Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 января 2022 года; проверки требуют 7 правок.
Молекулы имеют внутреннюю структуру, образованную атомами, которые могут совершать колебания внутри молекул. Кинетическая энергия, запасённая в этих колебаниях, отвечает не только за температуру вещества, но и за его теплоёмкость
Уде́льная теплоёмкость — это отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу[1].
В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К)[2]. Иногда используются и внесистемные единицы: калория/(кг·°C) и т. д.
Удельная теплоёмкость обычно обозначается буквами c или С, часто с индексами.
На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C. Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.
Формула расчёта удельной теплоёмкости:
где
- c — удельная теплоёмкость(от лат. capacite – емкость, вместимость),
- Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),
- m — масса нагреваемого (охлаждающегося) вещества,
- ΔT — разность конечной и начальной температур вещества.
Удельная теплоёмкость зависит от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) и :
Значения удельной теплоёмкости некоторых веществ[править | править код]
Приведены значения удельной теплоёмкости при постоянном давлении (Cp).
Вещество | Агрегатное состояние |
Удельная теплоёмкость, кДж/(кг·K) |
---|---|---|
Водород | газ | 14,304[3] |
Аммиак | газ | 4,359—5,475 |
Гелий | газ | 5,193[3] |
Вода (300 К, 27 °C) | жидкость | 4,1806[4] |
Литий | твёрдое тело | 3,582[3] |
Этанол | жидкость | 2,438[5] |
Лёд (273 К, 0 °C) | твёрдое тело | 2,11[6] |
Водяной пар (373 К, 100 °C) | газ | 2,0784[4] |
Нефтяные масла | жидкость | 1,670—2,010 |
Бериллий | твёрдое тело | 1,825[3] |
Азот | газ | 1,040[3] |
Воздух (100 % влажность) | газ | 1,030 |
Воздух (сухой, 300 К, 27 °C) | газ | 1,007[7] |
Кислород (O2) | газ | 0,918[3] |
Алюминий | твёрдое тело | 0,897[3] |
Графит | твёрдое тело | 0,709[3] |
Стекло кварцевое | твёрдое тело | 0,703 |
Чугун | твёрдое тело | 0,554[8] |
Алмаз | твёрдое тело | 0,502 |
Сталь | твёрдое тело | 0,468[8] |
Железо | твёрдое тело | 0,449[3] |
Медь | твёрдое тело | 0,385[3] |
Латунь | твёрдое тело | |
Молибден | твёрдое тело | 0,251[3] |
Олово (белое) | твёрдое тело | 0,227[3] |
Ртуть | жидкость | 0,140[3] |
Вольфрам | твёрдое тело | 0,132[3] |
Свинец | твёрдое тело | 0,130[3] |
Золото | твёрдое тело | 0,129[3] |
Значения приведены для стандартных условий (T = +25 °C, P = 100 кПа), если это не оговорено особо. |
Вещество | Удельная теплоёмкость кДж/(кг·K) |
---|---|
Древесина | 1,700 |
Гипс | 1,090 |
Асфальт | 0,920 |
Талькохлорит | 0,980 |
Бетон | 0,880 |
Мрамор, слюда | 0,880 |
Стекло оконное | 0,840 |
Кирпич керамический красный | 0,840—0,880[10] |
Кирпич силикатный | 0,750—0,840[10] |
Песок | 0,835 |
Почва | 0,800 |
Гранит | 0,790 |
Стекло кронглас | 0,670 |
Стекло флинт | 0,503 |
Сталь | 0,470 |
См. также[править | править код]
- Теплоёмкость
- Объёмная теплоёмкость
- Молярная теплоёмкость
- Теплоёмкость идеального газа
Примечания[править | править код]
- ↑ Для неоднородного (по химическому составу) образца удельная теплоемкость является дифференциальной характеристикой , меняющейся от точки к точке. Зависит она в принципе и от температуры (хотя во многих случаях изменяется достаточно слабо при достаточно больших изменениях температуры), при этом строго говоря определяется — вслед за теплоёмкостью — как дифференциальная величина и по температурной оси, то есть строго говоря следует рассматривать изменение температуры в определении удельной теплоёмкости не на один градус (тем более не на какую-то более крупную единицу температуры), а на малое с соответствующим количеством переданной теплоты . (См. далее основной текст.)
