Как найти значение угловой частоты

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 31 августа 2021 года; проверки требует 1 правка.

Угловая частота
ω
Размерность T −1
Единицы измерения
СИ рад/с
СГС рад/с
Другие единицы градус/с

Углова́я частота́ (синонимы: радиальная частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС размерность угловой частоты обратна размерности времени. Единица измерения угловой частоты: радианы в секунду (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

{displaystyle omega =partial varphi /partial t.}

Другое распространённое обозначение omega ={dot  varphi }.

Угловая частота связана с частотой ν соотношением[1]

{displaystyle omega ={2pi nu }.}

В случае использования в качестве единицы угловой частоты градусов в секунду связь с частотой ν следующая:

{displaystyle omega ={360^{circ }nu }.}

В случае вращательного движения угловая частота численно равна углу, на который повернется вращающееся тело за единицу времени (то есть равна модулю вектора угловой скорости). В случае колебательного процесса угловая частота численно равна приращению полной фазы колебания за единицу времени.

Использование для omega единицы измерения радианы в секунду позволяет упростить многие формулы в физике, электронике, поскольку множители 2π и 1/(2π), появляющиеся при использовании радианов для измерения углов и фаз, исчезают при введении угловой частоты. Так, резонансная угловая частота колебательного LC-контура равна {displaystyle omega _{LC}=1/{sqrt {LC}},} тогда как измеряемая в герцах частота резонанса в колебательном LC-контуре равна {displaystyle nu _{LC}=1/(2pi {sqrt {LC}}).}

См. также[править | править код]

  • Частота
  • Планковская угловая частота
  • Угловая скорость
  • Фаза колебаний
  • Угловое ускорение
  • Угловой коэффициент
  • Угловой размер

Примечания[править | править код]

  1. Угловая частота. Большой энциклопедический политехнический словарь. Дата обращения: 27 октября 2016.

Угловая частота колебаний: интересные ФАКТЫ и часто задаваемые вопросы

Периодическое движение объекта, частицы или количества через равные промежутки времени относительно среднего положения известно как колебание.

Когда тело колеблется, оно включает как линейное, так и угловое смещение, это угловое смещение известно как угловая частота колебаний. В физике есть также другие термины для угловой частоты, такие как угловая скорость и орбитальная частота.

Угловая частота – это скалярная мера углового смещения колеблющейся частицы. Для синусоидальных волн это называется скоростью изменения фазы. Когда мяч, привязанный к веревке, вращается по кругу, скорость, с которой он совершает одно колебание на 360 градусов, называется угловой частотой.

Формула угловой частоты колебаний

Изменение угла, которое происходит за одну секунду, называется угловой частотой. Следовательно, основная формула для определения угловой частоты:

ω – угловая частота

Θ – угол, на который перемещается объект.

Для простого гармонического движения или просто колебаний формула угловой частоты получается путем умножения линейной частоты на угол, который покрывают колеблющиеся частицы. Для одного полного цикла угол равен 2π. Следовательно, формула для угловой частоты становится;

Используя соотношение между частотой и периодом времени в приведенном выше уравнении, формула принимает следующий вид:

Поскольку угловая частота – это угловая скорость смещения, ее единица измерения становится радиан в единицу времени, то есть;

Угловая частота колебательной пружины

В вышеупомянутой системе пружина-масса при добавлении нагрузки пружина смещается на расстояние y, а колебания растягивают ее до следующего положения x.

Из диаграммы видно, что

Из диаграммы свободного тела мы видим, что вес движется вниз. Сила инерции ma действует вверх, а восстанавливающая сила k (x + y) также действует вверх.

Мы знаем, что W = ky; отсюда получаем:

Сравнивая его с уравнением SHM, получаем:

Это угловая частота колебаний пружины.

Угловая частота колебательного маятника

A маятник это небольшой боб, привязанный к нитке. Он раскачивается, чтобы вызвать колебания. В амплитуда колебания маятника измеряется как максимальное смещение, которое боб преодолевает, начиная с центрального положения. В простом маятнике масса струны ничтожна по сравнению с массой боба.

На рисунке выше мы видим силы, действующие на опору маятника. Гравитационный вес действует вниз. Восстанавливающий момент, действующий на маятник, является элементом веса боба. Из рисунка получаем значение крутящего момента как;

Для каждого маленького угла у нас есть;

Сравнивая его с простым уравнением гармонического движения:

g – ускорение свободного падения, а L – длина маятника.

Угловая частота колебаний объекта

Для колеблющегося объекта уравнение SHM имеет вид:

x – смещение объекта

A – амплитуда колебаний

ω – угловая частота

Для колеблющегося объекта угловая частота задается как;

Он говорит о том, на какой угол поворачивается объект для смещения.

Как найти угловую частоту колебаний

Для разных объектов и сценариев используется другая формула для вычисления угловой частоты колебаний.

Например, амплитуда колебаний составляет 0.14 м; изменение фазы равно 0. Теперь, чтобы покрыть 14 см за 8.5 секунд, угловая частота рассчитывается по формуле;

Для расчета угловой частоты маятника используется формула:

Например, если длина маятника 10 см, то угловая частота колебаний равна;

Для расчета угловой частоты пружины используется формула:

Если задана жесткость пружины 2 Н / м, а масса – 8 кг, то угловая частота будет;

Часто задаваемые вопросы (FAQ)

Какая угловая частота колебаний?

Повторяющееся движение частицы относительно фиксированной точки называется колебанием.

Изменение угла частицы – это угловая частота колебаний. В физике это также называется скоростью изменения фазы. Это скалярный элемент, поскольку это просто угловое смещение без направления. Формула для угловой частоты имеет вид;

Как угловая частота связана с периодом времени?

Колеблющиеся объекты включают как линейные, так и угловые перемещения.

Основная формула для угловой частоты представлена ​​как;

Он показывает соотношение времени и угловой частоты колебаний.

Теперь общая формула для угловой частоты:

ω = 2πf

Подставляя данное соотношение

Мы получаем;

Это уравнение связывает угловую частоту и период времени.

Какая единица измерения угловой частоты?

Угловая частота – это изменение угла колеблющейся частицы в единицу времени.

Единица угловой частоты выражается в радианах на единицу секунды, например:

Когда объект проходит один полный цикл за одну секунду, угловая частота становится равной 1.

Угловая частота совпадает с частотой?

Число колебаний, совершаемых объектом за одну секунду, называется частотой.

Нет, частота и угловая частота – это не одно и то же. Угловая частота – это изменение угла колеблющейся частицы за единицу времени, тогда как частота – это колебание, совершаемое за одну секунду. Оба они представляют собой разные термины, используемые для разных концепций физики.

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Основные формулы

• Уравнение гармонических колебаний

где х — смещение колеблющейся точки от положения равновесия;
t — время; А, ω, φ— соответственно амплитуда, угловая частота,
начальная фаза колебаний; — фаза колебаний в момент t.

• Угловая частота колебаний

, или ,

где ν и Т — частота и период колебаний.

• Скорость точки, совершающей гармонические колебания,

• Ускорение при гармоническом колебании

• Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле

где a1и А2 амплитуды составляющих колебаний; φ1 и φ2— их начальные фазы.

• Начальная фаза φ результирующего колебания может быть найдена из формулы

• Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по зна­чению частотами ν1 и ν2,

• Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A1 и A2 и начальны­ми фазами φ1 и φ2,

Если начальные фазы φ1 и φ2 составляющих колебаний одинако­вы, то уравнение траектории принимает вид

т. е. точка движется по прямой.

В том случае, если разность фаз , уравнение
принимает вид

т. е. точка движется по эллипсу.

• Дифференциальное уравнение гармонических колебаний ма­териальной точки

, или ,
где m — масса точки; k — коэффициент квазиупругой силы (k=тω 2 ).

• Полная энергия материальной точки, совершающей гармони­ческие колебания,

• Период колебаний тела, подвешенного на пружине (пружин­ный маятник),

где m — масса тела; k — жесткость пружины. Формула справедлива для упругих колебаний в пределах, в ко­торых выполняется закон Гука (при малой массе пружины в срав­нении с массой тела).

