло название «формула приведения»? Дело в том, что с их помощью вычисление тригонометрических ф-ций от углов из диапазона 0 ≤ π ≤ 2π можно привести к вычислению ф-ций от углов из I четверти, то есть из диапазона 0 ≤ α ≤ π/2. Это означает, что нет смысла заучивать большие таблицы, в которых указаны синусы и косинусы углов, больших 90°. Достаточно знать ф-ции от стандартных углов: 0, π/6; π/4, π/3 и π/2.
Если всё же использование ф-л приведения вызывает сложности, то вместо них всегда можно использовать обычные ф-лы косинуса и синуса суммы, которые дадут такой же результат.
В прошлом уроке, строя графики косинуса, мы заметили, что он представляет собой синусоиду, смещенную на π/2 единиц:
Теперь становится ясна причина этого смещения. Дело в ф-ле приведения
соsx = sin (x + π/2)
Она показывает, что точки графика косинуса могут быть получены параллельным переносом точек синусоиды на π/2 единиц влево.
Сумма тригонометрических функций
Мы видим, что тригон-ких формул довольно много. Надо ли все их учить? Этого делать не надо. Достаточно иметь под рукой справочник при решении задач, связанных с преобразованием тригонометрических выражений, в котором все эти ф-лы можно посмотреть. В крайнем случае можно всегда самостоятельно вывести все ф-лы, используя только основное тригон-кое тождество и ф-лы синуса и косинуса суммы. Они, кстати, выдаются в качестве раздаточного материала учащимся при сдаче ЕГЭ. Ещё важно помнить определение тангенса, которое в раздаточном материале не записано.
Пусть есть два произвольных угла s и t. Найдем синусы их разности и суммы:
Сложим эти два уравнения:
Теперь произведем замену. Будем считать, что
x = s + t
у = s – t
Это значит, чтох + у = 2s, или
s = (x + y)/2
С другой стороны
х – у = s + t– (s– t) = 2t
то есть
t = (x – у)/2
Подставляем всё это в ф-лу (1):
Получили формулу, с помощью которой можно найти сумму любых двух синусов! Теперь попытаемся составить аналогичную ф-лу и для их разности синусов. При этом мы учтем нечетность синуса (это значит, что sin (– у) = – sinу):
Задание. Упростите выражения
Решение.
Теперь попробуем составить ф-лы для сложения и вычитания косинусов. Для этого запишем ф-лы для произвольных величин s и t:
Сложив уравнения, мы получим тождество
Далее произведем замены, которые выполняли и ранее:
x = s + t
у = s – t
s = (x + y)/2
t = (x – у)/2
Подставляя всё это в (3), получим:
Получили ф-лу, с помощью которой можно складывать косинусы. Чтобы их можно было вычитать, вычтем из (1) уравнение (2):
Снова произведем замены переменных s и t:
Получили ф-лу и для разности косинусов.
Задание. Упростить тригонометрические выражения
Решение.
в) Здесь мы сталкиваемся с более сложным случаем, так как из косинуса надо вычесть синус. У нас нет готовой ф-лы для такого действия. Однако вспомним, что с помощью формул приведения легко заменить синус на косинус:
sinx = соs (π/2 – х)
Тогда исходное выражение уже можно будет преобразовать:
Произведение тригонометрических функций
В предыдущем разделе, когда мы выводили ф-лы для вычисления суммы синусов и косинусов, мы сначала получали уравнения:
Далее мы производили замену переменных sи t. Однако давайте вместо этого просто поделим первые два уравнения на двойку, а третье – на (– 2):
В случае с последней формулой мы воспользовались правилом, по которому знак минус перед дробью можно убрать, если в числителе поменять местами вычитаемое и уменьшаемое.
Получили ф-лы, которые позволяют заменять произведение тригонометрических ф-ций их суммой.
Задание. Преобразуйте произведение в сумму:
Решение.
На этом наше знакомство с основными тригонометрическими формулами заканчивается. Ещё раз напомним, что в рамках школьного курса заучивать все ф-лы не нужно, можно при необходимости пользоваться смотреть в справочник. Тригон-кие преобразования помогут в будущем при решении сложных тригон-ких уравнений.
В самом конце приведем перечень всех формул, выведенными в этом уроке:
Тригонометрические функции любого угла и определение синуса, косинуса, тангенса и котангенса:
Отметим на оси х справа от начала координат точку А и проведем через нее окружность с центром в точке О (рис. 64). Радиус OA будем называть начальным радиусом.
Повернем начальный радиус около точки О на 70° против часовой стрелки. При этом он перейдет в радиус ОВ. Говорят, что угол поворота равен 70°. Если повернуть начальный радиус около точки О на 70° по часовой стрелке, то он перейдет в радиус ОС. В этом случае говорят, что угол поворота равен —70°. Углы поворота в 70° и —70° показаны стрелками на рисунке 64.
Вообще при повороте против часовой стрелки угол поворота считают положительным, а при повороте по часовой стрелке — отрицательным.
Из курса геометрии известно, что мера угла в градусах выражается числом от 0 до 180. Что касается угла поворота, то он может выражаться в градусах каким угодно действительным числом от Так, если начальный
радиус повернуть против часовой стрелки на 180°, а потом еще на 30°, то угол поворота будет равен 210°. Если начальный радиус сделает полный оборот против часовой стрелки, то угол поворота будет равен 360°; если он сделает полтора оборота в том же направлении, то угол поворота будет равен 540° и т. д. На рисунке 65 стрелками показаны углы поворота в 405° и -200°.
Рассмотрим радиусы OA и ОВ (рис. 66). Существует бесконечно много углов поворота, при которых начальный радиус OA переходит в радиус ОВ. Так, если то соответствующие углы поворота будут равны 130° + 360°n, где n — любое целое число. Например, при n = 0, 1, —1, 2, —2 получаем углы поворота 130°, 490°, —230°, 850°, —590°.
Пусть при повороте на угол а начальный радиус OA переходит в радиус ОВ. В зависимости от того, в какой координатной четверти окажется радиус ОВ, угол а называют углом этой четверти. Так, если 0° < а < 90°, то а — угол I четверти; если 90° < а <180°, то а — угол II четверти; если 180° < а < 270°, то а — угол III четверти; если 270° < а < 360°, то а — угол IV четверти. Очевидно, что при прибавлении к углу целого числа оборотов получается угол той же четверти. Например, угол в 430° является углом I четверти, так как 430° = 360°+ 70° и 0°<70°<90°; угол в 920° является углом III четверти, так как 200° < 270°.
Углы не относятся ни к какой четверти.
В курсе геометрии были определены синус, косинус и тангенс угла а при Теперь мы распространим эти определения на случай произвольного угла а. Кроме того, определим еще котангенс угла а, который обозначают ctg а.
Пусть при повороте около точки О на угол а начальный радиус OA переходит в радиус ОВ (рис. 67).
Синусом угла а называется отношение ординаты точки В к длине радиуса.
Косинусом утла а называется отношение абсциссы точки В к длине радиуса.
Тангенсом угла а называется отношение ординаты точки В к ее абсциссе.