- ↑ Кельвины (К) здесь можно заменять на градусы Цельсия (°C), поскольку эти температурные шкалы (абсолютная и шкала Цельсия) отличаются друг от друга лишь начальной точкой, но не величиной единицы измерения.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 4-135. — 2828 p. — ISBN 1420090844.
- ↑ 1 2 CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-2. — 2828 p. — ISBN 1420090844.
- ↑ CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 15-17. — 2828 p. — ISBN 1420090844.
- ↑ CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-12. — 2828 p. — ISBN 1420090844.
- ↑ CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — P. 6-17. — 2828 p. — ISBN 1420090844.
- ↑ 1 2 3 Paul Evans. Specific heat capacity of materials (англ.). The Engineering Mindset (16 октября 2016). Дата обращения: 14 июля 2019. Архивировано 14 июля 2019 года.
- ↑ Spezifische_Wärmekapazität. www.chemie.de. Дата обращения: 29 июня 2021. Архивировано 29 июня 2021 года.
- ↑ 1 2 Плотность и удельная теплоемкость кирпича: таблица значений Архивная копия от 22 марта 2019 на Wayback Machine.
Литература[править | править код]
- Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
- Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика.
- Лифшиц E. М. Теплоёмкость // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: «Советская энциклопедия», 1998. — Т. 2.
Загрузить PDF
Загрузить PDF
Удельная теплоемкость — это энергия, необходимая для того, чтобы поднять температуру одного грамма чистого вещества на один градус Цельсия. Удельная теплоемкость вещества зависит от его химического состава и агрегатного состояния. Открытие удельной теплоемкости подстегнуло развитие термодинамики, науки о переходах энергии, касающейся теплоты и работы системы. Удельная теплоемкость и термодинамика широко используются в химии, ядерной инженерии и аэродинамики, а также в повседневной жизни для радиаторов и систем охлаждения автомобилей. Если вы хотите узнать, как вычислить удельную теплоемкость, следуйте приведенной ниже инструкции.
-
1
Ознакомьтесь с величинами, которые используются для расчета удельной теплоемкости. Очень важно знать величины, которые используются для расчета удельной теплоемкости. Вы должны знать, как выглядит символ каждой величины, и понимать, что он означает. Далее приведены величины, которые обычно используются в выражении для расчета удельной теплоемкости вещества:
- Дельта, или символ «Δ», подразумевает изменение величины.
- Например, если ваша первая температура (T1) составляет 150 ºC, а вторая (T2) составляет 20 ºC, тогда ΔT, или изменение температуры, составит 150 ºC – 20 ºC = 130 ºC.
- Масса образца обозначается буквой «m».
- Количество теплоты обозначается буквой «Q». Единица измерения количества теплоты — «Дж», или Джоуль.
- «T» — это температура вещества.
- Удельная теплоемкость обозначается буквой «Cp».
- Дельта, или символ «Δ», подразумевает изменение величины.
-
2
Освойте выражение для определения удельной теплоемкости. Ознакомившись с величинами, которые используются для вычисления удельной теплоемкости, вы должны выучить уравнение для определения удельной теплоемкости вещества. Формула имеет вид: Cp = Q/mΔT.
- Вы можете оперировать этой формулой, если хотите узнать изменение количества теплоты вместо удельной теплоемкости. Вот как это будет выглядеть:
- ΔQ = mCpΔT
Реклама
- Вы можете оперировать этой формулой, если хотите узнать изменение количества теплоты вместо удельной теплоемкости. Вот как это будет выглядеть:
-
1
Изучите формулу. Сначала вам нужно изучить выражение для того, чтобы понять, что вам нужно сделать, чтобы найти удельную теплоемкость. Давайте рассмотрим следующую задачу: Определите удельную теплоемкость 350 г неизвестного вещества, если при сообщении ему 34 700 дж теплоты его температура поднялась с 22 до 173 ºC без фазовых переходов.