Период колебаний математического маятника

где l — длина маятника; g — ускорение свободного падения. Период колебаний физического маятника

где J — момент инерции колеблющегося тела относительно оси

колебаний; а — расстояние центра масс маятника от оси колебаний;

— приведенная длина физического маятника.

Приведенные формулы являются точными для случая бесконеч­но малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не более ошибка в значении периода не превышает 1 %.

Период крутильных колебаний тела, подвешенного на упругой нити,

где J — момент инерции тела относительно оси, совпадающей с упругой нитью; k — жесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.

• Дифференциальное уравнение затухающих колебаний
, или ,

где r — коэффициент сопротивления; δ коэффициент затухания: ; ω0— собственная угловая частота колебаний *

• Уравнение затухающих колебаний

где A (t) — амплитуда затухающих колебаний в момент t; ω — их угловая частота.

• Угловая частота затухающих колебаний

О Зависимость амплитуды затухающих колебаний от времени

I

где А0 амплитуда колебаний в момент t=0.

• Логарифмический декремент колебаний

где A (t) и A (t+T) — амплитуды двух последовательных колеба­ний, отстоящих по времени друг от друга на период.

• Дифференциальное уравнение вынужденных колебаний

, или

,

где — внешняя периодическая сила, действующая на
колеблющуюся материальную точку и вызывающая вынужденные
колебания; F0 ее амплитудное значение;

• Амплитуда вынужденных колебаний

• Резонансная частота и резонансная амплитуда и

Примеры решения задач

Пример 1.Точка совершает колебания по закону x(t)= , где А=2 см. Определить начальную фазу φ, если

x(0)= см и х , (0)

Подставив в это выражение значение t=0 и поочередно значения
начальных фаз и , найдем

Так как всегда A>0 и ω>0, то условию удовлетворяет толь­
ко первое значение начальной фазы.
Таким образом, искомая начальная
фаза

По найденному значению φ постро-­
им векторную диаграмму (рис. 6.1).
Пример 2.Материальная точка
массой т=5 г совершает гармоничес-­
кие колебания с частотой ν =0,5 Гц.
Амплитуда колебаний A=3 см. Оп-­
ределить: 1) скорость υточки в мо-­
мент времени, когда смещение х=
= 1,5 см; 2) максимальную силу
Fmax, действующую на точку; 3)
Рис. 6.1 полную энергию Е колеблющейся точ­
ки.

Решение. 1. Уравнение гармонического колебания имеет вид

(1)

а формулу скорости получим, взяв первую производную по времени от смещения:

(2)

Чтобы выразить скорость через смещение, надо исключить из формул (1) и (2) время. Для этого возведем оба уравнения в квад­рат, разделим первое на А 2 , второе на A 2 ω 2 и сложим:

, или

Решив последнее уравнение относительно υ, найдем

Выполнив вычисления по этой формуле, получим

см/с.

Знак плюс соответствует случаю, когда направление скорости совпадает с положительным направлением оси х, знак минус — ког­да направление скорости совпадает с отрицательным направлением оси х.

Смещение при гармоническом колебании кроме уравнения (1) может быть определено также уравнением

Повторив с этим уравнением такое же решение, получим тот же ответ.

2. Силу действующую на точку, найдем по второму закону Нью­тона:

(3)

где а — ускорение точки, которое получим, взяв производную по времени от скорости:

, или

Подставив выражение ускорения в формулу (3), получим

Отсюда максимальное значение силы

Подставив в это уравнение значения величин π, ν, т и A, найдем

3. Полная энергия колеблющейся точки есть сумма кинетической и потенциальной энергий, вычисленных для любого момента вре­мени.

Проще всего вычислить полную энергию в момент, когда кинети­ческая энергия достигает максимального значения. В этот момент потенциальная энергия равна нулю. Поэтому полная энергия E колеблющейся точки равна максимальной кинетической энергии

(4)

Максимальную скорость определим из формулы (2), положив
: . Подставив выражение скорости в фор­-
мулу (4), найдем

Подставив значения величин в эту формулу и произведя вычис­ления, получим

или мкДж.

Пример 3. На концах тонкого стержня длиной l = 1 м и массой m3=400 г укреплены шарики малых размеров массами m1=200 ги m2=300г. Стержень колеблется около горизонтальной оси, перпен-

дикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.

Решение. Период колебаний физического маятника, каким является стержень с шариками, определяется соотношением

(1)

где J — момент инерции маятника относительно оси колебаний; т — его масса; lС расстояние от центра масс ма­ятника до оси.

Момент инерции данного маятника равен сумме моментов инерции шариков J1 и J2 и стержня J3:

(2)

Принимая шарики за материальные точки, вы­разим моменты их инерции:

Так как ось проходит через середину стержня, то
его момент инерции относительно этой оси J3=
= .
Подставив полученные выражения J1 , J2 и
J3 в формулу (2), найдем общий момент инерции фи-­
зического маятника:

Произведя вычисления по этой формуле, найдем

Рис. 6.2 Масса маятника состоит из масс шариков и массы
стержня:

Расстояние lС центра масс маятника от оси колебаний найдем, исходя из следующих соображений. Если ось х направить вдоль стержня и начало координат совместить с точкой О, то искомое рас­стояние l равно координате центра масс маятника, т. е.

, или

Подставив значения величин m1, m2, m, l и произведя вычисле­ния, найдем

см.

Произведя расчеты по формуле (1), получим период колебаний физического маятника:

Пример 4.Физический маятник представляет собой стержень
длиной l= 1 м и массой 3т1 с прикрепленным к одному из его концов
обручем диаметром и массой т1. Горизонтальная ось Oz

маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период Т колебаний такого маятника.

Решение. Период колебаний физического маятника опреде­ляется по формуле

(1)

где J — момент инерции маятника относительно оси колебаний; т — его масса; lC расстояние от центра масс маятника до оси колебаний.

Момент инерции маятника равен сумме мо­ментов инерции стержня J1и обруча J2:

(2).

Момент инерции стержня относительно оси,
перпендикулярной стержню и проходящей
через его центр масс, определяется по форму-­
ле . В данном случае т=3т1 и

Момент инерции обруча найдем, восполь-­
зовавшись теоремой Штейнера ,
где J — момент инерции относительно про-­
извольной оси; J0 момент инерции отно-­
сительно оси, проходящей через центр масс
параллельно заданной оси; а — расстояние
между указанными осями. Применив эту фор-­
мулу к обручу, получим

Подставив выражения J1 и J2 в форму­лу (2), найдем момент инерции маятника относительно оси вра­щения:

Расстояние lС от оси маятника до его центра масс равно

Подставив в формулу (1) выражения J, lс и массы маятника , найдем период его колебаний:

После вычисления по этой формуле получим T=2,17 с.

Пример 5.Складываются два колебания одинакового направле-­
ния, выражаемых уравнениями ; х2=
= , где А1=1см, A2=2 см, с, с, ω =
= . 1. Определить начальные фазы φ1 и φ 2 составляющих коле-

баний. 2. Найти амплитуду А и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.

Решение. 1. Уравнение гармонического колебания имеет вид

(1)

Преобразуем уравнения, заданные в условии задачи, к такому же виду:

(2)

Из сравнения выражений (2) с равенством (1) находим начальные фазы первого и второго колебаний:

рад и рад.

2. Для определения амплитуды А результирую­щего колебания удобно воспользоваться векторной диаграммой, представленной на рис.6.4. Согласно теореме косинусов, получим

(3)

где — разность фаз составляющих колебаний.
Так как , то, подставляя найденные
значения φ2 и φ1 получим рад.

Подставим значения А1, А2и в формулу (3) и
произведем вычисления:

Тангенс начальной фазы φ результирующего колебания опреде-­
лим непосредственно из рис. 6.4: , отку-­
да начальная фаза

= рад.

Так как угловые частоты складываемых колебаний одинаковы,
то результирующее колебание будет иметь ту же частоту ω. Это
позволяет написать уравнение результирующего колебания в виде
, где A=2,65 см, , рад.

