План урока:
Тригонометрические функции тупых углов
Вычисление координат точки
Вычисление площади треугольника
Площадь параллелограмма
Теорема синусов
Теорема косинусов
Тригонометрические функции тупых углов
Впервые с тригонометрическими функциями мы познакомились в 8 классе. Определить их значение можно было с помощью прямоугольного треугольника, рассматривая отношения его сторон (катетов и гипотенуз). Но такой способ определения тригонометрических функций подходит только для острых углов, попадающих в интервал от 0 до 90°. Оказывается, есть способ для вычисления значений тригонометрических функций и от больших углов.
Построим на координатной плоскости полуокружность, центр которой располагается в начале координат, а радиус равен единице. Ее называют единичной полуокружностью. Проведем из точки (0; 0) луч под некоторым углом α, который пересечет полуокружность в некоторой точке М с координатами (х; у). Заметим, что каждому значению α соответствует своя точка М на единичной полуокружности:
Опустим из М перпендикуляр на ось Ох в некоторую точку D. Тогда, если угол α острый,получается прямоугольный треугольник МOD, длины сторон которого можно определить так:
Получается, что координаты точки M как раз и являются синусом и косинусом угла α. Логично считать, что если α – не острый угол, то всё равно координаты точки M будут определять синус и косинус угла α.
Видно, что при тупом угле α точка М оказывается левее оси Оу, поэтому ее абсцисса становится отрицательной. Получается, что косинус может принимать отрицательные значения.
С помощью единичной полуокружности несложно выяснить значения синусов и косинусов для углов 0°, 90° и 180°. Они соответствуют координатам точек А, В и С на рисунке:
Так как эти точки имеют координаты (1; 0), (0; 1) и (– 1; 0), то можно записать следующее:
Используя это определение, найдем тангенс для углов 0° и 180°:
Заметим, что для 90° использовать эту формулу не удастся, так как это приведет к делению на ноль. Поэтому считается, что для 90° значение тангенса не определено, то есть его нельзя вычислить.
Единичная полуокружность является дугой окружности, чей радиус равен единице, а центр находится в начале координат. То есть она может быть задана уравнением
Тем самым мы доказали, что это тождество, которое показывает связь тригонометрических функций друг с другом, выполняется не только для острых углов, но и для всех углов из диапазона 0° ≤α ≤ 180°.
Для вычисления значений тригонометрических углов тупых углов удобно пользоваться так называемыми формулами приведения. Их довольно много, и изучаются они в основном в 10 классе, нам же хватит всего двух формул:
Например, пусть надо вычислить синус для угла 120°. Для этого мы представляем угол в виде разности, где в качестве уменьшаемого используется угол 180°:
Убедиться в справедливости этих двух формул приведения можно с помощью такого построения:
Точка М соответствует углу α, а точка K – углу (180° – α). Опустим из этих точек перпендикуляры МС и KD. Так как
Получается, что ∆OKD и ∆ОМС – прямоугольные, у них есть одинаковый острый угол α, и их гипотенузы ОК и ОМ также одинаковы как радиусы одной окружности. Тогда эти треугольники равны, и поэтому
Знак минус в первом из этих равенств показывает, что точки K отрицательная абсцисса. В итоге мы доказали две формулы приведения.
Задание. Вычислите sin 150°.
Решение. Представим угол 150° в виде разности:
Вычисление координат точки
Пусть есть некоторая точка А(х;у) с неотрицательной ординатой. Соединим ее с началом координат прямой, которая образует угол α с осью Ох. Посмотрим, как связаны координаты А со значением α.
Пусть луч ОА пересечет единичную окружность в точке М. Опустим из М и А перпендикуляры на Ох, в точки Н и С соответственно. Теперь сравним ∆ОМН и ∆ОАС. Они прямоугольные, и у них есть одинаковый угол α, следовательно, они подобны. Коэффициент подобия можно найти, поделив ОА на ОМ, при этом учтем, что ОМ = 1, так как М лежит на единичной полуокружности:
Примечание. Данное доказательство не рассматривает частные случаи, когда точка А лежит непосредственно на осях Ох и Оу, и тогда подобные треугольники ∆ОМН и ∆ОАС построить не удается. Эти случаи можно рассмотреть отдельно и показать, что для них выведенные формулы также справедливы.
Задание. Точка А находится на расстоянии 3 от начала координат (точки О), причем луч ОА образует с осью Ох угол 135°. Найдите координаты точки А.
Решение. Используя выведенные формулы, мы можем записать:
Вычисление площади треугольника
В 8 классе мы уже познакомились с одной из формул для определения площади треугольника. Однако на практике возникают ситуации, когда удобнее использовать другие формулы, одну из которых мы сейчас выведем.
Пусть в произвольном ∆АВС известны две стороны, например, ВС (обозначим ее буквой а) и АС (ее обозначим как b). Также известна величина угла между ними:
Разместим этот треугольник в системе координат так, чтобы точка С совпала с началом координат, в находилась на оси Ох и имела положительную абсциссу, А располагалась в первой четверти:
В этом случае координаты А будут определяться формулами:
Найдите площадь ∆МКН.
Решение.
Задание. Используя калькулятор, найдите площадь треугольника со сторонами 14 и 7 см, если угол между ними равен 48°. Ответ округлите до десятых долей см2.