-
2
Запишите известные и неизвестные факторы. Разобравшись с задачей, вы можете записать все известные и неизвестные переменные, чтобы лучше понять, с чем вы имеете дело. Вот как это делается:
- m = 350 г
- Q = 34 700 Дж
- ΔT = 173 ºC – 22 ºC = 151 ºC
- Cp = неизвестно
-
3
Подставьте неизвестные факторы в уравнение. Известны все значения за исключением «Cpc», поэтому необходимо подставить в исходное уравнение все остальные факторы и найти «Cp». Делать это нужно так:
- Исходное уравнение: Cp = Q/mΔT
- c = 34 700 Дж/(350 г x 151 ºC)
-
4
Найдите ответ. Теперь, после того как вы подставили известные величины в выражение, вам осталось выполнить несколько простейших арифметических действий, чтобы узнать ответ. Удельная теплоемкость — окончательный ответ — составляет 0,65657521286 Дж/(г x ºC).
- Cp = 34,700 Дж/(350 г x 151 ºC)
- Cp = 34,700 Дж/(52850 г x ºC)
- Cp = 0,65657521286 Дж/(г x ºC)
Реклама
Советы
- Металл нагревается быстрее воды из-за низкой удельной теплоемкости.
- При нахождении удельной теплоемкости сокращайте единицы измерения тогда, когда это возможно.
- Удельную теплоемкость многих материалов можно найти в интернете для проверки вашего ответа.
- Иногда для изучения процессе теплопередачи в процессе физических или химических превращений может использоваться калориметр.
- Изменение температуры при прочих равных условиях значительнее для материалов с низкой удельной теплоемкостью.
- Системная единица СИ (Международная система единиц измерения) удельной теплоемкости — джоуль на градус Цельсия на грамм. В странах с британской системой мер она измеряется в калориях на градус Фаренгейта на фунт.
- Изучите формулу расчета удельной теплоемкости пищевых продуктов Cp = 4,180 x w + 1,711 x p + 1,928 x f + 1,547 x c + 0,908 x a — это уравнение для нахождения удельной теплоемкости, где «w» — процентное содержание воды в продукте, «p» — процентное содержание белков, «f» — процентное содержание жиров, «c» — процентное содержание углеводов и «a» — процентное содержание неорганических компонентов. Уравнение учитывает массовую долю (x) всех твердых веществ, которые составляют пищу. Расчет удельной теплоемкости приведен в кДж/(кг х K).
Реклама
Об этой статье
Эту страницу просматривали 112 639 раз.
Была ли эта статья полезной?
Удельная теплоёмкость — это энергия, которая требуется для увеличения температуры 1 грамма чистого вещества на 1°. Параметр зависит от его химического состава и агрегатного состояния: газообразное, жидкое или твёрдое тело. После его открытия начался новый виток развития термодинамики, науки о переходных процессах энергии, которые касаются теплоты и функционирования системы.
Как правило, удельная теплоёмкость и основы термодинамики используются при изготовлении радиаторов и систем, предназначенных для охлаждения автомобилей, а также в химии, ядерной инженерии и аэродинамике. Если вы хотите узнать, как рассчитывается удельная теплоёмкость, то ознакомьтесь с предложенной статьёй.
Содержание:
- Формула
- Инструкция по расчёту параметра
- Расчёт
- Как рассчитать теплоемкость продуктов питания
- Полезные советы
- Видео
Формула
Перед тем, как приступить к непосредственному расчёту параметра следует ознакомиться с формулой и её компонентами.
Формула для расчёта удельной теплоёмкости имеет следующий вид:
- с = Q/(m*∆T)
Знание величин и их символических обозначений, использующихся при расчёте, крайне важно. Однако необходимо не только знать их визуальный вид, но и чётко представлять значение каждого из них. Расчёт удельной теплоёмкости вещества представлен следующими компонентами:
ΔT – символ, означающий постепенное изменение температуры вещества. Символ «Δ» произносится как дельта.
ΔT можно рассчитать по формуле:
ΔT = t2–t1, где
- t1 – первичная температура;
- t2 – конечная температура после изменения.
m – масса вещества используемого при нагреве (гр).
Q – количество теплоты (Дж/J)
На основании Цр можно вывести и другие уравнения:
- Q = m*цp*ΔT – количество теплоты ;
- m = Q/цр*(t2 – t1) – массы вещества;
- t1 = t2–(Q/цp*m) – первичной температуры;
- t2 = t1+(Q/цp*m) – конечной температуры.