Пример 6.Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях, уравне­ния которых

(1).

(2)

где a1=1 см, A2=2 см, . Найти уравнение траектории точ-­
ки. Построить траекторию с соблюдением масштаба и указать
направление движения точки.

Решение. Чтобы найти уравнение траектории точки, ис­ключим время t из заданных уравнений (1) и (2). Для этого восполь-

зуемся формулой . В данном случае
, поэтому

Так как согласно формуле (1) , то уравнение траекто-­
рии

(3)

Полученное выражение представляет собой уравнение параболы, ось которой совпадает с осью Ох. Из уравнений (1) и (2) следует, что смещение точки по осям координат ограничено и заключено в пределах от —1 до +1 см по оси Ох и от —2 до +2 см по оси Оу.

Для построения траектории найдем по уравнению (3) значения у, соответствующие ряду значений х, удовлетворяющих условию см, и составим таблицу:

X , СМ -1 —0,75 —0,5 +0,5 + 1
у, см ±0,707 ±1 ±1,41 ±1,73 ±2

Начертив координатные оси и выбрав масштаб, нанесем на пло­скость хОу найденные точки. Соединив их плавной кривой, получим траекторию точки, совершающей колеба­ния в соответствии с уравнениями движе­ния (1) и (2) (рис. 6.5).

Для того чтобы указать направление движения точки, проследим за тем, как из­меняется ее положение с течением времени. В начальный момент t=0 координаты точ­ки равны x(0)=1 см и y(0)=2 см. В по­следующий момент времени, например при t1=l с, координаты точек изменятся и ста­нут равными х (1)= —1 см, y(t)=0. Зная положения точек в начальный и последую­щий (близкий) моменты времени, можно указать направление движения точки по траектории. На рис. 6.5 это направление движения указано стрелкой (от точки А к началу координат). После того как в мо­мент t2 = 2 с колеблющаяся точка достиг­нет точки D, она будет двигаться в обратном направлении.

Кинематика гармонических колебаний

6.1. Уравнение колебаний точки имеет вид ,
где ω=π с -1 , τ=0,2 с. Определить период Т и начальную фазу φ
колебаний.

6.2.Определить период Т, частоту v и начальную фазу φ коле­баний, заданных уравнением , где ω=2,5π с -1 ,
τ=0,4 с.

6.3.Точка совершает колебания по закону ,
где A=4 см. Определить начальную фазу φ, если: 1) х(0)=2 см и
; 2) х(0) = см и ; 3) х(0)=2см и ; 4)
х(0)= и . Построить векторную диаграмму для
момента t=0.

6.4.Точка совершает колебания .по закону ,
где A=4 см. Определить начальную фазу φ, если: 1) х(0)=2 см и
; 2) x(0)= см и ; 3) х(0)= см и ;
4) x(0)= см и . Построить векторную диаграмму для
момента t=0.

6.5.Точка совершает колебания по закону ,
где A=2 см; ; φ= π/4 рад. Построить графики зависимости
от времени: 1) смещения x(t); 2) скорости ; 3) ускорения

6.6.Точка совершает колебания с амплитудой A=4 см и перио­дом Т=2 с. Написать уравнение этих колебаний, считая, что в
момент t=0 смещения x(0)=0 и . Определить фазу
для двух моментов времени: 1) когда смещение х=1см и ;
2) когда скорость = —6 см/с и x 2 . Найти угловую частоту ω колебаний, их период Т
и амплитуду А. Написать уравнение колебаний, приняв началь­ную фазу равной нулю.

6.12.Точка совершает колебания по закону . В не­который момент времени смещение х1точки оказалось равным 5 см. Когда фаза колебаний увеличилась вдвое, смещение х, стало равным 8 см. Найти амплитуду А колебаний.

6.13. Колебания точки происходят по закону .
В некоторый момент времени смещение х точки равно 5 см, ее скорость
= 20 см/с и ускорение =—80 см/с 2 . Найти амплитуду A, угло­вую частоту ω, период Т колебаний и фазу в рассматри­ваемый момент времени.

6.14.Два одинаково направленных гармонических колебания одного периода с амплитудами A1=10 см и A2=6 см складыва­ются в одно колебание с амплитудой А=14 см. Найти раз­ность фаз складываемых колебаний.

6.15.Два гармонических колебания, направленных по одной прямой и имеющих одинаковые амплитуды и периоды, складывают­ся в одно колебание той же амплитуды. Найти разность фаз складываемых колебаний.

6.16.Определить амплитуду А и начальную фазу ф результи­
рующего колебания, возникающего при сложении двух колебаний
одинаковых направления и периода: и
, где A1=A2=1 см; ω=π с -1 ; τ=0,5 с. Найти уравнение резуль­тирующего колебания.

6.17. Точка участвует в двух одинаково направленных колеба­ниях: и , где а1=1см; A2=2 см; ω=
= 1 с -1 . Определить амплитуду А результирующего колебания,
его частоту v и начальную фазу φ. Найти уравнение этого движе­ния.

6.18. Складываются два гармонических колебания одного на­
правления с одинаковыми периодами T1=T2=1,5 с и амплитудами
А12=2см. Начальные фазы колебаний и . Опре­делить амплитуду А и начальную фазу φ результирующего колеба­ния. Найти его уравнение и построить с соблюдением масштаба
векторную диаграмму сложения амплитуд.

6.19.Складываются три гармонических колебания одного на­правления с одинаковыми периодами Т123=2 с и амплиту­дами A1=A2=A3=3 см. Начальные фазы колебаний φ1=0, φ2=π/3, φ3=2π/3. Построить векторную диаграмму сложения ампли­туд. Определить из чертежа амплитуду А и начальную фазу φ ре­зультирующего колебания. Найти его уравнение.

6.20.Складываются два гармонических колебания одинаковой
частоты и одинакового направления: и x2=
= . Начертить векторную диаграмму для момента
времени t=0. Определить аналитически амплитуду А и начальную
фазу φ результирующего колебания. Отложить A и φ на векторной
диаграмме. Найти уравнение результирующего колебания (в три­гонометрической форме через косинус). Задачу решить для двух
случаев: 1) А1=1см, φ1=π/3; A2=2 см, φ2=5π/6; 2) А1=1см,
φ1=2π/3; A2=1 см, φ2=7π/6.

6.21. Два камертона звучат одновременно. Частоты ν1 и ν2 их колебаний соответственно равны 440 и 440,5 Гц. Определить период Т биений.

6.22. Складываются два взаимно перпендикулярных колебания,
выражаемых уравнениями и , где
а1=2 см, A2=1 см, , τ=0,5 с. Найти уравнение траектории
и построить ее, показав направление движения точки.

6.23. Точка совершает одновременно два гармонических колеба­ния, происходящих по взаимно перпендикулярным направлениям
и выражаемых уравнениями и ,
где а1=4 см, A1=8 см, , τ=1 с. Найти уравнение траекто­рии точки и построить график ее движения.

6.24. Точка совершает одновременно два гармонических колеба­ния одинаковой частоты, происходящих по взаимно перпендикуляр­ным направлениями выражаемых уравнениями: 1) и

Найти (для восьми случаев) уравнение траектории точки, пост­роить ее с соблюдением масштаба и указать направление движения. Принять: А=2 см, A1=3 см, А2=1см; φ1=π/2, φ2=π.

6.25. Точка участвует одновременно в двух взаимно перпенди­кулярных колебаниях, выражаемых уравнениями и
, где A1=2 см, A2=1 см. Найти уравнение траектории
точки и построить ее, указав направление движения.

6.26. Точка одновременно совершает два гармонических колеба­ния, происходящих по взаимно перпендикулярным направлениям
и выражаемых уравнениями и , где А1=
=0,5 см; A2=2 см. Найти уравнение траектории точки и построить
ее, указав направление движения.

6.27. Движение точки задано уравнениями и у=
= , где A1=10 см, A2=5 см, ω=2 с -1 , τ=π/4 с. Найти
уравнение траектории и скорости точки в момент времени t=0,5 с.