Решение. Подставляя числа в формулу, получаем:
Задание. Диагонали прямоугольника пересекаются под углом 30°, причем они равны 10 см. Вычислите площадь этого прямоугольника.
Решение.
Заметим, что диагонали прямоугольника при пересечении образуют не один, а два угла. Пусть в прямоугольнике АВСD диагонали пересекаются в точке О, и ∠АОВ = 30°. Тогда можно найти ∠ВОС, ведь он смежный с ∠АОВ:
Чтобы найти площадь прямоугольника, мы можем найти площади 4 треугольников, из которых он состоит, и потом сложить их. Для каждого из этих треугольников нам известны две стороны (они составляют по 5 см) и угол между ними:
Площадь параллелограмма
Из выведенной нами формулы площади треугольника вытекает и новая формула для площади параллелограмма. Пусть в параллелограмме нам известны смежные и угол между ними:
На рисунке смежные стороны АВ и AD обозначены буквами a и b, а угол между ними обозначен как α. Проведем диагональ BD. Площадь ∆ABD можно вычислить:
Задание. Стороны параллелограмма имеют длины 8 и 11 см, а один из углов параллелограмма равен 30°. Какова площадь этого параллелограмма?
Решение. Просто подставляем данные в формулу
Ответ: 44 см2.
Задание. Известна площадь параллелограмма MNEF, одна из его сторон и угол:
Так как противоположные стороны в параллелограмме одинаковы, то MF также имеет длину 5:
MF = NE = 5
Запишем формулу для площади и подставим в нее известные данные:
Теорема синусов
Пусть есть некоторый ∆АВС, в котором стороны мы обозначим буквами:
Посчитаем его площадь, используя стороны b и c:
Также площадь треугольника можно выразить через а и с:
Полученная формула показывает, что в каждом треугольнике отношение стороны к синусу противолежащего угла – это константа, не зависящая от выбора стороны. Другими словами,в любом треугольнике стороны пропорциональны синусам углов, которые лежат против них. Это утверждение именуют теоремой синусов.
В большинстве задач достаточно выведенной формулы
Однако можно дополнить теорему синусов, выяснив, чему же именно равны все эти три отношения. Для этого впишем треугольник в окружность, после чего построим диаметр BD:
Пусть радиус этой окружности равен R, тогда диаметр BD будет вдвое больше:
Теперь рассмотрим ∆ВСD. ∠С здесь – прямой, ведь это вписанный угол, опирающийся на полуокружность, то есть дугу в 180°. По определению синуса, которое мы давали ещё в 8 классе, можно записать:
C учетом уже выведенного равенства (6) теорема синусов примет вид:
С помощью теоремы синусов у любого треугольника можно найти две неизвестные стороны, если известны третья сторона и два угла. Процесс нахождение неизвестных элементов треугольника по уже известным элементам именуется решением треугольника. Всего у треугольника 6 элементов – три стороны и три угла. Для нахождения всех элементов в общем случае достаточно знать только 3 из них, а остальные можно найти, используя теорему синусов или иные геометрические соображения.
Задание. Решите треугольник, если одна из его сторон равна 14, а прилегающие к ней углы имеют величину 60° и 40°.
Решение.
Обозначим описанный в условии треугольник как ∆МВК. Пусть МК = 14, ∠М = 60° и∠К = 40°. Тогда нам надо найти ∠В, МВ и ВК. Проще всего найти∠В, ведь в любом треугольнике все углы в сумме дают 180°:
Обратите внимание, что так как углы 40° и 80° не являются табличными, то их значения надо вычислять на калькуляторе, а результат вычисления получается приближенным. В данном случае мы округлили его до сотых.
Осталось найти сторону ВК, это также делается с помощью теоремы синусов:
Задание. В ∆SRT∠S = 30°, ∠R = 45°, а высота RM, опущенная на сторону TS, имеет длину 6. Решите ∆SRT.
Решение.
Теперь надо найти какую-нибудь сторону в ∆SRT. Для этого рассмотрим ∆RMS. Он прямоугольный, а потому для него можно записать:
Для нахождения двух оставшихся сторон можно использовать теорему синусов:
Задание. В параллелограмме MNEF∠MFE составляет 120°, а диагональ NF равна 24 и образует со стороной NE угол 40°. Найдите длину МN и MF.
Решение.
Далее заметим, что ∠FNE и ∠MFN одинаковы, ведь они накрест лежащие при параллельных отрезках NE и MF и секущей NF:
Теперь в ∆MNF известна сторона NF и все три угла. Это позволяет с помощью теоремы синусов найти и остальные две стороны:
Задание. В окружности радиусом 5 построен вписанный угол величиной 30°. Определите длину хорды, на которую он опирается.
Решение.
Решение. По теореме синусов мы можем записать, что
Теорема косинусов
Теорема синусов помогает решать треугольники, в которых известны хотя бы два угла, а также одна из сторон. Но что делать в случае, если наоборот, даны две стороны, но только один угол? Здесь необходима другая теорема, которую именуют теоремой косинусов.
Возьмем произвольный треугольник со сторонами а, b и c и поместим его на координатной плоскости так, как показано на рисунке:
Обозначим угол между а и b как α. Тогда координаты А будут определяться так:
Точка В в свою очередь будет иметь координаты (а; 0). Зная координаты А и В, мы можем найти квадрат расстояния между ними, то есть величину с2:
Полученное соотношение как раз и является теоремой косинусов.