Котангенсом угла а называется отношение абсциссы точки В к ее ординате.
Если координаты точки В равны х и у, а длина начального радиуса равна R, то
В курсе геометрии было показано, что значения синуса, косинуса и тангенса угла а, где зависят только от а и не зависят от длины радиуса R. И в общем случае sin а, cos a, tg а, а также ctg а зависят только от угла а.
Покажем, например, что sin а не зависит от R.
Пусть при повороте луча около точки О на угол а (рис. 68) радиусы займут положения Обозначим координаты точки а координаты точки
Опустим перпендикуляры из точек на ось х. Прямоугольные треугольники подобны. Отсюда
Так как точки принадлежат одной и той же координатной четверти, то их ординаты имеют одинаковые знаки. Поэтому
Заметим, что это равенство верно и в том случае, когда точки попадают на одну из осей координат. Таким образом, для любого угла а отношение не зависит от длины радиуса R.
Выражения sin а и cos а определены при любом а, так как для любого угла поворота можно найти соответствующие значения дробей Выражение tg а имеет смысл при любом а, кроме углов поворота так как для этих углов не имеет смысла дробь Для выражения ctg а исключаются углы 0°, ±180°, ±360°, для которых не имеет смысла дробь
Каждому допустимому значению а соответствует единственное значение sin a, cos а, tg а и ctg а. Поэтому синус, косинус, тангенс и котангенс являются функциями угла а. Их называют тригонометрическими функциями.
Можно доказать, что областью значений синуса и косинуса является промежуток [—1; 1], а областью значений тангенса и котангенса — множество всех действительных чисел.
Приведем примеры вычисления значений тригонометрических функций.
Пример:
Найдем с помощью чертежа приближенные значения sin 110°, cos 110°, tg 110° и ctg 110°.
Начертим окружность с центром в начале координат и радиусом OA = R = 3 (рис. 69). Повернем радиус OA на 110°. Получим радиус ОВ. Найдем по рисунку координаты х и у точки В: Отсюда
В таблице приведены известные из курса геометрии значения синуса, косинуса и тангенса углов 0°, 30°, 45°, 60° и 90°. Прочерк сделан в том случае, когда выражение не имеет смысла.
Значения котангенса могут быть получены из значений тангенса, так как котангенс угла является числом, обратным тангенсу этого же угла. Поэтому, например,
Пример:
Найдем синус, косинус, тангенс и котангенс углов 180° и 270°.
При повороте на 180° около точки О радиус OA, равный 1, (рис. 70) переходит в радиус ОВ, а при повороте на 270° — в радиус ОС.
Так как точка В имеет координаты х = — 1 и у = 0, то
Так как точка С имеет координаты х = 0 и у = —1, то
Напомним, что выражения ctg 180° и tg 270° не имеют смысла.
Свойства синуса, косинуса, тангенса и котангенса
Рассмотрим некоторые свойства тригонометрических функций.
Выясним сначала, какие знаки имеют синус, косинус, тангенс и котангенс в каждой из координатных четвертей.
Пусть при повороте радиуса OA, равного R, на угол а точка А перешла в точку В с координатами х и у (см. рис. 67).
Так как то знак sin а зависит от знака у.
В I и II четвертях у > 0, а в III и IV четвертях у < 0. Значит, sin a > 0, если а является углом I или II четверти, и sin a < 0, если а является углом III или IV четверти.
Знак cos а зависит от знака х, так как В I и IV четвертях х > 0, а во II и III четвертях х < 0. Поэтому cos a > 0, если а является углом I или IV четверти, и cos a<0, если a является углом II или III четверти.
Так как то знаки tg а и ctg а зависят от знаков х и у. В I и III четвертях хну имеют одинаковые знаки, а во II и IV — разные. Значит, tg a > 0 и ctg a > 0, если а является углом I или III четверти; tg a < 0 и ctg a < 0, если а является углом II или IV четверти.
Знаки синуса, косинуса, тангенса и котангенса в каждой из четвертей показаны на рисунке 73.
Выясним теперь вопрос о четности и нечетности тригонометрических функций.
Пусть при повороте на угол а радиус OA переходит в радиус ОВ, а при повороте на угол — а в радиус ОС х (рис. 74). Соединив отрезком точки В и С, получим равнобедренный треугольник ВОС. Луч OA является биссектрисой угла ВОС. Значит, отрезок ОК является медианой и высотой треугольника ВОС. Отсюда следует, что точки В и С симметричны относительно оси абсцисс.
Пусть координаты точки В равны х и у, тогда координаты точки С равны х и -у. Пользуясь этим, найдем, что
Мы получили формулы, выражающие зависимость между синусами, косинусами, тангенсами и котангенсами противоположных углов:
Например:
Итак, синус, тангенс и котангенс являются нечетными функциями, а косинус является четной функцией.
Рассмотрим еще одно свойство тригонометрических функций.
Если при повороте радиуса OA на угол а получен радиус ОВ (см. рис. 67), то тот же радиус получится и при повороте OA на угол, отличающийся от а на целое число оборотов. Отсюда следует, что при изменении угла на целое число оборотов значения синуса, косинуса, тангенса и котангенса не изменяются.
Например:
Рассмотренные свойства позволяют свести нахождение значений синуса, косинуса, тангенса и котангенса любого угла к нахождению их значений для неотрицательного угла, меньшего 360°.
Пример:
Найдем sin 765° и cos ( — 1170°). Имеем:
Радианная мера угла. Вычисление значении тригонометрических функции с помощью микрокалькулятора
Как известно, углы измеряются в градусах, минутах, секундах. Эти единицы измерения связаны между собой соотношениями
Кроме указанных, используется также единица измерения углов, называемая радианом.
Углом в один радиан называют центральный угол, которому соответствует длина дуги, равная длине радиуса окружности.
Угол, равный 1 рад, изображен на рисунке 75.
Радианная мера угла, т. е. величина угла, выраженная в радианах, не зависит О А от длины радиуса. Это следует из того, что фигуры, ограниченные углом и дугой окружности с центром в вершине этого угла, подобны между собой (рис. 76).
Установим связь между радиан-ным и градусным измерениями углов.
Углу, равному 180°, соответствует полуокружность, т. е. дуга, длина l которой равна
Чтобы найти радианную меру этого угла, надо длину дуги l разделить на длину радиуса R. Получим:
Следовательно, радианная мера угла в 180° равна
Отсюда получаем, что радианная мера угла в 1° равна
Приближенно 1° равен 0,017 рад.
Из равенства рад также следует, что градусная мера угла в 1 рад равна
Приближенно 1 рад равен 57°.
Рассмотрим примеры перехода от радианной меры к градусной и от градусной меры к радианной.
Пример:
Выразим в градусах 4,5 рад.
Так как
Пример:
Найдем радианную меру угла в 72°.
Так как
При записи радианной меры угла обозначение «рад» часто опускают. Например, вместо равенства рад обычно пишут:
Выразим в радианной мере углы 30°, 45°, 60°, 90°, 270° и 360°. Получим:
Радианная мера угла часто используется в тригонометрических выражениях. Так, запись sirfl означает синус угла в 1 радиан, запись sin ( — 2,5) означает синус угла в —2,5 радиана, запись означает синус угла в радиан. Вообще запись sin х, где х — произвольное действительное число, означает синус угла, равного х радианам.