6.28. Материальная точка участвует одновременно в двух вза­имно перпендикулярных колебаниях, выражаемых уравнениями
и , где A1=2 см, A2=1 см. Найти
уравнение траектории и построить ее.

6.29. Точка участвует одновременно в двух гармонических коле­баниях, происходящих по взаимно перпендикулярным направлени­ям описываемых уравнениями: 1) и

Найти уравнение траектории точки, построить ее с соблюдением масштаба и указать направление движения. Принять: A=2 см; A1 см.

6.30. Точка участвует одновременно в двух взаимно перпенди­-
кулярных колебаниях, выражаемых уравнениями и

y=A2 sin 0,5ωt, где A1=2см, A2=3 см. Найти уравнение траекто­рии точки и построить ее, указав направление движения.

6.31.Смещение светящейся точки на экране осциллографа явля­ется результатом сложения двух взаимно перпендикулярных коле­баний, которые описываются уравнениями: 1) х=А sin 3ωt и у=A sin 2ωt; 2) х=А sin 3ωt и y=A cos 2ωt; 3) х=А sin 3ωt и y=A cos ωt.

Применяя графический метод сложения и соблюдая масштаб, построить траекторию светящейся точки на экране. Принять А=4 см.

Динамика гармонических колебаний. Маятники

6.32.Материальная точка массой т=50 г совершает колебания, уравнение которых имеет вид х=А cos ωt, где А = 10 см, ω=5 с -1 . Найти силу F, действующую на точку, в двух случаях: 1) в момент, когда фаза ωt=π/3; 2) в положении наибольшего смещения точ­ки.

6.33.Колебания материальной точки массой т=0,1 г происхо­дят согласно уравнению х=A cos ωt, где A=5 см; ω=20 с -1 . Опре­делить максимальные значения возвращающей силы Fmax и кинети­ческой энергии Тmах.

6.34.Найти возвращающую силу F в момент t=1 с и полную энергию Е материальной точки, совершающей колебания по закону х=А cos ωt, где А = 20 см; ω=2π/3 с -1 . Масса т материальной точки равна 10 г.

6.35.Колебания материальной точки происходят согласно урав­нению х=A cos ωt, где A=8 см, ω=π/6 с -1 . В момент, когда возвра­щающая сила F в первый раз достигла значения —5 мН, потенци­альная энергия П точки стала равной 100 мкДж. Найти этот момент времени t и соответствующую ему фазу ωt.

6.36.Грузик массой m=250 г, подвешенный к пружине, колеб­лется по вертикали с периодом Т=1 с. Определить жесткость k пружины.

6.37. К спиральной пружине подвесили грузик, в результате чего пружина растянулась на х=9 см. Каков будет период Т коле­баний грузика, если его немного оттянуть вниз и затем отпустить?

6.38.Гиря, подвешенная к пружине, колеблется по вертикали с амплитудой A =4 см. Определить полную энергию Е колебаний гири, если жесткость k пружины равна 1 кН/м.

6.39.Найти отношение длин двух математических маятников, если отношение периодов их колебаний равно 1,5.

6.40. Математический маятник длиной l=1м установлен в лиф­те. Лифт поднимается с ускорением а=2,5 м/с 2 . Определить период Т колебаний маятника.

6.41. На концах тонкого стержня длиной l=30 см укреплены оди­наковые грузики по одному на каждом конце. Стержень с грузиками колеблется около горизонтальной оси, проходящей через точку, удаленную на d=10 см от одного из концов стержня. Определить приведенную длину L и период Т колебаний такого физического ма­ятника. Массой стержня пренебречь.

6.42. На стержне длиной l=30 см укреплены два одинаковых грузика: один — в середине стержня, другой — на одном из его концов. Стержень с грузиком колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведен­ную длину L и период Т колебаний такой системы. Массой стержня пренебречь.

6.43. Система из трех грузов, соединенных стержнями длиной l=30 см (рис. 6.6), колеблется относительно горизонтальной оси, проходящей через точку О перпендикулярно плоскости чертежа. Найти период Т колебаний системы. Массами стержней пренебречь, грузы рассматривать как материальные точки.

6.44. Тонкий обруч, повешенный на гвоздь, вбитый горизон­тально в стену, колеблется в плоскости, параллельной стене. Ра­диус R обруча равен 30 см. Вычислить период Т колебаний обруча.

6.45. Однородный диск радиусом R=30 см колеблется около го­ризонтальной оси, проходящей через одну из образующих цилинд­рической поверхности диска. Каков период Т его колебаний?

Какова частота напряжения тока, а точнее частота электрического тока. Частота в электротехнике

Угловая частота
ω
Размерность T
−1
Единицы измерения
рад/с
СГС рад/с
Другие единицы градус/с

(синонимы: радиальная частота, циклическая частота, круговая частота, частота вращения) — скалярная физическая величина, мера частоты вращательного или колебательного движения. В случае вращательного движения, угловая частота равна модулю вектора угловой скорости. В Международной системе единиц (СИ) и системе СГС угловая частота выражается в радианах в секунду, её размерность обратна размерности времени (радианы безразмерны).

Угловая частота является производной по времени от фазы колебания:

omega = partialvarphi/partial t.

Другое распространённое обозначение omega = dot varphi.

Угловая частота связана с частотой ν соотношением[1]

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

Численно циклическая частота равна числу циклов (колебаний, оборотов) за 2π секунд.

Введение циклической частоты (в её основной размерности — радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC

-контура равна omega_ = 1/sqrt, тогда как обычная резонансная частота nu_ = 1/(2pisqrt).

В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что переводные множители 2π и 1/(2π), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

Период и частота гармонических колебаний

Впервые гармоническими колебаниями заинтересовались еще античные философы, изучая вопросы музыкальной гармонии. Поэтому простейшие колебания, происходящие по закону круговых функций (синуса или косинуса), называются гармоническими.

Формула гармонических колебаний:

Рис. 1. График гармонических колебаний.

Как можно видеть из графика колебаний (а также из изучения круговых функций в математическом анализе), функции эти регулярно повторяют свои значения. Более того, регулярно повторяется форма графика колебаний. Это свойство функции называется периодичностью. То есть, функция, обладающая периодичностью, имеет равные значения на промежутках, равных своему периоду.

Период обозначается латинской буквой $T$. Однако, физический и математический подход к измерению периода немного различен.

В математике в качестве аргумента круговой функции рассматривается угол поворота вектора, образующего ее, и этот угол удобно измерять в радианах (каждый радиан равен дуге, имеющей длину радиуса). В радианах измеряется и период круговой функции. Для простого синуса или косинуса $T = 2pi$.

Рис. 2. Период синуса и косинуса.

В физике угол поворота менее важен, нередко такой угол даже невозможно указать (например, для колебаний пружинного маятника). Поэтому в физике период измеряется в единицах времени – секундах. Дополнительно это дает возможность ввести специальную характеристику, позволяющую определить «скорость» колебаний – частоту (обозначается греческой буквой $nu$ («ню»).

Если период показывает, за сколько времени совершается одно колебание, то частота показывает, сколько колебаний совершается за одну секунду:

Частота измеряется в колебаниях в секунду или Герцах (Гц). Один герц – это одно колебание в секунду.

ⓘ Энциклопедия | Угловая частота — Вики ..

Исследование частотных характеристик дросселей в широком.

Local offer Физика длина скорость волна. check волновое число. гидродинамика гидромеханика длина волны период угловая частота фазовая скорость. 2.1. Спектры периодических сигналов. Кая круговая частота колебаний, δ – начальная фаза колебаний. кие колебания с циклической частотой ω. V, угловая скорость ω и радиус враще. Циклическая частота. Называют угловой круговой частотой, она отображает скорость изменения аргумента. Угловая частота измеряется в рад с. Значение фазы при. 0. t. Занятие 9. Цепи синусоидального тока. Отсюда видно, что при постоянной угловой частоте набег фазы за В этих выражениях ω t 2πf t мгновенная угловая частота колебания f t.

ГОСТ ИСО 10112 2002 Материалы.