Данная формула позволяет находить третью сторону треугольника, если известны две другие, а также угол между ними. Однако ее можно переписать так, чтобы с ее помощью можно было вычислять косинус угла, зная все три стороны треугольника:
Это позволяет решать те треугольники, для которых теоремы синусов недостаточно.
Легко заметить, что теорема косинусов похожа на теорему Пифагора. Более того, если угол α = 90°, то формула теоремы косинусов превращается в теорему Пифагора, которая, таким образом, является ее частным случаем. По этой причине иногда теорему косинусов именуют обобщенной теоремой Пифагора.
Задание. Решите ∆MNE, если
Решение. По теореме косинусов находим сторону NE:
Осталось найти ∠N и ∠Е. Для этого запишем теорему косинусов так, чтобы в ней фигурировал ∠N:
Мы нашли cosN. Чтобы вычислить сам ∠N, следует использовать особую функцию на калькуляторе или компьютере, которая называется арккосинусом и является обратной для операции «извлечение косинуса». Более подробно она изучается уже в 10 классе. С ее помощью мы узнаем, что
Обратите внимание, что обычно калькулятор выдает результат, показывая десятые и сотые доли градусы, не переводя их в минуты и секунды. Можно оставить ответ и в таком виде. При желании перевести сотые доли в минуты следует дробную часть умножить на 60:
Задание. На различных сторонах угла∠А, равного 45°, отложены точки В и С так что
Задание. Решите треугольник, если его стороны имеют длину 14, 18 и 20.
Решение.
Решение. Здесь надо дважды применить теорему косинусов, чтобы найти какие-нибудь два угла в ∆АВС:
∠C также можно найти через теорему косинусов, но проще просто вычесть из 180° два уже вычисленных угла:
Во всех рассмотренных задачах на решение треугольника мы знали три элемента треугольника и по ним однозначно вычисляли три других элемента. Однако иногда это невозможно. Так, если в задаче помимо двух сторон указан угол, который НЕ лежит между ними, то в итоге задача может иметь два решения.
Задание. В ∆MNE ∠M составляет 60°, а стороны МЕ и NE имеют длины 10 и 9 соответственно. Какова длина MN?
Решение. Теорему синусов здесь применить не удастся, так как для нее необходимо знать хотя бы два угла. Поэтому остается только записать теорему косинусов так, чтобы в ней использовался ∠M:
Получили квадратное уравнение, решить его можно через дискриминант:
В рамках данного урока мы узнали про теоремы синусов и косинусов и научились использовать их для решения треугольников. Также мы познакомились с новыми формулами для вычисления площадей треугольника и параллелограмма.
В данной публикации мы рассмотрим, что такое тупой угол, а также разберем примеры задач, в которых он участвует.
- Определение тупого угла
- Примеры задач
Определение тупого угла
Угол является тупым, если его градусная мера находится между 90 и 180 градусами.
∠α – тупой, если 90° < α < 180°.
То есть тупой угол больше прямого (90°), но меньше развернутого (180°).
Примеры задач
Задание 1
Дан треугольник, у которого известны два угла – 34° и 27°. Найдем третий и определим, является ли он тупым.
Решение:
Примем неизвестную величину за “α“. Как мы знаем, сумма углов треугольника равняется 180 градусам, значит:
α = 180° – 34° – 27° = 119°.
Следовательно, угол α – тупой.
Задание 2
Дан ромб, площадь (S) которого составляет 12,5 см2, а длина (a) стороны – 5 см. Найдем его углы и определим, являются ли они тупыми.
Решение:
Синус угла ромба (α) можно найти следующим образом (выведено из формулы расчета площади фигуры):
Следовательно, α = 30° (arcsin 0,5), является острым.
Как мы знаем, сумма соседних углов ромба составляет 180 градусов, значит второй угол β равен 150° (180° – 30°), и он является тупым.
Содержание:
Пусть в прямоугольном треугольнике гипотенуза равна с, один из острых углов равен
Определения синуса, косинуса, тангенса и котангенса острого угла
Определение. Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
Определение. Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему:
Пример:
Угол К в равен 90° (рис. 7).
Тогда:
Для угла N катет МК — противолежащий, а катет NK — прилежащий (см. рис. 7, с. 11). Поэтому согласно определениям получаем:
Можно заметить, что синус острого угла а прямоугольного треугольника и косинус другого острого угла этого треугольника, содержащего равны, т. е. . Так же Например,
А теперь выполните Тест 1 и Тест 2.
Значение синуса острого угла, а также косинуса, тангенса и котангенса зависит только от величины угла и не зависит от размеров и расположения прямоугольного треугольника с указанным острым углом.
Это следует из того, что прямоугольные треугольники с равным острым углом подобны, а у подобных треугольников соответствующие стороны пропорциональны. Так, в (рис. 8)
Значения синуса, косинуса, тангенса и котангенса углов 30°, 45°, 60°
Рассмотрим прямоугольный треугольник АВС, у которого (рис. 9). Так как катет, лежащий против угла в 30°, равен половине гипотенузы, то АВ = 2. По теореме Пифагора
Тогда:
Так как (см. рис. 9), то
Рассмотрим равнобедренный прямоугольный треугольник АВС, у которого (рис. 10). По теореме Пифагора
Тогда:
Составим таблицу значений синусов, косинусов, тангенсов и котангенсов для углов 30°, 45° и 60°.