Инструкция по расчёту параметра
Рассчитать с вещества достаточно просто и чтобы это сделать нужно, выполнить следующие шаги:
- Взять расчётную формулу: Теплоемкость = Q/(m*∆T)
- Выписать исходные данные.
- Подставить их в формулу.
- Провести расчёт и получим результат.
В качестве примера произведём расчёт неизвестного вещества массой 480 грамм обладающего температурой 15ºC, которая в результате нагрева (подвода 35 тыс. Дж) увеличилась до 250º.
Согласно инструкции приведённой выше производим следующие действия:
Выписываем исходные данные:
- Q = 35 тыс. Дж;
- m = 480 г;
- ΔT = t2–t1 =250–15 = 235 ºC.
Берём формулу, подставляем значения и решаем:
с=Q/(m*∆T)=35тыс.Дж/(480 г*235º)=35тыс.Дж/(112800 г*º)=0,31 Дж/г*º.
Расчёт
Выполним расчёт CP воды и олова при следующих условиях:
- m = 500 грамм;
- t1 =24ºC и t2 = 80ºC – для воды;
- t1 =20ºC и t2 =180ºC – для олова;
- Q = 28 тыс. Дж.
Для начала определяем ΔT для воды и олова соответственно:
- ΔТв = t2–t1 = 80–24 = 56ºC
- ΔТо = t2–t1 = 180–20 =160ºC
Затем находим удельную теплоёмкость:
- с=Q/(m*ΔТв)= 28 тыс. Дж/(500 г *56ºC) = 28 тыс.Дж/(28 тыс.г*ºC) = 1 Дж/г*ºC.
- с=Q/(m*ΔТо)=28тыс.Дж/(500 гр*160ºC)=28 тыс.Дж/(80 тыс.г*ºC)=0,35 Дж/г*ºC.
Таким образом, удельная теплоемкость воды составила 1 Дж/г *ºC, а олова 0,35 Дж/г*ºC. Отсюда можно сделать вывод о том, что при равном значении подводимого тепла в 28 тыс. Дж олово нагрется быстрее воды, поскольку его теплоёмкость меньше.
Теплоёмкостью обладают не только газы, жидкости и твёрдые тела, но и продукты питания.
Как рассчитать теплоемкость продуктов питания
При расчёте емкости питания уравнение примет следующий вид:
с=(4.180*w)+(1.711*p)+(1.928*f)+(1.547*c)+(0.908 *a), где:
- w – количество воды в продукте;
- p – количество белков в продукте;
- f – процентное содержание жиров;
- c – процентное содержание углеводов;
- a – процентное содержание неорганических компонентов.
Определим теплоемкость плавленого сливочного сыра Viola. Для этого выписываем нужные значения из состава продукта (масса 140 грамм):
- вода – 35 г;
- белки – 12,9 г;
- жиры – 25,8 г;
- углеводы – 6,96 г;
- неорганические компоненты – 21 г.
Затем находим с:
- с=(4.180*w)+(1.711*p)+(1.928*f)+(1.547*c)+(0.908*a)=(4.180*35)+(1.711*12,9)+(1.928*25,8) + (1.547*6,96)+(0.908*21)=146,3+22,1+49,7+10,8+19,1=248 кДж /кг*ºC.
Полезные советы
Всегда помните, что:
- процесс нагревания металла проходит быстрее, чем у воды, так как он обладает CP в 2,5 раза меньше;
- по возможности преобразуйте полученные результаты в более высокий порядок, если позволяют условия;
- в целях проверки результатов можно воспользоваться интернетом и посмотреть с для расчётного вещества;
- при равных экспериментальных условиях более значительные температурные изменения будут наблюдаться у материалов с низкой удельной теплоёмкостью.
Видео
Разобраться в этой теме вам поможет видео урок.
Для того чтобы нагреть на определённую величину тела, взятые при одинаковой температуре, изготовленные из различных веществ, но имеющие одинаковую массу, требуется разное количество теплоты.
Пример:
для нагревания (1) кг воды на (1°C) требуется количество теплоты, равное (4200) Дж. А если нагревать (1) кг цинка на (1°C), то потребуется всего (400) Дж.
Удельная теплоёмкость вещества — физическая величина, численно равная количеству теплоты, которое необходимо передать веществу массой (1) кг для того, чтобы его температура изменилась на (1~°C).