Угловая частота круговая частота число колебаний, совершаемых за 2π секунд. Угловой частоты, где ν число колебаний в секунду, Т период. Угловая частота с видео 2. Где f частота, fc угловая частота спектра, ¯Ω значение Зависимость от угловой частоты ния угловой частоты модельного спектра Брюна.

Метод многоядерной МРТ Хабр Habr.

Ω, угловая частота, измеряется в радианах в секунду. Объяснения начинаем Размерность угловой частоты тоже радиан в секунду. Круговая частота. Циклическая частота Обучение Интернет. УГЛОВАЯ ЧАСТОТА. УГЛОВАЯ ЧАСТОТА круговая частота, число колебаний, совершаемое за 2p секунд. Угловая частота w 2pn 2p T, где n число.

Radian: перевод, произношение, транскрипция WooordHunt.

В системе СИ выражается в герцах Гц. Период и частота колебаний связаны соотношением: Циклическая или круговая частота ω 2πν. Она связана с. Слова на букву У Угловая минута секунда скорость мгновенная. Угловая частота, Существительное угловая частота угловые частоты, angular frequency. УГЛОВАЯ ЧАСТОТА Современная Энциклопедия Словари. Угловая частота, круговая частота, число полных колебаний, совершающихся при периодическом колебательном процессе за 2p единиц времени. Угловая частота гармонических колебаний вибрации. Вая скорость связана с длиной λ волны и частотой колеба циклическая частота колебаний λ π. 2 8. ω0 – угловая частота колебаний маятника. Калькулятор импеданса последовательной LC цепи. Угловая циклическая частота переменного тока. Скорость вращения радиуса вектора, т. е. изменение величины угла поворота в течение одной.

Угловая частота Мегаэнциклопедия Кирилла и Мефодия.

Угловая частота. фаза. мгновенное значение. ВЛЭП. Далее рассмотрим все эти. Cheb2ap Документация MATLAB. Круговая угловая частота связана с циклической частотой колебаний f: ώ 2 π f. Циклическая частота f связана с периодом колебаний Т соотношением:​. Угловая частота перевод с русского на английский. Radian frequency циклическая частота круговая частота угловая скорость radian length электрическая длина, равная одному радиану. Периодические синусоидальные сигналы. Ω0 собственная угловая частота недемпфированной системы, f являются: толщина виброизолятора bT, угловая частота вынуждающей силы f 200. Скачать ГОСТ 24346 80 Вибрация. Термины и определения. Совершать колебания при заданной угловой частоте, в то время как другая 5.5 Точность измерения величины угловой частоты должна составлять ±2.

Греческий алфавит и физические величины.

Эту величину называют частотой излучения ν. Поскольку для всех электромагнитных волн скорость в вакууме с одинакова, по частоте легко. 3.4. Угловая модуляция. Фаза и мгновенная частота колебания. Ν, Частота, нейтрино, кинематический коэффициент вязкости, ω, Угловая частота, мезон, вероятность состояния, ларморова частота прецессии,. УГЛОВАЯ ЧАСТОТА это Что такое УГЛОВАЯ ЧАСТОТА?. Где ω 0 ларморова угловая частота прецессии ядра,.

Круговая частота

Как видим, физический и математический подход к описанию периода функций несколько отличаются, и возникает вопрос их связи.

Из приведенной выше формулы гармонических колебаний можно видеть, что она имеет период:

В эту формулу входит параметр $omega$, который обратно пропорционален периоду. При сравнении этой формулы с формулой частоты можно получить:

Или, после упрощений:

Таким образом, параметр $omega$ в $2pi$ раз больше частоты колебаний. Поскольку в одном круге $2pi$ радиан, то параметр $omega$ называется «круговой» или «циклической» частотой.

Физический смысл частоты – это количество колебаний, происходящих в системе за единицу времени, а физический смысл круговой частоты – это количество радиан, проходящих функцией, описывающей систему, за единицу времени.

Рис. 3. Круговая (циклическая) частота.

Таким образом, удобный и наглядный параметр частоты может быть легко преобразован для вида, удобного в математических преобразованиях.

Пружинный маятник

Подобным термином называется система, в которой движения совершает груз, подвешенный на легкой пружине.

Тело находится в положении равновесия, если пружина не деформирована. Если ее растянуть или сжать, то система начнет колебания под действием силы упругости, которая направлена на приведение маятника в положение равновесия.

Сила упругости пропорциональна смещению тела (x), но направлена противоположно. Коэффициент пропорциональности между этими двумя величинами носит название жесткости пружины (k). Таким образом:

F=-kx.

Сила упругости достигает наибольшей величины в положении максимального отклонения тела (амплитуда, смещение) от равновесия. В этой точке наибольшую величину имеет и ускорение.

По мере того, как тело приближается к положению равновесия, уменьшается сила упругости и ускорение. В средней точки обе величины равны нулю, но ненулевое значение имеет скорость тела. Поэтому груз не останавливается, а продолжает движение.

После прохождения положения равновесия он двигается в обратном направлении по инерции, а сила упругости тянет его назад. Благодаря трению воздуха скорость уменьшается, и маятник останавливается.

Все эти модели можно отнести к классическому гармоническому осциллятору — системе, которая имеет одну степень свободы и описывается единственным уравнением.

Какова частота напряжения тока, а точнее частота электрического тока.

Тема: какая у электрического тока частота, что это (частота напряжения тока).

Выражение «напряжение тока» не верно по своему смыслу. Напряжение и ток, это две различные электрические характеристики. Если хотеть понять, какова частота у электрического тока, то стоит сначала разобраться с самим понятием этого тока. Потом уже стане ясно, что есть сила тока, его частота, напряжение. Итак, давайте сравним электричество с обычной водой. Вода течёт по трубам. Трубы бывают различной толщины. Когда краник в рукомойнике закрытый, то внутри труб имеется определённое давление воды, чем больше его отрываешь, тем больше поток воды начинает течь.

Так вот, воду мы будем сравнивать с самими электрическими частицами (электроны и ионы), их движение по электрическому проводнику будет схоже с движением воды в водопроводной трубе. Давление воды, имеющееся внутри труб будет в некотором смысле уподобляться электрическому напряжению. Ну, а о частоте напряжения тока чуть позже. Итак, у нас имеется электрический источник в виде обычной батарейки, у которой имеется плюс и минус. Если мы к ней подключим, допустим, обычную лампочки или моторчик, используя соединительные проводки, а ещё между ними поставим выключатель, то получится обычная электрическая цепь.

Когда мы замкнём выключатель заряженные частицы из одного полюса батарейки устремятся по проводам к противоположному её полюсу, преодолевая свой путь через провода, лампочку и выключатель. Это движение по создавшейся электрической цепи и есть электрический ток (то есть поток самих заряженных частиц). Когда мы разомкнём выключатель, то ток внутри проводников прервётся, а вместо него появиться (точнее говоря возрастёт) напряжение. Это как в кране с водой. Когда мы закрываем кран, то давление воды внутри труб возрастает.

Если же мы начнём постоянно то замыкать, то размыкать выключатель, мы получим периодическое течение электрического тока в цепи. Так вот, тут мы и можем обнаружить нашу частоту напряжения тока, точнее частоту электрического тока. Из физики известно, что частота измеряется в герцах. Один герц равен 1 колебанию в секунду. Следовательно, если у нас получиться за одну секунду замкнуть и разомкнуть нашу электрическую цепочку 3 раза в секунду, мы получим частоту электрического тока (не правильно выражаясь — частоту напряжения тока) в 3 герца. Ну думаю смысл понятен.

Теперь, где мы можем обнаружить эту самую частоту электрического тока. Думаю все слышали, что в обычной домашней розетки напряжение равно 220 вольтам, а частота этого тока (переменного) 50 герц. Это стандартная частота для обычной бытовой электрической сети 220 и 380 вольт. Она зависит от определённых параметров и характеристик, используемых в электроснабжении города. В других электрических и электронных устройствах и системах может применяться другая частота. К примеру, в обычных домашних компьютерах используется частота уже измеряемая в мегагерцах (средняя частота компьютерного процессора равна около 2.7 мегагерца, это довольно высокая частота электрического тока).