Нахождение значений тригонометрических функций
Значения синуса, косинуса, тангенса и котангенса данного угла можно приближенно находить при помощи специальных тригонометрических таблиц* либо калькулятора.
Например, с помощью калькулятора, компьютера или мобильного телефона (смартфона) находим: sin45° = 0,707106… . Приближенное значение тригонометрических функций при решении задач будем брать с округлением до четырех знаков после запятой: sin45° = 0,7071.
Итак, точное значение sin 45° равно . а приближенное — 0,7071.
Таблицы и калькулятор также позволяют находить величину острого угла по значению синуса, косинуса или тангенса. Например, найдем острый угол, синус которого равен 0,4175. Выбрав на компьютере вид калькулятора «инженерный», далее «градусы», нужно ввести последовательно . На экране появится ответ: 24,676… . Округлим его до десятых долей градуса и получим 24,7°. Учитывая, что 1° содержит 60 угловых минут, получим: 0,7° = 0,7 • 60′ = 42′. Искомый угол, синус которого 0,4175, приближенно равен 24°42′.
А теперь выполните Тест 3.
Тригонометрические функции острого угла
Синус, косинус, тангенс и котангенс являются функциями угла, так как каждому острому углу соответствует единственное значение синуса, косинуса, тангенса и котангенса. Они называются тригонометрическими функциями и записываются так:
Поскольку в прямоугольном треугольнике катет меньше гипотенузы, то для острого угла справедливо: следовательно синус и косинус острого угла положительны и меньше 1.
Тангенс и котангенс острого угла могут принимать любое положительное значение. Например, tg85° ~ 11,4.
С увеличением острого угла синус и тангенс возрастают, а косинус и котангенс убывают (рис. 11), то есть если то
но (cm. c. 28, задачу 2*). Это гарантирует, что синус (косинус, тангенс и котангенс) острого угла определяют этот угол однозначно.
Пример №1
В прямоугольном треугольнике АВС, где , катет ВС равен 8 см, гипотенуза АВ равна 17 см. Найти косинус угла А (рис. 12).
Решение:
По теореме Пифагора найдем катет (см). Косинус острого угла прямоугольного треугольника равен от ношению прилежащего катета к гипотенузе. Тогда
Ответ:
Пример №2
Гипотенуза АВ прямоугольного треугольника АВС равна 20 см, (рис. 13). Найти площадь треугольника.
Решение:
Так как Обозначим По теореме Пифагора Тогда ВС = 4 • 4 = 16(см),
Ответ: 96
Пример №3
При помощи циркуля и линейки построить угол, синус которого равен
Решение:
Идея решения. Построим прямоугольный треугольник с катетом, равным 4 единицы, и гипотенузой, равной 5 единиц. Синус угла, противолежащего указанному катету, будет равен
Построение. 1) Строим прямой угол С (рис. 14), для чего проводим произвольную прямую отмечаем на ней точку С и строим прямую проходящую через точку С перпендикулярно прямой (вспомните по рисунку алгоритм построения). 2) На прямой от точки С откладываем последовательно четыре равных отрезка. Получаем отрезок ВС, который содержит 4 единицы. 3) Строим окружность с центром в точке В радиусом, равным пяти единицам. В пересечении этой окружности и прямой получаем точку А.
Угол ВАС — искомый.
Доказательство:
Из находим
Алгоритм решения прямоугольного треугольника
Под решением прямоугольного треугольника понимают нахождение его неизвестных сторон и углов по некоторым элементам, определяющим этот треугольник. Рассмотрим три задачи:
- нахождение катета по гипотенузе и острому углу;
- нахождение катета по другому катету и острому углу;
- нахождение гипотенузы по катету и острому углу.
Пример №4
Гипотенуза прямоугольного треугольника равна 6, острый угол равен 32° (рис. 23). Найти катет, прилежащий к данному углу. Ответ округлить до 0,1.
Решение:
Примем длину искомого катета за
Ответ: 5,1.
Пример №5
Катет прямоугольного треугольника равен 2,5, а прилежащий к нему угол равен 68° (рис. 24). Найти другой катет. Ответ округлить до 0,1.
Решение:
Примем длину неизвестного катета за
Ответ: 6,2.
Пример №6
Катет прямоугольного треугольника равен 4,2, противолежащий ему угол равен 29° (рис. 25). Найти гипотенузу треугольника. Ответ округлить до 0,1.
Решение:
Примем длину гипотенузы за
Ответ: 8,7.
Правила решения прямоугольного треугольника
Преобразуем формулы синуса, косинуса, тангенса и котангенса и запишем результаты для треугольника на рисунке 26:
Удобно пользоваться следующими правилами:
- Катет равен гипотенузе, умноженной на синус противолежащего или на косинус прилежащего угла (рис. 27, а).
- Гипотенуза равна катету, деленному на синус противолежащего или на косинус прилежащего угла (рис. 27, б).
- Катет равен другому катету, умноженному на тангенс противолежащего или на котангенс прилежащего к первому катету угла (рис. 27, в).
Пример №7
В известно: (рис. 28).
Полезно запомнить!