Значения тригонометрических функций для углов, выраженных как в градусах, так и в радианах, можно находить, используя микрокалькулятор. Так, с помощью микрокалькулятора «Электроника БЗ-З6» значения синуса, косинуса и тангенса вычисляют следующим образом. Переводят переключатель «ГРАД — РАД», находящийся в нижней части корпуса, в положение «ГРАД», если угол задан в градусах, или в положение «РАД», если угол задан в радианах. Вводят угол, нажимают клавишу а затем клавишу, над которой написано название соответствующей функции.
Пример:
Найдем с помощью микрокалькулятора значение выражения с точностью до 0,001:
а) Установим переключатель в положение «ГРАД», затем выразим 28°17′ в градусах и нажмем «последовательно клавиши Так как то программа вычислений выглядит так:
Получаем, что
б) Устанавливаем переключатель в положение «РАД» и находим значение cos 3,9 по программе:
Получаем, что cos
в) Переключатель устанавливаем в положение «РАД». При нахождении значения выражения воспользуемся тем, что на панели микрокалькулятора «Электроника БЗ-З6» имеется специальная клавиша при нажатии которой высвечивается число 3,1415926 — приближенное значение числа с точностью до Вычисления проводим по программе:
Получаем, что
Отметим, что для вычисления котангенса угла надо сначала найти значение тангенса этого угла, а потом обратное число, нажав клавиши
Основные тригонометрические формулы
Соотношения между тригонометрическими функциями одного и того же угла:
Рассмотрим, как связаны между собой синус и косинус одного и того же угла.
Пусть при повороте радиуса OA вокруг точки О на угол а получен радиус ОВ (рис. 77). По определению
где х — абсцисса точки В, у — ее ордината, a R — длина радиуса OA. Отсюда
Так как точка В принадлежит окружности с центром в начале координат, радиус которой равен R, то ее координаты удовлетворяют уравнению
Подставив в это уравнение вместо х и у выражения R cos а и R sin а, получим:
Разделив обе части последнего равенства на найдем, что
Равенство (1) верно при любых значениях а. Выясним теперь, как связаны между собой тангенс, синус и косинус одного и того же угла.
По определению Так как y = R sin a, x = R cos a,
Таким образом,
Аналогично
Равенство (2) верно при всех значениях а, при которых cos , а равенство (3) верно при всех значениях а, при которых sin
С помощью формул (1) — (3) можно получить другие формулы, выражающие соотношения между тригонометрическими функциями одного и того же угла.
Из равенств (2) и (3) получим:
Равенство (4) показывает, как связаны между собой тангенс и котангенс угла а. Оно верно при всех значениях а, при которых tg а и ctg а имеют смысл.
Заметим, что формулу (4) можно получить и непосредственно из определения тангенса и котангенса.
Выведем теперь формулы, выражающие соотношения между тангенсом и косинусом, а также между котангенсом и синусом одного и того же угла.
Разделив обе части равенства (1) на получим:
Если обе части равенства (1) разделить на то будем иметь:
т. е.
Равенство (5) верно, когда cos а равенство (6), когда sin
Равенства (1) — (6) являются тождествами. Их называют основными тригонометрическими тождествами. Рассмотрим примеры использования этих тождеств для нахождения значений тригонометрических функций по известному значению одной из них.
Пример:
Найдем cos a, tg а и ctg а, если известно, что sin
Найдем сначала cos а. Из формулы получаем, что
Так как а является углом II четверти, то его косинус отрицателен. Значит,
Зная синус и косинус угла а, можно найти его тангенс:
Для отыскания котангенса угла а удобно воспользоваться формулой tg a • ctg a = 1. Имеем:
Пример:
Известно, что Найдем sin a, cos a и ctg a.
Воспользовавшись формулой найдем cos a. Имеем:
По условию угол a является углом I четверти, поэтому его косинус положителен. Значит,
Зная cos а и tg а, можно найти sin а. Из формулы получим:
По известному tg а легко найти ctga:
Итак,
Применение основных тригонометрических формул к преобразованию выражении
Мы уже встречались с некоторыми простейшими преобразованиями тригонометрических выражений. Рассмотрим более сложные примеры.
Пример:
Упростим выражение
Воспользовавшись формулами получим:
Пример:
Упростим выражение
Пример:
Докажем тождество
Преобразуем левую часть данного равенства:
Мы получили выражение, стоящее в правой части равенства. Таким образом, тождество доказано.
Формулы приведения
Тригонометрические функции углов вида могут быть выражены через функции угла а с помощью формул, которые называют формулами приведения.
Выведем сначала формулы приведения для синуса и косинуса.
Докажем, что для любого а
Повернем радиус OA, длина которого равна R, на угол а и на угол При этом радиус OA перейдет соответственно в радиусы ОВ1 и ОВ2 (рис. 78).
Опустим из точки В1 перпендикуляры на оси координат. Получим прямоугольник
Повернем прямоугольник около точки О на угол Тогда точка В1 перейдет в точку В2, точка С1 перейдет в точку С2 на оси у, точка D1 — в точку D2 на оси х, а прямоугольник перейдет в равный ему прямоугольник
Отсюда следует, что ордината точки В2 равна абсциссе точки В1, а абсцисса точки В2 равна числу, противоположному ординате точки В1. Обозначим координаты точки B1 через а координаты точки В2 через Тогда
Значит,
Из формул (1) следует, что
Действительно, представим разность в виде суммы Тогда
Формулы приведения для синуса и косинуса угла выглядят так:
Для доказательства достаточно представить в виде и дважды воспользоваться формулами (1). Например :
Заметим, что к формулам (2) легко прийти и из геометрических соображений (рис. 79). При повороте радиуса OA на угол а и на угол точка А перейдет соответственно в точки В1 и В2, которые симметричны относительно начала координат. Абсциссы, а также ординаты симметричных относительно
начала координат точек равны по модулю и противоположны по знаку. Отсюда следует, что а также — противоположные числа.
Из формул (2) следует, что
Для доказательства достаточно представить в виде суммы и применить формулы (2).
Формулы приведения для синуса и косинуса угла имеют вид:
Чтобы доказать формулы (3), достаточно представить и применить последовательно формулы (1) и (2).
Из формул (3) нетрудно получить, что
Наконец, формулы приведения для синуса и косинуса угла следуют из того, что при изменении угла на целое число оборотов значения синуса и косинуса не изменяются:
Справедливы также формулы
Например, для
Формулы приведения для тангенса и котангенса можно получить с помощью формул приведения для синуса и косинуса. Например:
Все формулы приведения сведем в две таблицы, поместив в первой из них формулы для углов а во второй — для углов
Цо таблицам легко проследить закономерности, имеющие место для формул приведения. Эти закономерности позволяют сформулировать правило, с помощью которого можно записать любую формулу приведения, не прибегая к таблице:
Функция в правой части равенства берется с тем же знаком, какой имеет исходная функция, если считать, что угол а является углом 1 четверти;
для углов название исходной функции сохраняется; для углов название исходной функции заменяется (синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс).