Если мы в примере с батарейкой просто замыкали и размыкали переключатель в цепи, получая при этом просто прерывистое течение тока, то в случае переменного тока всё иначе. Переменный ток имеет синусоидальную форму, периодически изменяя свою полярность. То есть, за свои 50 герц в секунду переменный ток в сети попеременно 25 раз плавно будет нарастать то в одной части графика (график зависимости напряжения, тока от времени) (на двух имеющихся проводах будет одна полярность), то 25 раз в противоположной части (другая полярность, + меняется на -, а — на +).

P.S. Из примеров выше думаю Вы поняли, что же такое частота электрического тока (частота напряжения тока, выражаясь неправильно). Это всего лишь периодичность колебаний движения электрических заряженных частиц, движущихся в проводнике. То есть, грубо выражаясь, скорость изменения состояния покоя-движения этих самых частиц (электронов).

Определение частоты и периода

Колебания потока зарядов происходят циклически, по синусоидальному закону. Протяженность одного такого цикла, выраженная в секундах, – это период переменного тока (Т).

Частота тока определятся количеством колебательных циклов за 1 секунду. Другими словами, это скорость, с которой ток меняет направление. Буквенный символ, обозначающий частоту, – f.

Взаимосвязь частоты и периода, выраженная математически, определяется формулой:

Справедлива и обратная зависимость:


Период переменного тока

При расчетах частота переменного тока измеряется в герцах (Гц). Если током совершается 1 колебательный цикл в секунду, то f = 1 Гц.

Важно! Пятьдесят колебательных циклов за 1 секунду соответствуют 50 Гц. Это промышленная частота электрического тока в России.

Иногда в расчетах применяется угловая частота:

единица измерения этого показателя – рад/с.

1 радиан = 360°/2π.

Некоторые общие частотные диапазоны:

  • 50-60 Гц – частота тока в энергосистеме (60 Гц применяется, например, в США);
  • 1-20 кГц (килогерц) – частотно-регулируемые приводы;
  • 16 Гц -20 кГц – аудиочастоты (диапазон человеческого слуха);
  • 3 кГц-3000 ГГц (гигагерц) – радиочастоты.

[spoiler title=”источники:”]

http://poisk-ru.ru/s44882t3.html

http://toolstver.ru/teoriya/uglovaya-chastota-eto.html

[/spoiler]

Угловая частота колебаний, формула

Угловая частота колебаний — это скорость изменения фазы гармонических колебаний.

Если

f частота колебаний, Герц
T период колебаний, секунд

то, вычисляется по формуле:

[ ω = 2πf = frac{2π}{T} ]

Вычислить, найти угловую частоту колебаний через линейную частоту

f – частота (Герц) 

Вычислить

нажмите кнопку для расчета

Вычислить, найти угловую частоту колебаний через период

T – период (сек) 

Вычислить

нажмите кнопку для расчета

Угловая частота колебаний, формула

стр. 535

From Wikipedia, the free encyclopedia

Angular frequency ω (with unit radian per second), is 2π times frequency ν (with unit Hz, also called cycle per second). This figure uses the symbol ν, rather than f to denote frequency.

A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.

In physics, angular frequencyω” (also referred to by the terms angular speed and angular rate) is a scalar measure of the angular displacement per unit time (for example, in rotation) or the rate of change of the phase of a sinusoidal waveform (for example, in oscillations and waves), or as the rate of change of the argument of the sine function.
Angular frequency (or angular speed) is the magnitude of the pseudovector quantity angular velocity.[1]

One turn is equal to 2π radians, hence[1][2]

{displaystyle omega ={frac {2pi }{T}}={2pi f},}

where:

  • ω is the angular frequency (unit: radians per second),
  • T is the period (unit: seconds),
  • f is the ordinary frequency (unit: hertz) (sometimes ν).

Units[edit]

In SI units, angular frequency is normally presented in radians per second, even when it does not express a rotational value. The unit hertz (Hz) is dimensionally equivalent, but by convention it is only used for frequency f, never for angular frequency ω. This convention is used to help avoid the confusion[3] that arises when dealing with quantities such as frequency and angular quantities because the units of measure (such as cycle or radian) are considered to be one and hence may be omitted when expressing quantities in SI units.[4][5]

In digital signal processing, the frequency may be normalized by the sampling rate, yielding the normalized frequency.

Examples[edit]

Circular motion[edit]

In a rotating or orbiting object, there is a relation between distance from the axis, r, tangential speed, v, and the angular frequency of the rotation. During one period, T, a body in circular motion travels a distance {displaystyle vT}. This distance is also equal to the circumference of the path traced out by the body, 2pi r. Setting these two quantities equal, and recalling the link between period and angular frequency we obtain:
{displaystyle omega =v/r.}

Oscillations of a spring[edit]

An object attached to a spring can oscillate. If the spring is assumed to be ideal and massless with no damping, then the motion is simple and harmonic with an angular frequency given by[6]

{displaystyle omega ={sqrt {frac {k}{m}}},}

where

  • k is the spring constant,
  • m is the mass of the object.

ω is referred to as the natural angular frequency (sometimes be denoted as ω0).

As the object oscillates, its acceleration can be calculated by

{displaystyle a=-omega ^{2}x,}

where x is displacement from an equilibrium position.

Using standard frequency f, this equation would be

{displaystyle a=-(2pi f)^{2}x.}

LC circuits[edit]

The resonant angular frequency in a series LC circuit equals the square root of the reciprocal of the product of the capacitance (C measured in farads) and the inductance of the circuit (L, with SI unit henry):[7]

{displaystyle omega ={sqrt {frac {1}{LC}}}.}

Adding series resistance (for example, due to the resistance of the wire in a coil) does not change the resonant frequency of the series LC circuit. For a parallel tuned circuit, the above equation is often a useful approximation, but the resonant frequency does depend on the losses of parallel elements.

Terminology[edit]

Angular frequency is often loosely referred to as frequency, although these two quantities differ by a factor of 2π leading to potential confusion when the distinction is not clear.

See also[edit]

  • Cycle per second
  • Radian per second
  • Degree (angle)
  • Mean motion
  • Orders of magnitude (angular velocity)
  • Simple harmonic motion

References and notes[edit]

  1. ^ a b Cummings, Karen; Halliday, David (2007). Understanding physics. New Delhi: John Wiley & Sons, authorized reprint to Wiley – India. pp. 449, 484, 485, 487. ISBN 978-81-265-0882-2.(UP1)
  2. ^
    Holzner, Steven (2006). Physics for Dummies. Hoboken, New Jersey: Wiley Publishing. pp. 201. ISBN 978-0-7645-5433-9. angular frequency.
  3. ^ Lerner, Lawrence S. (1996-01-01). Physics for scientists and engineers. p. 145. ISBN 978-0-86720-479-7.
  4. ^ Mohr, J. C.; Phillips, W. D. (2015). “Dimensionless Units in the SI”. Metrologia. 52 (1): 40–47. arXiv:1409.2794. Bibcode:2015Metro..52…40M. doi:10.1088/0026-1394/52/1/40. S2CID 3328342.
  5. ^ “SI units need reform to avoid confusion”. Editorial. Nature. 548 (7666): 135. 7 August 2011. doi:10.1038/548135b. PMID 28796224.
  6. ^
    Serway, Raymond A.; Jewett, John W. (2006). Principles of physics (4th ed.). Belmont, CA: Brooks / Cole – Thomson Learning. pp. 375, 376, 385, 397. ISBN 978-0-534-46479-0.
  7. ^
    Nahvi, Mahmood; Edminister, Joseph (2003). Schaum’s outline of theory and problems of electric circuits. McGraw-Hill Companies (McGraw-Hill Professional). pp. 214, 216. ISBN 0-07-139307-2.
    (LC1)

Related Reading:

  • Olenick, Richard P.; Apostol, Tom M.; Goodstein, David L. (2007). The Mechanical Universe. New York City: Cambridge University Press. pp. 383–385, 391–395. ISBN 978-0-521-71592-8.