Если в прямоугольном треугольнике с углом 30° (или 60°) дан меньший катет а, то больший
катет (рис. 29, а). А если дан больший катет то меньший катет (рис. 29, б).
Если в прямоугольном треугольнике с углом 45° дан катет а,
то гипотенуза (рис. 30, а), а если дана гипотенуза с, то катет (рис. 30, б).
Пример №8
В прямоугольном треугольнике АВС известно: — высота, проведенная к гипотенузе (рис. 31). Найти проекцию НВ катета ВС на гипотенузу.
Решение:
Заметим, что так как эти углы дополняют Из Из
Ответ:
Пример №9
В равнобедренной трапеции ABCD меньшее основание ВС равно 7, боковая сторона АВ равна 10, sinA = 0,8. Найти площадь трапеции.
Решение:
Площадь трапеции находится по формуле Найдем большее основание и высоту трапеции. Проведем в трапеции высоты ВН и СК (рис. 32). Так как НВСК — прямоугольник (все углы — прямые), то НК = ВС = 7. Из равенства прямоугольных треугольников АНВ и DKC (по катету и гипотенузе) АН = KD. Из прямоугольного треугольника АНВ находим: откуда АН = 6 (пифагорова тройка 6, 8, 10). Тогда
Ответ: 104.
Тригонометрические формулы
Используя формулы где и — катеты, с — гипотенуза прямоугольного треугольника, можно получить формулы, связывающие значения тригонометрических функций острого угла.
1. Основное тригонометрическое тождество
Доказательство:
По теореме Пифагора
Тогда
Следствие:
Так как синус и косинус острого угла а положительны, то
2. Выражение тангенса и котангенса через синус и косинус
Доказательство:
a) б)
Следствие:
Проверим справедливость основного тригонометрического тождества.
Верно ли, например, что Да, это верно, так как
3. Основная задача
Дано: — острый угол.
Найти:
Решение:
Способ 1. Используем основное тригонометрическое тождество: Так как косинус острого угла больше нуля, то откуда
Способ 2. Изобразим прямоугольный треугольник с катетом 5 и гипотенузой 13 (рис. 41). Синус угла, противолежащего данному катету, равен Поэтому этот угол равен По теореме Пифагора другой катет равен Тогда
Способ 3. Пусть катет, противолежащий углу равен 5х, тогда гипотенуза равна По теореме Пифагора прилежащий катет равен Отсюда
Ответ:
Пример №10
В параллелограмме ABCD (рис. 42) сторона ВС = 50 см, высота ВК = 30 см, . Найти периметр параллелограмма.
Решение:
Из треугольника АВК находим: Из основного тригонометрического тождества следует: (так как угол А — острый, то sinA > 0). Тогда (см )
Ответ: 168 см.
Пример №11
Доказать, что при увеличении угла от 0° до 90°:
а) синус угла увеличивается от 0 до 1, а косинус — уменьшается от 1 до 0;
б) тангенс угла увеличивается от О до бесконечности.
Решение:
а) Рассмотрим прямоугольные треугольники с гипотенузой, равной 1. Для этого опишем радиусом ОМ, равным 1, четверть окружности — дугу МК (рис. 43). Пусть Опустим из точки А перпендикуляр АВ на ОМ. Тогда При повороте радиуса ОМ вокруг центра О против часовой стрелки, начиная от ОМ и заканчивая ОК, угол будет увеличиваться от 0° до 90° (образуя указанные на чертеже углы: и т. д.). Величина катета АВ, противолежащего углу будет увеличиваться от 0 до 1. А величина катета ОВ, наоборот, будет уменьшаться от 1 до 0. Таким образом, при увеличении угла от 0° до 90° его синус увеличивается от 0 до 1, а косинус уменьшается от 1 до 0.
Из формулы также следует (учитывая положительность синуса и косинуса острого угла), что с увеличением синуса от 0 до 1 косинус уменьшается от 1 до 0.
б) Для определения изменения тангенса угла удобно рассматривать треугольники, у которых прилежащий катет не изменяется и остается равным 1, а противолежащий катет изменяется. Рассмотрим прямоугольный треугольник АОМ, у которого отрезок ОМ = 1, (рис. 44). По определению Угол станем изменять, перемещая точку А по прямой MN, начиная от точки М и проходя через точки и т. д. При этом угол и его тангенс начнут возрастать. Таким образом, когда угол при движении точки А вверх будет стремиться к углу КОМ, равному 90°, то тангенс этого угла будет неограниченно возрастать.
К такому же выводу можно прийти, рассматривая формулу При увеличении угла от 0° до 90° числитель дроби будет увеличиваться от 0 до 1, а знаменатель — уменьшаться от 1 до 0, значит, вся дробь будет увеличиваться от 0 до бесконечности. Таким образом, при увеличении угла от 0° до 90° его тангенс увеличивается от 0 до бесконечности.
Пример №12
В основании прямоугольного параллелепипеда лежит квадрат, диагональ которого см. Диагональ боковой грани составляет с ребром основания угол (рис. 46). Найдите объем параллелепипеда.
Решение:
Объем прямоугольного параллелепипеда находится по формуле , где а, b и с — его измерения. Так как ABCD — квадрат, то . Из прямоугольного треугольника находим . Искомый объем .
Ответ: 576 см3.