Пример:
Выразим через тригонометрическую функцию угла а.
Если считать, что a — угол I четверти, то будет углом II четверти. Во II четверти тангенс отрицателен, значит, в правой части равенства следует поставить знак «минус». Для угла название исходной функции «тангенс» сохраняется. Поэтому
С помощью формул приведения нахождение значений тригонометрических функций любого угла можно свести к нахождению значений тригонометрических функций угла от .
Пример:
Найдем значение
Пример:
Найдем значение sin (— 585°).
Формулы сложения и их следствия
Выведем формулы, выражающие тригонометрические функции суммы и разности двух углов через тригонометрические функции этих углов.
Повернем радиус OA, равный R, около точки О на угол а и на угол (рис. 80). Получим радиусы ОВ и ОС.
Найдем скалярное произведение векторов Пусть координаты точки В равны координаты точки С равны Эти же координаты имеют соответственно и векторы По определению скалярного произведения векторов:
Выразим скалярное произведение через тригонометрические функции углов а и . Из определения косинуса и синуса следует, что
Подставив значения в правую часть равенства получим:
С другой стороны, по теореме о скалярном произведении векторов имеем:
Угол ВОС между векторами может быть равен а — (см. рис. 80), (рис. 81) либо может отличаться от этих значений на целое число оборотов. В любом из этих случаев cos Поэтому
Так как равно также то
Формулу (1) называют формулой косинуса разности.
Косинус разности двух углов равен произведению косинусов этих углов плюс произведение синусов этих углов.
С помощью формулы (1) легко получить формулу косинуса суммы:
Косинус суммы двух углов равен произведению косинусов этих углов минус произведение синусов этих углов.
Выведем теперь формулы синуса суммы и синуса разности. Используя формулы приведения и формулу (1), получим:
Синус суммы двух углов равен произведению синуса первого угла на косинус второго плюс произведение косинуса первого угла на синус второго.
Для синуса разности имеем:
Синус разности двух углов равен произведению синуса первого угла на косинус второго минус произведение косинуса первого угла на синус второго.
Формулы (1) — (4) называют формулами сложения для синуса и косинуса.
Приведем примеры использования формул сложения.
Пример:
Вычислим cos 15° и sin 15°. Представим 15° в виде разности 45° — 30°. Тогда
Пример:
Упростим выражение Воспользовавшись формулами косинуса суммы и косинуса разности, получим:
Используя формулы (1) — (4), можно вывести формулы сложения для тангенса и котангенса. Выведем, например, формулу тангенса суммы:
Разделим числитель и знаменатель полученной дроби на произведение cos a cos , предполагая, что Получим:
Значит,
Аналогично можно доказать, что
Формулы двойного угла
Формулы сложения позволяют выразить sin 2a, cos 2a и tg 2a через тригонометрические функции угла a. Положим в формулах
равным a. Получим тождества:
Эти тождества называют формулами двойного угла.
Приведем примеры применения формул двойного угла для нахождения значений тригонометрических функций и преобразования тригонометрических выражений.
Пример:
Найдем значение sin 2а, зная, что cosa = — 0,8 и a — угол III четверти.
Сначала вычислим sin а. Так как a — угол III четверти, то sin а < 0. Поэтому
По формуле синуса двойного угла
Пример:
Упростим выражение
Вынесем за скобки sin a cos a и воспользуемся формулами двойного угла:
Из формулы (2) следует, что
Действительно, выразив cos 2a через sin a, получим:
Отсюда
Аналогично, выразив cos 2a через cos a, получим:
Формулы (4) и (5) используются в вычислениях и преобразованиях.
Пример:
Упростим выражение
Применим формулы (4) и (5) к выражениям 1 — cos а и 1 + cos а, представив а в виде произведения Получим:
Формулы суммы и разности тригонометрических функции
Сумму и разность синусов или косинусов можно представить в виде произведения тригонометрических функций. Формулы, на которых основано такое преобразование, могут быть получены из формул сложения.
Чтобы представить в виде произведения сумму sin a + sin , положим и воспользуемся формулами синуса суммы и синуса разности. Получим:
Из равенств a = x + y и = x — y находим, что и Поэтому
Мы получили формулу суммы синусов двух углов.
Сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус их полуразности.
Аналогично можно вывести формулы разности синусов, суммы и разности косинусов.
Формула разности синусов:
Разность синусов двух углов равна удвоенному произведению синуса полуразности этих углов на косинус их полусуммы.
Формула суммы косинусов:
Сумма косинусов двух углов равна удвоенному произведению косинуса полусуммы, этих углов на косинус их полуразности.
Формула разности косинусов:
Разность косинусов двух углов равна взятому со знаком *минус» удвоенному произведению синуса полусуммы этих углов на синус их полуразности.
Учитывая, что формулу разности косинусов можно записать в другом виде:
Приведем примеры применения полученных формул.
Пример:
Упростим сумму sin 10° + sin 50°.
Воспользовавшись формулой суммы синусов, получим:
Пример:
Представим в виде произведения разность
Воспользовавшись формулой приведения, представим данное выражение в виде разности косинусов и преобразуем ее в произведение. Тогда
Пример:
Представим в виде произведения выражение 1 — sin а.
Так как то данное выражение можно представить в виде разности синусов. Поэтому
Эту задачу можно решить иначе:
С помощью формул приведения первое из полученных выражений можно преобразовать во второе и наоборот.