Чтобы описать колебательные процессы и отличить одни колебания от других, используют 6 характеристик. Они называются так (рис. 1):

  • амплитуда,
  • период,
  • частота,
  • циклическая частота,
  • фаза,
  • начальная фаза.

Характеристики колебаний

Рис. 1. Основные характеристики колебаний – это амплитуда, период и начальная фаза

Такие величины, как амплитуду и период, можно определить по графику колебаний.

Начальную фазу, так же, определяют по графику, с помощью интервала времени (large Delta t), на который относительно нуля сдвигается начало ближайшего периода.

Частоту и циклическую частоту вычисляют из найденного по графику периода, по формулам. Они находятся ниже в тексте этой статьи.

А фазу определяют с помощью формулы, в которую входит интересующий нас момент времени t колебаний. Читайте далее.

Что такое амплитуда

Амплитуда – это наибольшее отклонение величины от равновесия, то есть, максимальное значение колеблющейся величины.

Измеряют в тех же единицах, в которых измерена колеблющаяся величина. К примеру, когда рассматривают механические колебания, в которых изменяется координата, амплитуду измеряют в метрах.

В случае электрических колебаний, в которых изменяется заряд, ее измеряют в Кулонах. Если колеблется ток – то в Амперах, а если – напряжение, то в Вольтах.

Часто обозначают ее, приписывая к букве, обозначающей амплитуду индекс «0» снизу.

К примеру, пусть колеблется величина ( large x ). Тогда символом ( large x_{0} ) обозначают амплитуду колебаний этой величины.

Иногда для обозначения амплитуды используют большую латинскую букву A, так как это первая буква английского слова «amplitude».

С помощью графика амплитуду можно определить так (рис. 2):

Амплитуду на графике находят так

Рис. 2. Амплитуда – это максимальное отклонение от горизонтальной оси либо вверх, либо вниз. Горизонтальная ось проходит через уровень нуля на оси, на которой отмечены амплитуды

Что такое период

Когда колебания повторяются точно, изменяющаяся величина принимает одни и те же значения через одинаковые кусочки времени. Такой кусочек времени называют периодом.

Обозначают его обычно большой латинской буквой «T» и измеряют в секундах.

( large T left( c right) ) – период колебаний.

Одна секунда – достаточно большой интервал времени. Поэтому, хотя период и измеряют в секундах, но для большинства колебаний он будет измеряться долями секунды.

Чтобы по графику колебаний определить период (рис. 3), нужно найти два одинаковых значения колеблющейся величины. После, провести от этих значений к оси времени пунктиры. Расстояние между пунктирами – это период колебаний.

Период – это расстояние между двумя одинаковыми значениями колеблющейся величины

Рис. 3. Период колебаний – это горизонтальное расстояние между двумя похожими точками на графике

Период – это время одного полного колебания.

На графике период найти удобнее одним из таких способов (рис. 4):

По графику колебаний период удобно определять так

Рис. 4. Удобно определять период, как расстояние между двумя соседними вершинами, либо между двумя впадинами

Что такое частота

Обозначают ее с помощью греческой буквы «ню» ( large nu ).

Частота отвечает на вопрос: «Сколько полных колебаний выполняется за одну секунду?» Или же: «Сколько периодов умещается в интервал времени, равный одной секунде?».

Поэтому, размерность частоты — это единицы колебаний в секунду:

( large nu left( frac{1}{c} right) ).

Иногда в учебниках встречается такая запись ( large displaystyle nu left( c^{-1} right) ), потому, что по свойствам степени ( large  displaystyle frac{1}{c} = c^{-1} ).

Начиная с 1933 года частоту указывают в Герцах в честь Генриха Рудольфа Герца. Он совершил значимые открытия в физике, изучал колебания и доказал, что существуют электромагнитные волны.

Одно колебание в секунду соответствует частоте в 1 Герц.

[ large displaystyle boxed{ frac{ 1 text{колебание}}{1 text{секунда}} = 1 text{Гц} }]

Чтобы с помощью графика определить частоту, нужно на оси времени определить период. А затем посчитать частоту по такой формуле:

[ large boxed{ nu = frac{1}{T} }]

Существует еще один способ определить частоту с помощью графика колеблющейся величины. Нужно отмерить на графике интервал времени, равный одной секунде, и сосчитать количество периодов колебаний, уместившихся в этот интервал (рис. 5).

Частота – это количество периодов, уместившихся в одну секунду

Рис. 5. На графике частота – это количество периодов, уместившихся в одну секунду

Что такое циклическая частота

Колебательное движение и движение по окружности имеют много общего – это повторяющиеся движения. Одному полному обороту соответствует угол (large 2pi) радиан. Поэтому, кроме интервала времени 1 секунда, физики используют интервал времени, равный (large 2pi) секунд.

Число полных колебаний для такого интервала времени, называется циклической частотой и обозначается греческой буквой «омега»:

( large displaystyle omega left( frac{text{рад}}{c} right) )

Примечание: Величину ( large omega ) так же называют круговой частотой, а еще — угловой скоростью (ссылка).

Циклическая частота отвечает на вопрос: «Сколько полных колебаний выполняется за (large 2pi) секунд?» Или же: «Сколько периодов умещается в интервал времени, равный (large 2pi) секунд?».

Обычная ( large nu ) и циклическая ( large omega ) частота колебаний связаны формулой:

[ large boxed{ omega = 2pi cdot nu }]

Слева в формуле количество колебаний измеряется в радианах на секунду, а справа – в Герцах.

Чтобы с помощью графика колебаний определить величину ( large omega ), нужно сначала найти период T.

Затем, воспользоваться формулой ( large displaystyle nu = frac{1}{T} ) и вычислить частоту ( large nu ).

И только после этого, с помощью формулы ( large omega = 2pi cdot nu ) посчитать циклическую ( large omega ) частоту.

Для грубой устной оценки можно считать, что циклическая частота превышает обычную частоту примерно в 6 раз численно.

Определить величину ( large omega ) по графику колебаний можно еще одним способом. На оси времени отметить интервал, равный (large 2pi), а затем, сосчитать количество периодов колебаний в этом интервале (рис. 6).

Циклическая частота – это количество периодов, уместившихся в 2 пи секунд

Рис. 6. На графике циклическая (круговая) частота – это количество периодов, уместившихся в 2 пи секунд

Что такое начальная фаза и как определить ее по графику колебаний

Отклоним качели на некоторый угол от равновесия и будем удерживать их в таком положении. Когда мы отпустим их, качели начнут раскачиваться. А старт колебаний произойдет из угла, на который мы их отклонили.

Такой, начальный угол отклонения, называют начальной фазой колебаний. Обозначим этот угол (рис. 7) какой-нибудь греческой буквой, например, (large varphi_{0} ).

(large varphi_{0} left(text{рад} right) ) — начальная фаза, измеряется в радианах (или градусах).

Начальная фаза колебаний – это угол, на который мы отклонили качели, перед тем, как их отпустить. Из этого угла начнется колебательный процесс.

Начальная фаза – это угол отклонения качелей перед началом их колебаний

Рис. 7. Угол отклонения качелей перед началом колебаний

Рассмотрим теперь, как величина (large varphi_{0} ) влияет на график колебаний (рис. 8). Для удобства будем считать, что мы рассматриваем колебания, которые происходят по закону синуса.

Кривая, обозначенная черным на рисунке, начинает период колебаний из точки t = 0. Эта кривая является «чистым», не сдвинутым синусом. Для нее величину начальной фазы (large varphi_{0} ) принимаем равной нулю.

Начальная фаза влияет на сдвиг графика по горизонтальной оси

Рис. 8. Вертикальное положение стартовой точки в момент времени t = 0 и сдвиг графика по горизонтали определяется начальной фазой

Вторая кривая на рисунке обозначена красным цветом. Начало ее периода сдвинуто вправо относительно точки t = 0. Поэтому, для красной кривой, начавшей новый период колебаний спустя время (large Delta t), начальный угол (large varphi_{0} ) будет отличаться от нулевого значения.