Синус, косинус, тангенс и котангенс тупого угла
1. Определение значений для любого угла а от 0° до 180°
Ранее мы дали определения синуса, косинуса, тангенса и котангенса острого угла через отношение сторон прямоугольного треугольника. Сделаем теперь это для углов от 0° до 180°.
Рассмотрим полуокружность с центром в начале координат и радиусом, равным 1 (рис. 48). От положительной полуоси против часовой стрелки отложим острый угол сторона которого пересекает полуокружность в точке . Из прямоугольного треугольника OMN, где ОМ = 1, ON = х, MN = у, получаем: то есть синус, косинус,
тангенс и котангенс острого угла а выражаются через координаты точки Точно так же определяются значения и для любого угла а из промежутка Таким образом, синусом угла а называется ордината косинусом — абсцисса тангенсом — отношение ординаты к абсциссе а котангенсом — отношение абсциссы к ординате точки М единичной полуокружности.
Например, для тупого (рис. 48), где получим:
Для любого положения точки на единичной полуокружности верно равенство (докажите самостоятельно). Поэтому для углов где верно основное тригонометрическое тождество
Также верны тождества:
Нахождение синуса, косинуса, тангенса и котангенса тупых углов
Пусть откуда (рис. 49). Так как по гипотенузе и острому углу, то Точки имеют координаты: и Тогда то есть для углов от 0° до 180° справедливы равенства:
Можно пользоваться следующим правилом:
Синус тупого угла равен синусу смежного с ним острого угла.
Косинус тупого угла равен косинусу смежного с ним острого угла, взятому со знаком «минус».
Пример 1.
Разделив почленно равенство на равенство а затем наоборот, получим равенства:
Можно пользоваться следующим правилом:
Тангенс (котангенс) тупого угла равен тангенсу (котангенсу) смежного с ним острого угла, взятому со знаком «минус».
Пример 2.
Указанные формулы и правила позволяют находить значения тригонометрических функций тупого угла через значения тригонометрических функций острого угла, который дополняет данный тупой угол до 180°: синусы углов, дополняющих друг друга до 180°, равны между собой, а косинусы, тангенсы и котангенсы — противоположны. Так как синус, косинус, тангенс и котангенс острого угла положительные, то синус тупого угла положительный, а косинус, тангенс и котангенс — отрицательные.
Значения тригонометрических функций для углов 0°, 90°, 180°
Если луч ОМ совпадет с лучом (рис. 50), то будем считать, что Тогда:
а) значение не определено, так как деление на нуль невозможно;
б) значение не определено, так как деление на нуль невозможно; в) значение не определено, так как деление на нуль невозможно.
Поскольку проекции радиуса, равного 1, на оси координат меньше либо равны 1, то для углов справедливы неравенства:
Пример №13
Найти если – тупой угол.
Решение:
Способ 1. Так как то Поскольку угол — тупой, то его косинус отрицательный. Поэтому Тогда
Способ 2. Синус острого угла смежного с данным тупым углом равен также Построим прямоугольный треугольник со сторонами 3, 4 и 5 (рис. 52). В нем Так как косинусы смежных углов противоположны, то . Аналогично,
Ответ:
Формулы площади треугольника и площади параллелограмма
Тригонометрические функции позволяют получить формулы для вычисления площади треугольника и площади параллелограмма. Сформулируем их в виде двух теорем.
Теорема. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними, т. е.
Доказательство:
Пусть в треугольнике — острый, — высота (рис. 56, а).
Из прямоугольного треугольника Тогда
Если угол тупой (рис. 56, то — острый. Из прямоугольного треугольника АКС следует, что Так как то
Если то — прямоугольный с катетами Учитывая, что получим:
Теорема доказана.
Теорема. Площадь параллелограмма равна произведению двух его соседних сторон на синус угла между ними, т. е.
Используя рисунок 57, докажите эту теорему самостоятельно.
Замечание. Если то параллелограмм является прямоугольником. Его площадь так как Таким образом, формула площади прямоугольника — частный случай формулы площади параллелограмма
Известно, что слово «синус» в переводе с латинского имеет множество значений: изгиб, дуга, пазуха, бухта, впадина, залив, хорда, забота и нежная любовь. При помощи Интернета выясните:
а) какое из значений подходит к математическому понятию «синуса»;
б) какие из значений относятся к медицине и почему насморк врачи иногда называют синуситом.
Пример №14
Дан параллелограмм ABCD, площадь которого 40 см2, а периметр 36 см. Найти стороны параллелограмма, если его угол D равен 150° (рис. 58).
Решение:
Полупериметр параллелограмма равен 18 см. Если см, то см.
Тогда
Так как то
По условию Составим и решим уравнение: По теореме Виета (обратной) — корни.
Если CD = 8 см, то AD = 10 см, если CD = 10 см, то AD = 8 см.
Ответ: 8 см, 10 см.
Пример №15
Доказать, что площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними, т.е.
Доказательство:
Пусть диагонали и четырехугольника ABCD (рис. 59) пересекаются в точке О, Докажем, что
Обозначим Заметим, что как вертикальные, по свойству смежных углов. Поэтому По формуле площади треугольника у получим:
Утверждение доказано
Среднее пропорциональное (среднее геометрическое) в прямоугольном треугольнике
Если для положительных чисел выполняется пропорция то число называется средним пропорциональным чисел а и с (между числами а и с). Из указанной пропорции откуда В такой форме записи число еще называют средним геометрическим чисел а и с.