Вычисление значений тригонометрических выражений
Возможно вам будут полезны эти страницы:
Решение заданий и задач по предметам:
- Математика
- Высшая математика
- Математический анализ
- Линейная алгебра
Дополнительные лекции по высшей математике:
- Тождественные преобразования алгебраических выражений
- Функции и графики
- Преобразования графиков функций
- Квадратная функция и её графики
- Алгебраические неравенства
- Неравенства
- Неравенства с переменными
- Прогрессии в математике
- Арифметическая прогрессия
- Геометрическая прогрессия
- Показатели в математике
- Логарифмы в математике
- Исследование уравнений
- Уравнения высших степеней
- Уравнения высших степеней с одним неизвестным
- Комплексные числа
- Непрерывная дробь (цепная дробь)
- Алгебраические уравнения
- Неопределенные уравнения
- Соединения
- Бином Ньютона
- Число е
- Непрерывные дроби
- Функция
- Исследование функций
- Предел
- Интеграл
- Двойной интеграл
- Тройной интеграл
- Интегрирование
- Неопределённый интеграл
- Определенный интеграл
- Криволинейные интегралы
- Поверхностные интегралы
- Несобственные интегралы
- Кратные интегралы
- Интегралы, зависящие от параметра
- Квадратный трехчлен
- Производная
- Применение производной к исследованию функций
- Приложения производной
- Дифференциал функции
- Дифференцирование в математике
- Формулы и правила дифференцирования
- Дифференциальное исчисление
- Дифференциальные уравнения
- Дифференциальные уравнения первого порядка
- Дифференциальные уравнения высших порядков
- Дифференциальные уравнения в частных производных
- Тригонометрические функции
- Тригонометрические уравнения и неравенства
- Показательная функция
- Показательные уравнения
- Обобщенная степень
- Взаимно обратные функции
- Логарифмическая функция
- Уравнения и неравенства
- Положительные и отрицательные числа
- Алгебраические выражения
- Иррациональные алгебраические выражения
- Преобразование алгебраических выражений
- Преобразование дробных алгебраических выражений
- Разложение многочленов на множители
- Многочлены от одного переменного
- Алгебраические дроби
- Пропорции
- Уравнения
- Системы уравнений
- Системы уравнений высших степеней
- Системы алгебраических уравнений
- Системы линейных уравнений
- Системы дифференциальных уравнений
- Арифметический квадратный корень
- Квадратные и кубические корни
- Извлечение квадратного корня
- Рациональные числа
- Иррациональные числа
- Арифметический корень
- Квадратные уравнения
- Иррациональные уравнения
- Последовательность
- Ряды сходящиеся и расходящиеся
- Тригонометрические функции произвольного угла
- Тригонометрические формулы
- Обратные тригонометрические функции
- Теорема Безу
- Математическая индукция
- Показатель степени
- Показательные функции и логарифмы
- Множество
- Множество действительных чисел
- Числовые множества
- Преобразование рациональных выражений
- Преобразование иррациональных выражений
- Геометрия
- Действительные числа
- Степени и корни
- Степень с рациональным показателем
- Тригонометрические функции угла
- Тригонометрические функции числового аргумента
- Преобразование тригонометрических выражений
- Комбинаторика
- Вычислительная математика
- Прямая линия на плоскости и ее уравнения
- Прямая и плоскость
- Линии и уравнения
- Прямая линия
- Уравнения прямой и плоскости в пространстве
- Кривые второго порядка
- Кривые и поверхности второго порядка
- Числовые ряды
- Степенные ряды
- Ряды Фурье
- Преобразование Фурье
- Функциональные ряды
- Функции многих переменных
- Метод координат
- Гармонический анализ
- Вещественные числа
- Предел последовательности
- Аналитическая геометрия
- Аналитическая геометрия на плоскости
- Аналитическая геометрия в пространстве
- Функции одной переменной
- Высшая алгебра
- Векторная алгебра
- Векторный анализ
- Векторы
- Скалярное произведение векторов
- Векторное произведение векторов
- Смешанное произведение векторов
- Операции над векторами
- Непрерывность функций
- Предел и непрерывность функций нескольких переменных
- Предел и непрерывность функции одной переменной
- Производные и дифференциалы функции одной переменной
- Частные производные и дифференцируемость функций нескольких переменных
- Дифференциальное исчисление функции одной переменной
- Матрицы
- Линейные и евклидовы пространства
- Линейные отображения
- Дифференциальные теоремы о среднем
- Теория устойчивости дифференциальных уравнений
- Функции комплексного переменного
- Преобразование Лапласа
- Теории поля
- Операционное исчисление
- Системы координат
- Рациональная функция
- Интегральное исчисление
- Интегральное исчисление функций одной переменной
- Дифференциальное исчисление функций нескольких переменных
- Отношение в математике
- Математическая логика
- Графы в математике
- Линейные пространства
- Первообразная и неопределенный интеграл
- Линейная функция
- Выпуклые множества точек
- Система координат
Методическое пособие для подготовки учеников к ЕГЭ
Тема: Вычисление и преобразование тригонометрических выражений.
Скворцова Д.А.
1.02.15
Содержание
-
Модуль 1. Теоретическая часть по теме «Тригонометрические выражения»
-
Модуль 2. Ключевые задачи. Примеры решения задач.
-
Модуль 3. Задачи для отработки практических навыков.
-
Модуль 4. Задачи для зачета по данной теме.
-
Модуль 5. Домашнее задание.
-
Модуль 6. Варианты ЕГЭ по теме «Вычисление и преобразование тригонометрических выражений»
-
Модуль 7. Ответы .
-
Литература
Модуль 1. Теоретическая часть по теме «Тригонометрические выражения»
-
-
-
-
Понятие синуса, косинуса, тангенса и котангенса числового аргумента
-
-
-
Рассмотрим единичную окружность, т.е. окружность с центром в начале координат и радиусом 1.
Def:Синусом числа α называется ордината точки , образованной поворотом точки вокруг начала координат на угол α радиан.
Обозначается : , т.е. – ордината точки .
Def:Косинусом числа α называется абсцисса точки , полученной поворотом точки вокруг начала координат на угол α радиан.
Обозначается: , т.е. – абсцисса точки .
Синус и косинус определены для любого числа .
,
Def:Тангенсом числа называется отношение синуса числа к его косинусу:
Тангенс определен для всех , кроме тех значений, при которых , т.е.
Def:Котангенсом числа называется отношение косинуса числа к его синусу:
Котангенс определен для все , кроме тех значений, при которых , т.е
Для окружности произвольного радиуса R определение тригонометрических функций выглядит следующим образом:
; ; ;
Если , то справедливы равенства:
Пример 1. Найдите значение выражения:
Пример 2. Определите знак выражения:
-
т.к. – угол II четверти, то – угол III четверти, то .
-
т.к. – угол II четверти, то– угол III четверти, то .
-
-
-
-
Соотношение между тригонометрическими функциями одного аргумента.
-
-
-
Основное тригонометрическое тождество:
Следствия:
Пример 1. Могут ли одновременно быть справедливы равенства:
-
и
Решение:
Так как рассматриваются функции синус и косинус одного и того же аргумента, то должно выполняться основное тригонометрическое тождество:
, но .
Поэтому равенства и одновременно справедливы, быть не могут (т.к. не выполняется основное тригонометрическое тождество).
-
и
Решение:
Так как рассматриваются функции синус и косинус одного и того же аргумента, то должно выполняться основное тригонометрическое тождество:
, но .
Основное тригонометрическое тождество выполняется. Значит, равенства, данные в условии, одновременно справедливы.
Пример 2. Найдите значения тригонометрических функций числа , зная, что и .
Решение:
Так как по условию , то – принадлежит II четверти. Поэтому
;
-
-
-
-
Произведение тангенса и котангенса одно и того же аргумента.
-
-
-
Пример 1. Могут ли быть справедливы равенства:
Решение:
Поскольку , то :
-
, равенства справедливы, т.к. выполняется тождество.
-
, равенства не справедливы, т.к. не выполняется тождество.
Пример 2. Упростите:
Решение:
Так как , то
-
-
-
-
Зависимость между тангенсом и косинусом одного аргумента.
-
-
-
Пример. Упростите:
Решение:
-
-
-
-
Зависимость между котангенсом и синусом одного аргумента.
-
-
-
Пример. Вычислите значения тригонометрических функций, если , – угол IV четверти.
Решение:
Так как – угол IV четверти, то , , .