Определим угол (large varphi_{0} ) с помощью графика колебаний.

Обратим внимание (рис. 8) на то, что время, лежащее на горизонтальной оси, измеряется в секундах, а величина (large varphi_{0} ) — в радианах. Значит, нужно связать формулой кусочек времени (large Delta t) и соответствующий ему начальный угол (large varphi_{0} ).

Как вычислить начальный угол по интервалу смещения

Алгоритм нахождения начального угла состоит из нескольких несложных шагов.

  • Сначала определим интервал времени, обозначенный синими стрелками на рисунке. На осях большинства графиков располагают цифры, по которым это можно сделать. Как видно из рис. 8, этот интервал (large Delta t) равен 1 сек.
  • Затем определим период. Для этого отметим одно полное колебание на красной кривой. Колебание началось в точке t = 1, а закончилось в точке t =5. Взяв разность между этими двумя точками времени, получим значение периода.

[large T = 5 – 1 = 4 left( text{сек} right)]

Из графика следует, что период T = 4 сек.

  • Рассчитаем теперь, какую долю периода составляет интервал времени (large Delta t). Для этого составим такую дробь (large displaystyle frac{Delta t }{T} ):

[large frac{Delta t }{T} = frac{1}{4} ]

Полученное значение дроби означает, что красная кривая сдвинута относительно точки t = 0 и черной кривой на четверть периода.

  • Нам известно, что одно полное колебание — один полный оборот (цикл), синус (или косинус) совершает, проходя каждый раз угол (large 2pi ). Найдем теперь, как связана найденная доля периода с углом (large 2pi ) полного цикла.

Для этого используем формулу:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large displaystyle frac{1}{4} cdot 2pi = frac{pi }{2} =varphi_{0} )

Значит, интервалу (large Delta t) соответствует угол (large displaystyle frac{pi }{2} ) – это начальная фаза для красной кривой на рисунке.

  • В заключение обратим внимание на следующее. Начало ближайшего к точке t = 0 периода красной кривой сдвинуто вправо. То есть, кривая запаздывает относительно «чистого» синуса.

Чтобы обозначить запаздывание, будем использовать знак «минус» для начального угла:

[large varphi_{0} = — frac{pi }{2} ]

Примечание: Если на кривой колебаний начало ближайшего периода лежит левее точки t = 0, то в таком случае, угол (large displaystyle frac{pi }{2} ) имеет знак «плюс».

Для не сдвинутого влево, либо вправо, синуса или косинуса, начальная фаза нулевая (large varphi_{0} = 0 ).

Для синуса или косинуса, сдвинутого влево по графику и опережающего обычную функцию, начальная фаза берется со знаком «+».

А если функция сдвинута вправо и запаздывает относительно обычной функции, величину (large varphi_{0} ) записываем со знаком «-».

Примечания:

  1. Физики начинают отсчет времени из точки 0. Поэтому, время в задачах будет величиной не отрицательной.
  2. На графике колебаний начальная фаза ( varphi_{0}) влияет на вертикальный сдвиг точки, из которой стартует колебательный процесс. Значит, можно для простоты сказать, что колебания имеют начальную точку.

Благодаря таким допущениям график колебаний при решении большинства задач можно изображать, начиная из окрестности нуля и преимущественно в правой полуплоскости.

Что такое фаза колебаний

Рассмотрим еще раз обыкновенные детские качели (рис. 9) и угол их отклонения от положения равновесия. С течением времени этот угол изменяется, то есть, он зависит от времени.

Фаза изменяется в процессе колебаний

Рис. 9. Угол отклонения от равновесия – фаза, изменяется в процессе колебаний

В процессе колебаний изменяется угол отклонения от равновесия. Этот изменяющийся угол называют фазой колебаний и обозначают (varphi).

Различия между фазой и начальной фазой

Существуют два угла отклонения от равновесия – начальный, он задается перед началом колебаний и, угол, изменяющийся во время колебаний.

Первый угол называют начальной ( varphi_{0}) фазой (рис. 10а), она считается неизменной величиной. А второй угол – просто ( varphi) фазой (рис. 10б) – это величина переменная.

Фаза и начальная фаза имеют различия

Рис. 10. Перед началом колебаний задаем начальную фазу — начальный угол отклонения от равновесия. А угол, который изменяется во время колебаний, называют фазой

Как на графике колебаний отметить фазу

На графике колебаний фаза (large varphi) выглядит, как точка на кривой. С течением времени эта точка сдвигается (бежит) по графику слева направо (рис. 11). То есть, в разные моменты времени она будет находиться на различных участках кривой.

На рисунке отмечены две крупные красные точки, они соответствуют фазам колебаний в моменты времени t1 и t2.

Фазу обозначают бегущей по кривой точкой

Рис. 11. На графике колебаний фаза – это точка, скользящая по кривой. В различные моменты времени она находится в разных положениях на графике

А начальная фаза на графике колебаний выглядит, как место, в котором находится точка, лежащая на кривой колебаний, в момент времени t=0. На рисунке дополнительно присутствует одна мелкая красная точка, она соответствует начальной фазе колебаний.

Как определить фазу с помощью формулы

Пусть нам известны величины (large omega) — циклическая частота и (large varphi_{0}) — начальная фаза. Во время колебаний эти величины не изменяются, то есть, являются константами.

Время колебаний t будет величиной переменной.

Фазу (large varphi), соответствующую любому интересующему нас моменту t времени, можно определить из такого уравнения:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

Левая и правая части этого уравнения имеют размерность угла (т. е. измеряются в радианах, или градусах). А подставляя вместо символа t в это уравнение интересующие нас значения времени, можно получать соответствующие им значения фазы.

Что такое разность фаз

Обычно понятие разности фаз применяют, когда сравнивают два колебательных процесса между собой.

Рассмотрим два колебательных процесса (рис. 12). Каждый имеет свою начальную фазу.

Обозначим их:

( large varphi_{01}) – для первого процесса и,

( large varphi_{02}) – для второго процесса.

Разность фаз двух колебаний

Рис. 12. Для двух колебаний можно ввести понятие разности фаз

Определим разность фаз между первым и вторым колебательными процессами:

[large boxed{ Delta varphi = varphi_{01} —  varphi_{02} }]

Величина (large Delta varphi ) показывает, на сколько отличаются фазы двух колебаний, она называется разностью фаз.

Как связаны характеристики колебаний — формулы

Движение по окружности и колебательное движение имеют определенную схожесть, так как эти виды движения могут быть периодическими.

Поэтому, основные формулы, применимые для движения по окружности, подойдут так же, для описания колебательного движения.

  • Связь между периодом, количеством колебаний и общим временем колебательного процесса:

[large boxed{ T cdot N = t }]

( large T left( c right) ) – время одного полного колебания (период колебаний);

( large N left( text{шт} right) ) – количество полных колебаний;

( large t left( c right) ) – общее время для нескольких колебаний;

  • Период и частота колебаний связаны так:

[large boxed{ T = frac{1}{nu} }]

(large nu left( text{Гц} right) ) – частота колебаний.

  • Количество и частота колебаний связаны формулой:

[large boxed{ N = nu cdot t}]

  • Связь между частотой и циклической частотой колебаний:

[large boxed{ nu cdot 2pi = omega }]

(large displaystyle omega left( frac{text{рад}}{c} right) ) – циклическая (круговая) частота колебаний.

  • Фаза и циклическая частота колебаний связаны так:

[large boxed{ varphi = omega cdot t + varphi_{0} }]

(large varphi_{0} left( text{рад} right) ) — начальная фаза;

(large varphi left( text{рад} right) ) – фаза (угол) в выбранный момент времени t;

  • Между фазой и количеством колебаний связь описана так:

[large boxed{ varphi = N cdot 2pi }]

  • Интервал времени (large Delta t ) (сдвигом) и начальная фаза колебаний связаны:

[large boxed{ frac{Delta t }{T} cdot 2pi = varphi_{0} }]

(large Delta t left( c right) ) — интервал времени, на который относительно точки t=0 сдвинуто начало ближайшего периода.

Добавить комментарий