Пример №16
Число 4 является средним пропорциональным, или средним геометрическим чисел 2 и 8, так как = или
В прямоугольном треугольнике АВС, где , проведем высоту СК (рис. 61). Отрезок АК является проекцией катета АС на гипотенузу, а отрезок ВК — проекцией катета ВС на гипотенузу. Катеты, гипотенуза, высота и проекции катетов на гипотенузу связаны отношениями, которые мы сформулируем в виде следующей теоремы.
Теорема (о среднем пропорциональном в прямоугольном треугольнике).
а) Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. (см. рис. 61).
б) Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу, т. е.
Доказательство:
а)3аметим, что если то (эти углы дополняют до 90°) (рис. 62). Из из Отсюда
б) Из , из откуда
Аналогично доказывается, что Теорема доказана.
Обозначив катеты гипотенузу с, высоту проекции катетов на гипотенузу (рис. 63), получим следующие формулы:
Пример №17
Найти площадь прямоугольного треугольника, если проекции катетов на гипотенузу равны 2 см и 8 см.
Решение:
Пусть СН — высота прямоугольного треугольника АВС АН = 2 см — проекция катета АС на гипотенузу, НВ = 8 см —
проекция катета СВ на гипотенузу (рис. 64). Так как высота СН есть среднее геометрическое между проекциями катетов на гипотенузу, то
Ответ: 20 см2.
Пример №18
В прямоугольном треугольнике АВС из вершины прямого угла С проведена высота см, АК = 12 см (рис. 65). Найти гипотенузу АВ.
Решение:
Пусть см, тогда см.
Катет есть среднее пропорциональное между гипотенузой и проекцией катета на гипотенузу. Поэтому т. е. По теореме Виета (обратной) По смыслу задачи Значит, КВ = 3 см, АВ = 15 см.
Ответ: 15 см.
Пример №19
При помощи циркуля и линейки построить отрезок, равный среднему геометрическому отрезков т и п .
Решение:
Пусть даны отрезки т и п . Необходимо построить отрезок
Построение.
1) На произвольной прямой откладываем данные отрезки:
2) На отрезке АВ как на диаметре строим полуокружность, для чего находим середину О отрезка АВ, откуда ОА — радиус данной окружности.
3) Из точки К восстанавливаем перпендикуляр к прямой АВ до пересечения с полуокружностью в точке М (рис. 66).
Отрезок — среднее пропорциональное отрезков
Доказательство:
— прямой как вписанный угол, опирающийся на диаметр. В прямоугольном треугольнике АМВ высота МК является средним пропорциональным проекций катетов AM и МВ на гипотенузу
Повторение*
В 8-м классе мы доказали следующую теорему:
Теорема (о касательной и секущей). Если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной, соединяющего данную точку и точку касания, равен произведению отрезков се кущей, соединяющих данную точку и точки пересечения секущей с окружностью, т. е. (рис. 70).
Как видим, отрезок является средним пропорциональным между отрезками секущей. Глядя на рисунок 70, вспомните идею доказательства теоремы.
Теорема о площадях треугольников с общим (равным) углом
Площади треугольников, имеющих общий угол (или равный угол), относятся как произведения сторон, заключающих этот угол (рис. 75),
т.е.
Доказательство:
Следствие: Верно:
Пример №20
Площадь треугольника АВС равна 16, АК : КС = 3 :1 , AM : МВ = 1 :2 (рис. 76). Найти
Решение:
Способ 1. По следствию из теоремы о площадях треугольников с общим углом получаем:
Способ 2.
Ответ: 4.
Теорема Менелая
Если дан треугольник АВС и прямая пересекает стороны ВС, АВ и продолжение стороны АС в точках соответственно (рис. 79), то
Доказательство:
Проведем отрезок Так как и (по двум углам), то и Перемножив почленно указанные пропорции, получим
откуда
Замечание. При составлении произведения трех отношений теоремы Менелая можно начинать с любой из шести точек (трех вершин треугольника и трех точек пересечения прямой с прямыми, содержащими стороны треугольника) и двигаться по контуру либо по часовой, либо против часовой стрелки. При этом вершины треугольника и точки пересечения должны чередоваться.
Пример №21
В треугольнике АВС на сторонах АВ и АС взяты соответственно точки М и К, такие, что AM : МВ = 2 :1 , АК : КС = 3 :2 . Отрезки СМ и ВК пересекаются в точке О. Найти ВО : ОК.
Решение:
Способ 1 (теорема Менелая). Рассмотрим (рис. 80). Прямая пересекает две его стороны АВ и ВК соответственно в точках М и О и продолжение третьей стороны АК в точке С. По теореме Менелая откуда
Способ 2 (теорема Фалеса обобщенная). Проведем (рис. 81). По теореме Фалеса Тогда АЕ — три части, ЕМ — две части, AM — пять частей, откуда
Но Отсюда Для
по теореме Фалеса
Ответ:
Пример №22
Дан равнобедренный треугольник АВС (АВ = ВС), площадь которого равна 80. Точка К делит высоту ВН в отношении 1 : 3, считая от основания. Прямая АК пересекает сторону ВС в точке М. Найти площадь четырехугольника НКМС (рис. 82).