Известно, что . Отсюда
Но поэтому
-
-
-
-
Формулы сложения
-
-
-
-
Синус суммы и разности
Def:Синус суммы двух аргументов равен сумме произведений синуса первого аргумента на косинус второго и косинус первого аргумента на синус второго:
Def:Синус разности двух аргументов равен разности произведений синуса первого аргумента на косинус второго и косинус первого аргумента на синус второго:
Пример1. Вычислите:
Решение:
Пример 2. Найдите значение выражений:
Решение:
-
Косинус суммы и разности
Def:Косинус суммы двух аргументов равен разности произведений косинуса первого аргумента на косинус второго и синуса первого аргумента на синус второго:
Def:Косинус разности двух аргументов равен сумме произведений косинуса первого аргумента на косинус второго и косинус первого аргумента на синус второго:
Пример . Вычислите:
Решение:
-
Тангенс и котангенс суммы и разности.
Пример 1. Вычислите:
Решение:
Пример 2. Докажите тождество:
Доказательство:
Тогда из данного равенства имеем:
-
-
-
-
Следствия из формул сложения
-
-
-
-
Синус двойного аргумента
Def: Синус двойного аргумента равен удвоенному произведению синуса и косинуса данного аргумента:
Пример 1. Вычислите:
Решение:
. Найдем .
Так как , то – угол III четверти, т.е. .
Итак,
Пример 2. Вычислите:
Решение:
-
Косинус двойного аргумента.
Def: Косинус двойного аргумента равен разности квадратов косинуса и синуса данного аргумента.
Пример . Вычислите:
Решение:
-
Тангенс двойного аргумента.
Пример. Вычислите:
Решение:
-
-
-
-
Формулы приведения
-
-
-
Def: Тригонометрические функции аргументов могут быть выражены через функции аргумента с помощью формул, которые называются формулами приведения.
Def: Два угла называются дополнительными, если из сумма равна , для них справедливы равенства:
Чтобы облегчить запоминание формул приведения для преобразования выражений вида:
удобно пользоваться такими правилами:
-
перед приведенной функций ставится тот знак, который имеет исходная функция, если
-
функция меняется на «кофункцию».
Примеры к этому правилу приведены в таблице.
Пример. Найдите значение:
Решение:
-
-
-
-
Тождественные преобразования тригонометрических выражений
-
-
-
-
-
-
-
Знаки тригонометрических функций по координатным четвертям.
-
-
-
Модуль 2. Ключевые задачи. Примеры решения задач.
Разделим задачи на блоки:
-
Нахождение значения выражения.
-
Нахождение тригонометрических функций, если значение одной известно.
-
Применение формул приведения и основных тригонометрических преобразований.
-
Разные задачи.
-
Нахождение значения выражения.
Пример 1.
Решение:
Данные значения углов табличные, подставляем и вычисляем:
Пример 2.
Решение:
Косинус угла – это табличное значение. С косинусом угла поступим следующим образом – выделим период, применим формулу приведения, и далее вычислим:
Пример 3.
Пример 4.
Решение:
Применяем свойство чётности косинуса и нечётности синуса, далее вычисляем:
Пример 5.
Решение:
Используем формулу синуса двойного аргумента. Затем выделим период и применим свойство периодичности:
Далее применим свойство нечётности синуса и формулу приведения:
Пример 6.
Решение:
Вынесем за скобку общий множитель и применим формулу косинуса двойного аргумента:
Далее используем формулу приведения и вычислим:
Пример 7.
Решение:
Выделим общий множитель и вынесем его за скобку, затем применим формулу косинуса двойного аргумента:
Далее выделим период, используем свойство периодичности и свойство чётности косинуса, вычисляем:
Пример 8.
Решение:
Выделим общий множитель и вынесем его за скобку, затем применим формулу косинуса двойного аргумента:
Далее выделим период и применим формулу приведения:
Пример 9.
Пример 10.
-
Нахождение тригонометрических функций, если значение одной известно.
Пример 1.Найдите tg α, если
Решение:
В этом и подобных примерах необходимо знать основное тригонометрическое тождество (его вообще нужно помнить всегда), а также формулу тангенса:
Косинус угла нам известен. Из формулы основного тригонометрического тождества мы можем найти значение синуса. Затем подставить их в формулу тангенса.
Теперь важный момент: необходимо определить знак синуса для заданного интервала. Это интервал от 270 до 360 градусов (четвёртая четверть). Значение синуса в этой четверти отрицательное, поэтому:
Таким образом:
Пример 2. Найдите tg α, если
Решение:
В этом и подобных примерах необходимо знать основное тригонометрическое тождество (его вообще нужно помнить всегда), а также формулу тангенса:
Cинус угла нам известен. Из формулы основного тригонометрического тождества мы можем найти значение синуса. Затем подставить их в формулу тангенса.
Определяем знак косинуса для заданного интервала. Это интервал от 90 до 180 градусов (вторая четверть). Значение косинуса в этой четверти отрицательное. Поэтому
Таким образом:
Пример 3. Найдите 5cos α, если
Решение:
Необходимо найти косинус угла. Из формулы основного тригонометрического тождества следует, что cos2x = 1– sin2x и
Определим знак косинуса. Угол принадлежит интервалу от 270 до 360 градусов (четвёртая четверть). Значение косинуса в этой четверти положительное, поэтому:
Таким образом, 5cos α = 5∙0,7 = 3,5
Пример 4 Найдите 0,1sin α, если
Необходимо найти синус угла. Из формулы основного тригонометрического тождества следует, что sin2x = 1– cos2x и
Определим знак синуса. Угол принадлежит интервалу от 0 до 90 градусов (первая четверть). Значение синуса в этой четверти положительное, поэтому:
Таким образом 0,1sin α = 0,1∙0,3 = 0,03
Пример 5. Вычислить , если .
Решение:
Так как . Воспользовавшись формулой , получаем . При будет Поэтому .
Пример 6. Известно, что
Найдите , ,
Решение: Поскольку из условия задачи следует неравенство
то, учитывая знак синуса, находим, что точка P принадлежит 4-й четверти. Поэтому
Пример 7. Известно, что . Найдите
Решение:
Учитывая знак тангенса и условие задачи
находим, что точка P принадлежит 4-й четверти. Поэтому
Пример 8. Известно, что . Найдите
Решение:
Из условия 3 < < 2 и неравенства sincos > 0 следует, что точка P принадлежит 3-й четверти. Следовательно, sin+cos < 0.
Кроме того,
Поэтому
Пример 9. Известно, что . Найдите
Решение: Возведем обе части данного равенства в квадрат:
Пример 10.
Решение:
-
Применение формул приведения и основных тригонометрических преобразований.
Пример 1. Найдите значение выражения
Решение:
Используем формулу синуса двойного аргумента:
Выражение в числителе «сворачиваем»:
Второй путь: можно было использовать эту же формулу преобразовав знаменатель.