([c]=1frac{Дж}{кг cdot °C}).
Пример:
по таблице удельной теплоёмкости твёрдых веществ находим, что удельная теплоёмкость алюминия составляет (c(Al)=920 frac{Дж}{кг cdot °C}). Поэтому при охлаждении (1) килограмма алюминия на (1) градус Цельсия ((°C)) выделяется (920) джоулей энергии. Столько же необходимо для нагревания (1) килограмма на алюминия на (1) градус Цельсия ((°C)).
Ниже представлены значения удельной теплоёмкости для некоторых веществ.
Твёрдые вещества
Вещество |
(c), Дж/(кг·°C) |
Алюминий |
(920) |
Бетон |
(880) |
Дерево |
(2700) |
Железо, сталь |
(460) |
Золото |
(130) |
Кирпич |
(750) |
Латунь |
(380) |
Лёд |
(2100) |
Медь |
(380) |
Нафталин |
(1300) |
Олово |
(230) |
Парафин |
(3200) |
Песок |
(970) |
Платина |
(130) |
Свинец |
(120) |
Серебро |
(240) |
Стекло |
(840) |
Цемент |
(800) |
Цинк |
(400) |
Чугун |
(550) |
Сера |
(710) |
Жидкости
Вещество |
(c), Дж/(кг·°C) |
Вода |
(4200) |
Глицерин |
(2400) |
Керосин |
(2140) |
Масло подсолнечное |
(1700) |
Масло трансформаторное |
(2000) |
Ртуть |
(120) |
Спирт этиловый |
(2400) |
Эфир серный |
(2300) |
Газы (при постоянном давлении и температуре (20°C))
Вещество |
(c), Дж/(кг·°C) |
Азот |
(1000) |
Аммиак |
(2100) |
Водород |
(14300) |
Водяной пар |
(2200) |
Воздух |
(1000) |
Гелий |
(5200) |
Кислород |
(920) |
Углекислый газ |
(830) |
Удельная теплоёмкость реальных газов, в отличие от идеальных газов, зависит от давления и температуры. И если зависимостью удельной теплоёмкости реальных газов от давления в практических задачах можно пренебречь, то зависимость удельной теплоёмкости газов от температуры необходимо учитывать, поскольку она очень существенна.
Обрати внимание!
Удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.
Пример:
вода в жидком состоянии имеет удельную теплоёмкость, равную (4200) Дж/(кг·°C), в твёрдом состоянии (лёд) — (2100) Дж/(кг·°C), в газообразном состоянии (водяной пар) — (2200) Дж/(кг·°C).
Вода — вещество особенное, обладающее самой высокой среди жидкостей удельной теплоёмкостью. Но самое интересное, что теплоёмкость воды снижается при температуре от (0°C) до (37°C) и снова растёт при дальнейшем нагревании (рис. (1)).
Рис. (1). График удельной теплоёмкости воды
В связи с этим вода в морях и океанах, нагреваясь летом, поглощает из окружающей среды огромное количество теплоты. А зимой вода остывает и отдаёт в окружающую среду большое количество теплоты. Это явление оказывает влияние на климат данного региона. Летом здесь нет изнуряющей жары, а зимой — лютых морозов.
Высокая удельная теплоёмкость воды нашла широкое применение в различных областях: от медицинских грелок до систем отопления и охлаждения.
Задумывались ли вы, почему воду используют при тушении пожаров? Из-за большой теплоёмкости. При соприкосновении с горящим предметом вода забирает у него большое количество теплоты. Оно значительно больше, чем при использовании такого же количества любой другой жидкости.
Помимо непосредственного отвода тепла, вода гасит пламя ещё и косвенным образом. Водяной пар, образующийся при контакте с огнём, окутывает горящее тело, предотвращая поступление кислорода, без которого горение невозможно.
Какой водой эффективнее тушить огонь: горячей или холодной? Горячая вода тушит огонь быстрее, чем холодная. Дело в том, что нагретая вода скорее превратится в пар, а значит, и отсечёт поступление воздуха к горящему объекту.
Источники:
Рис. 1. Автор: Epop — собственная работа. Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=10750129.