Решение:
1) (ВН — высота и медиана треугольника АВС).
2) Применим теорему Менелая к треугольнику НВС.
Прямая AM пересекает его стороны ВН и ВС соответственно в точках К и М и продолжение стороны НС в точке Тогда Откуда
3)
4)
Ответ: 22.
Неравенство Коши
Среднее арифметическое двух неотрицательных чисел больше либо равно их среднему геометрическому, т. е.
Например, Действительно,
Алгебраическое доказательство указанного неравенства таково. Рассмотрим разность левой и правой частей неравенства Получим: Так как при всех допустимых , то Следовательно, неравенство верно.
Неравенство где называется неравенством Коши по имени известного французского математика и часто используется при решении олимпиадных задач.
Приведем геометрическое доказательство указанного неравенства. Изобразим окружность с диаметром АВ и центром в точке О (рис. 87). На диаметре возьмем точку К (для определенности левее центра О). Пусть Из точки К восстановим перпендикуляр КС, где точка С принадлежит окружности. Проведем радиус ОС. Так как вписанный угол, опирающийся на диаметр, прямой, то прямоугольный, СК — его высота, проведенная к гипотенузе. По теореме о среднем пропорциональном в прямоугольном треугольнике . Но радиус ОС равен половине диаметра АВ, т. е. . В катет меньше гипотенузы, т. е. так как катет меньше гипотенузы. Отсюда
Равенство левой и правой частей неравенства достигается, когда точка К совпадает с точкой О и становится равнобедренным и прямоугольным. Поэтому справедливо неравенство т. е
ЗАПОМИНАЕМ
2. Значения тригонометрических функций углов 30 45°, 60°:
3. Тригонометрические формулы (тождества):
Примеры:
4. Формулы площади треугольника и параллелограмма:
5. Среднее пропорциональное в прямоугольном треугольнике:
- Сумма углов треугольника
- Внешний угол треугольника
- Свойство точек биссектрисы угла
- Свойство катета прямоугольного треугольника, лежащего против угла в 30°
- Угол – определение, виды, как обозначают с примерами
- Перпендикулярные прямые в геометрии
- Признаки равенства треугольников
- Признаки равенства прямоугольных треугольников
Содержание:
- Определение тупого угла
- Примеры решения задач с тупыми углами
Определение тупого угла
Определение
Угол называется тупым, если его
градусная мера лежит в пределах от
$90^{circ}$ до
$180^{circ}$ (рис. 1).
$angle alpha$ – тупой, если
$90^{circ} lt angle alpha < 180^{circ}$.
То есть тупой угол больше
прямого и меньше, чем
развернутый.
Примеры решения задач с тупыми углами
Пример
Задание. Найти тупой угол параллелограмма
$ABCD$, если известно, что его
острый угол равен
$30^{circ}$.
Решение. Известно, что сумма углов параллелограмма, прилежащих к одной стороне, равна
$180^{circ}$. Тогда искомый тупой угол равен
$$angle alpha=180^{circ}-30^{circ}=150^{circ}$$
Ответ. $angle alpha=150^{circ}$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Два угла треугольника равны
$30^{circ}$ и
$40^{circ}$. Найти третий угол треугольника, определить
тупым или острым он является.
Решение. Пусть $alpha$ – искомый угол.
Согласно теореме про сумму углов треугольника имеем, что
$$angle alpha+30^{circ}+40^{circ}=180^{circ}$$
Отсюда получаем
$$angle alpha=110^{circ}$$
Так как $90^{circ} < angle alpha=110^{circ} < 180^{circ}$, то он является тупым.
Ответ. $angle alpha=110^{circ}$
Читать дальше: что такое плоский угол.
Для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.
Теорема синусов
Стороны треугольника пропорциональны синусам противолежащих углов:
asinA=bsinB=csinC
(в решении задачи одновременно пишутся две части, они образуют пропорцию).
Теорема синусов используется для вычисления:
-
неизвестных сторон треугольника, если даны два угла и одна сторона;
-
неизвестных углов треугольника, если даны две стороны и один прилежащий угол.
Так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле приведения
sin180°−α=sinα
.
Наиболее часто используемые тупые углы:
sin120°=sin180°−60°=sin60°=32;sin150°=sin180°−30°=sin30°=12;sin135°=sin180°−45°=sin45°=22.
Радиус описанной окружности
, где (R) — радиус описанной окружности.
Выразив радиус, получаем
R=a2sinA
, или
R=b2sinB
, или
R=c2sinC
.
Для вычисления элементов прямоугольного треугольника достаточно (2) данных величин (две стороны или сторона и угол).
Для вычисления элементов произвольного треугольника необходимо хотя бы (3) данных величины.
Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
Также теорема исполняется для любой стороны треугольника:
Теорема косинусов используется для вычисления:
-
неизвестной стороны треугольника, если даны две стороны и угол между ними;
-
вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.
Значение косинуса тупого угла находится по формуле приведения
cos180°−α=−cosα
.
Наиболее часто используемые тупые углы:
cos120°=cos180°−60°=−cos60°=−12;cos150°=cos180°−30°=−cos30°=−32;cos135°=cos180°−45°=−cos45°=−22.
Если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.
Источники:
Рис. 1-3. Треугольник, окружность, © ЯКласс.