Пример 2. Найдите значение выражения
Для решения этого примера достаточно знать формулу косинуса двойного аргумента:
Преобразуем знаменатель:
Пример 3. Найдите значение выражения
В данном случае 63 градуса представляем как разность 900 – 270
Пример 4. Найдите значение выражения
Представим 1000 как разность 3600 – 2600, применим свойство периодичности нечётности синуса:
Пример 5. Найдите значение выражения
Используем формулу приведения косинуса. Представим 1530 как разность 1800– 270:
Пример 6. Найдите значение выражения
Используем формулу приведения для тангенса. Представим 1480 как разность 1800 – 320:
Пример 7. Найдите значение выражения
Представим 3730 как сумму 3600 + 130, используем свойство периодичности:
Пример 8. Найдите значение выражения
Используем формулы приведения:
Применили формулу тригонометрии:
Пример 9. Найдите значение выражения
Применяем формулу синуса двойного аргумента в числителе, и формулу приведения в знаменателе:
Пример 10. Найдите значение выражения
Применяем формулу синуса двойного аргумента:
Пример 11. Найдите значение выражения
Используем формулу приведения и основное тригонометрическое тождество:
Пример 12. Найдите значение выражения
Косинус функция чётная, то есть
Её период равен 2Пn, то есть
Значит
Используем формулу приведения для косинуса:
-
Различные задачи.
-
Задача. («Ломоносов»,2007 ) Вычислите: , если
Решение:
Обозначим искомую величину за x. Раскрывая скобки, получим:
Слагаемые сгруппированы так , чтобы получились формулы.
-
Задача. (МГУ, ф-т почвоведения, 2008) Вычислите , если
.
Решение:
Поскольку положителен и , угол – угол II четверти: . Значит, его косинус отрицателен:
Отсюда
-
Задача. (МГУ, ф-т почвоведения, 2000) Найдите
-
-
, если известно, что
Решение:
Имеем:
Разделив последние два равенства, друг на друга получим:
Теперь возведем последние два равенства в квадрат и сложим:
Модуль 3. Задачи для отработки практических навыков.
-
Нахождение значения выражения.
-
Вычислите
-
Вычислите
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения: .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите , если .
-
Нахождение тригонометрических функций, если значение одной известно.
-
Найдите , если
-
(«Ломоносов», 2007) Вычислите: , если
-
-
(МГУ, ф-т гос.управления,2010) Найдите и , если известно, что а
-
Найдите , если и .
-
Найдите , если и
-
Найдите , если и .
-
Найдите , если и .
-
Найдите , если .
-
Найдите , если
-
Найдите , если .
-
Найдите , если .
-
Найдите , если .
-
Найдите если и
-
Найдите если и
-
Применение формул приведения и основных тригонометрических преобразований.
-
Найдите , если .
-
Найдите значение выражения , если .
-
Найдите , если и .
-
Найдите , если и .
-
Найдите , если
-
Найдите , если .
-
Найдите , если .
-
Найдите значение выражения , если .
-
Найдите значение выражения , если .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Разные задачи.
-
Докажите тождество:
-
Покажите, что:
-
Докажите:
-
Найдите значение выражения .
-
Найдите значение выражения .
Модуль 4. Задачи для зачет по данной теме.
Зачет № 1. Нахождение значения выражения.
Найдите значения выражений:
Зачет №2 Нахождение тригонометрических функций, если значение одной известно.
Найдите значение если известно:
-
Найдите tg2 α, если
-
Найдите
-
Найдите
-
Найдите tg α, если
-
Найдите tg α, если
-
Найдите 24cos2α, если sinα = – 0,2.
-
Найдите 9cos2α, если cosα = 1/3
-
Найдите
-
Найдите значение выражения
-
Найдите
Зачет №3 Применение формул приведения и основных тригонометрических преобразований.
-
Найдите значение выражения
-
Найдите значение выражения
Найдите значение выражения
-
Найдите значение выражения
-
Найдите значение выражения
-
Найдите значение выражения
-
Найдите значение выражения
-
Найдите значение выражения
-
Найдите значение выражения
-
Найдите значение выражения
-
Найдите значение выражения
-
Найдите значение выражения
-
Найдите значение выражения
Модуль 5. Домашнее задание.
1.Упростите выражения:
-
.
2. Вычислите:
-
;
-
;
-
;
3. Известно, что sin α – cos α = 0,3. Найти:
-
sin2α;
-
sin4α + cos4α;
-
sin6α + cos6α.
4.Найти tg α, если
5. Вычислить cos α, если cos2α = 3/4 и
6. Найти значение выражения:
7. Вычислить sin10º sin30º sin50º sin70º .
8. Упростить выражение: .
9. Доказать тождество при
10. Найти значение следующих тригонометрических выражений: sin 2α, cos 2α, tg 2α, если
11.* Вычислить значение выражения:
Модуль 6. Варианты ЕГЭ по теме «Вычисление и преобразование тригонометрических выражений»
Вариант 1
Вопрос 1. Найдите значение выражения
Вопрос 2. Найдите значение выражения
Вопрос 3. Найдите значение выражения
Вопрос 4. Найдите значение выражения
Вопрос 5. Найдите значение выражения
Вопрос 6. Найдите значение выражения
Вариант 2
-
Найдите значение выражения , если .
-
Найдите если и
-
Найдите , если .
-
Найдите значение выражения .
-
Найдите , если .
-
Найдите , если .
-
Найдите значение выражения
-
Найдите , если .
-
Найдите значение выражения .
-
Найдите , если .
Вариант 3
-
Найдите , если и .
-
Найдите , если и .
-
Найдите , если .
-
Найдите , если и
-
Найдите значение выражения .
-
Найдите значение выражения .
-
Найдите если и
-
Найдите значение выражения
-
Найдите , если .
-
Найдите значение выражения: .
Вариант 4.
А1. Упростите выражение: 7cos2– 5 + 7sin2
1) 1 + cos2; 2) 2; 3) –12 ; 4) 12.
А2. Найдите значение выражения
1) 0; 2) 2 ; 3) –1 ; 4) –2.
А3. Найдите значение выражения при
1) 1 ;
А4. Упростите выражение: sincos + sincos – cos
А5. Упростите выражение:
;
А6. Найдите ,если ,
А7. Найдите значение выражения
1) 1; 2)
А8. Упростите выражение: 1) 0; 2) –1; 3) ; 4) –2
Вариант 5.
А1. Упростите выражение: cosx + tgx sinx
1) 1; 2) 2cosx; 3) cosx + sinx; 4)
А2. Найдите значение выражения
1) 0,5 ; 2) –4 ; 3) 4; 4) –4.
А3. Найдите значение выражения
А4. Упростите выражение:
А5. Упростите выражение:
А6. Найдите ,если ,
А7. Найдите значение выражения
А8. Упростите выражение: 1) 1; 2) 0,5 ; 3) –4 ; 4) .
Модуль 7. Ответы .
-
Модуль 3.
№
темы
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1
0,5
-0,5
6
-24
36
2
-16
-6
6
18
-12
-5
7
12
2
0,69
-0,5
-3
5
1
-1
22,08
7
8
2,25
-7
-0,2
-0,75
3
4,2
-28
0,6
-10
-2,5
-9
5
3
4
5
-14
-4
-5
14
4
2
1
№
темы
15
16
17
18
19
20
21
22
23
24
25
26
1
6
12
-3
-1,5
-1,5
-1,5
31,96
2
12
36
-1,5
-13
2
-0,4
2,25
-9
8
2
-0.68
1,75
-0,25
3
10
10
2
4
3
-24
-104
5
4
-
Модуль 4. Задачи для зачета по данной теме.