Download Article
Download Article
Specific heat is the amount of energy required to raise one gram of a pure substance by one degree Centigrade. The specific heat of a substance is dependent on both its molecular structure and its phase. The discovery of specific heat sparked the studies of thermodynamics, the study of energy conversion involving heat and the work of a system. Specific heat and thermodynamics are used extensively in chemistry, nuclear engineering, and aerodynamics, as well as in everyday life in the radiator and cooling system of a car. If you want to know how to calculate specific heat, just follow these steps.
Calculation Help
-
1
Become familiar with the terms that are used for calculating specific heat. It’s important to be familiar with the terms that are used for calculating specific heat before you learn the formula for specific heat. You’ll need to know how to recognize the symbol for each term and to understand what it means. Here are the terms that are commonly used in the equation for calculating the specific heat of a substance:[1]
- Delta, or the “Δ” symbol, represents the change in a variable.
- For example, if your first temperature (T1) is 150ºC, and your second temperature (T2) is 20ºC, then ΔT, or the change in temperature, represents 150ºC – 20ºC, or 130ºC.
- The mass of the sample is represented by “m”.
- The amount of heat is represented by “Q”. The amount of heat is represented by “J”, or Joules.
- “T” is the temperature of the substance.
- Specific heat is represented by “Cp“.
- Delta, or the “Δ” symbol, represents the change in a variable.
-
2
Learn the equation for specific heat. Once you become familiar with the terms used for calculating specific heat, you should learn the equation for finding the specific heat of a substance.[2]
The formula is: Cp = Q/mΔT.- You can manipulate this formula if you want to find the change in the amount of heat instead of the specific heat. Here’s what it would look like:
- ΔQ = mCpΔT
- You can manipulate this formula if you want to find the change in the amount of heat instead of the specific heat. Here’s what it would look like:
Advertisement
-
1
Study the equation. First, you should look at the equation to get a sense of what you need to do to find the specific heat. Let’s look at this problem: Find the specific heat of 350 g of an unknown material when 34,700 Joules of heat are applied, and the temperature rises from 22ºC to 173ºC with no phase change.
-
2
List the known and unknown factors. Once you’re comfortable with the problem, you can write down each known and unknown variable to have a better sense of what you’re working with. Here’s how you do it:[3]
- m = 350 g
- Q = 34,700 Joules
- ΔT = 173ºC – 22ºC = 151ºC
- Cp = unknown
-
3
Plug the known factors into the equation. You know the value of everything except “Cpc”, so you should plug the rest of the factors into the original equation and solve for “Cp“, Here’s how you do it:[4]
- Original equation: Cp = Q/mΔT
- c = 34,700 J/(350 g x 151ºC)
-
4
Solve the equation. Now that you’ve plugged the known factors into the equation, just do simple arithmetic to solve it.[5]
The specific heat, or final answer, is 0.65657521286 J/(g x ºC).- Cp = 34,700 J/(350 g x 151ºC)
- Cp = 34,700 J/(52850 g x ºC)
- Cp = 0.65657521286 J/(g x ºC)
Advertisement
Add New Question
-
Question
How do I calculate specific heat when no temperature is given?
That’s not possible. Q=mass × specific heat capacity x temperature is the formula, temperature cannot be removed from the equation.
-
Question
How do I find the heat of a spice?
Look your spice up on the Scoville scale — it measures the pungency of spicy foods. A bell pepper is 0 on the scale. A mild jalapeno is about 3000, and a hot one is ~10000. Tabasco is around 30000, and a habanero can reach 350000.
-
Question
If 200 grams of water is to be heated from 24.0 degrees to 100.0 degrees to make a cup of tea, how much heat must be added?
Q = C x m x dT
Q = 4.18 x 0.2 x (100 – 24)
Q = 73.112 J/g.C
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
-
A calorimeter may sometimes be used with a heat transfer during a physical or chemical change.
-
When solving for specific heat, cross out units when possible.
-
Temperature changes are greater in materials with low specific heat when all other things are equal.
Show More Tips
Thanks for submitting a tip for review!
Advertisement
About This Article
Article SummaryX
To calculate specific heat, start by reading the problem carefully, then write down each known and unknown variable to get a better sense of what you’re working with. Next, plug the known factors into the specific heat equation, then solve the equation as you normally would to get your answer! To learn more about the fundamentals of specific heat, read on!
Did this summary help you?
Thanks to all authors for creating a page that has been read 915,060 times.