-
Зачет №1: 1) 36, 2) 2, 3) -16, 4) -12, 5) 2, 6) -1,5, 7) -1,5, 8) 2, 9) 1
-
Зачет №2: 1) 7, 2)-9, 3) 5, 4)8, 5)2, 6) 22,08, 7)-7, 8)4, 9)3 10)10
-
Зачет №3: 1)6, 2)-24, 3)5, 4)-14, 5)-4, 6)-5, 7)14, 8)-5, 9)10, 10) -3, 11)-6, 12)6, 13)18
-
Модуль 5. Домашнее задание.
№ задания
ответ
№ задания
ответ
1
а) , b), c), d)0, e)1, f)
7
,
2
a)0,
b)1 ,
с), d), e)
8
3
a)0,91
b)0,545 c)0,3175
9
—
4
7
10
5
11
0
6
1
4. Модуль 6. Варианты ЕГЭ по теме «Вычисление и преобразование тригонометрических выражений»
№ варианта
1
2
3
4
5
6
7
8
9
10
1
1
0,5
-17
22
6
4
2
12,8
-0,8
0,25
36
8
2
-1
5
22
-5
3
-1
0,7
11,08
-0,5
-34
44
-1/5
-30
-7
-7
4
2
4
1
2
1
2
2
4
5
4
1
2
4
1
4
4
4
Литература.
-
http://alexlarin.net
-
http://reshuege.ru
-
http://fipi.ru
-
http://www.matematikvn.ru/ege-oge/ege-avtorskie-materialy.php
-
http://xn—-etbbfc5ae1a3k.xn--p1ai/?level=trigonometricheskie-vyrazheniya
-
http://matematikalegko.ru/vichislnie-viragenii/trigonometricheskie-vyrazheniya-chast-6.html
-
ЕГЭ 3000 задач с ответами по математике. Все задания группы В/ А.Л.Семенов, И.В. Ященко, И.Р. Высоцкий, Д.Д. Гущин, М.А. Посицельская, С.Е. Посицельский, С.А.Шестаков, Д.Е.Шноль, П.И. Захаров, А.В. Семенов, В.А. Смирнов; под редакцией А.Л Семенова, И.В. Ященко – 3 изд. перераб. и доп. – М. Издательство «Экзамен», 2012.-543,(1) с.
-
Математика. Подготовка к ЕГЭ- 2014 учебно- методическое пособие/ Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов – на- Дону: Легион-М, 2013-416с. – («Готовимся к ЕГЭ»)
-
ЕГЭ 2008. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Под редакцией Семенов П.В., Краснянская К. А. и др. ФИПИ-М.:Интелект-Центр, 2007.-240с.
-
ЕГЭ-2008:математика:реальные задании/ авт.-сост. В.В.Кочагин, Е.М. Бойченко, Ю.А.Глазков и др. – М.: АСТ: Астрель, 2008. – 125,[3] с. – (ФИПИ)
Тригонометрические выражения. Друзья! Для вас очередная статья с примерами на вычисление тригонометрических выражений. Примеры довольно простые, большинство из них, при определённом навыке, можно решить устно. Если вы основательно изучили тригонометрию и уяснили все важные и необходимые основы, то с решением не будет никаких трудностей.
Что используется в ходе решения данных выражений: формулы приведения, свойства периодичности тригонометрических функций, свойство чётности нечётности, формулы – синуса и косинуса двойного аргумента и, конечно же, основное тригонометрическое тождество.
Рекомендации:
— если в выражении видите, что один угол больше другого в два раза, то смело используйте соответствующую тригонометрическую формулу двойного аргумента;
— если вы видите, что сумма данных углов (или их разность) составляет 90, 180, 270, 360 градусов, то применяйте формулы приведения.
Последнюю статью с выражениями можно посмотреть здесь (там также использовались формулы функций двойного аргумента).
Формулы периодичности, чётности-нечётности здесь.
Основное тригонометрическое тождество здесь.
Рассмотрим задачи:
17289. Найдите значение выражения
Используем формулу синуса двойного аргумента:
Выражение в числителе «сворачиваем»:
*Второй путь: можно было использовать эту же формулу преобразовав знаменатель.
Ответ: 18
63139. Найдите значение выражения
Для решения этого примера достаточно знать формулу косинуса двойного аргумента:
Преобразуем знаменатель:
Ответ: –22
63229. Найдите значение выражения
В данном случае 63 градуса представляем как разность 900 – 270
Ответ: 33
63763. Найдите значение выражения
Представим 1000 как разность 3600 – 2600, применим свойство периодичности нечётности синуса:
Ответ: –34
63819. Найдите значение выражения
Используем формулу приведения косинуса. Представим 1530 как разность 1800 – 270:
Ответ: –38
63875. Найдите значение выражения
Используем формулу приведения для тангенса. Представим 1480 как разность 1800 – 320:
Ответ: 22
63929. Найдите значение выражения
Представим 3730 как сумму 3600 + 130, используем свойство периодичности:
Ответ: –20
63985. Найдите значение выражения
Используем формулы приведения:
*Применили формулу тригонометрии:
Ответ: –5
97369. Найдите значение выражения
Применяем формулу синуса двойного аргумента в числителе, и формулу приведения в знаменателе:
Ответ: –40
97967. Найдите значение выражения
Применяем формулу синуса двойного аргумента:
Ответ: –7
64097. Найдите значение выражения
Используем формулы приведения и основное тригонометрическое тождество:
Ответ: 37
64149. Найдите значение выражения
Используем формулы приведения и основное тригонометрическое тождество:
*Подробнее:
Ответ: –30
64205. Найдите значение выражения
Используем формулу приведения и основное тригонометрическое тождество:
Ответ: 21
63519. Найдите значение выражения
Косинус функция чётная, то есть
Её период равен 2Пn, то есть
Значит
Используем формулу приведения для косинуса:
Ответ: 6
63587. Найдите значение выражения
Период тангенса равен 180 градусам (Пи радиан), функция тангенса нечётная:
Ответ: 132
63651. Найдите значение выражения
Применяем свойство нечётности синуса, выделяем период и используем формулу приведения:
Ответ: 6
26755. Найдите значение выражения
Посмотреть решение
26756. Найдите значение выражения
Посмотреть решение
26757. Найдите значение выражения
Посмотреть решение
26765. Найдите значение выражения
Посмотреть решение
26766. Найдите значение выражения
Посмотреть решение
26767. Найдите значение выражения
Посмотреть решение
27769. Найдите значение выражения
Посмотреть решение
26770. Найдите значение выражения
Посмотреть решение
77412. Найдите значение выражения
Посмотреть решение
77414. Найдите значение выражения
Посмотреть решение
26772. Найдите значение выражения
Посмотреть решение
26773. Найдите значение выражения
Посмотреть решение
26774. Найдите значение выражения
Посмотреть решение
26761. Найдите значение выражения
Посмотреть решение
26762. Найдите значение выражения
Посмотреть решение
26763. Найдите значение выражения
Посмотреть решение
На этом всё! Успеха Вам!
С уважением, Александр Крутицких
P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.