Вторая производная или производная второго порядка функции является производной от производной от . Грубо говоря, вторая производная измеряет, как изменяется скорость изменения самой величины; например, вторая производная положения объекта по времени — это мгновенное ускорение объекта или скорость изменения скорости объекта по времени. В нотации Лейбница:
где — ускорение, — скорость, — время, — положение объекта, d — мгновенная «дельта» или изменение. Последнее выражение является второй производной положения по времени.
На графике функции вторая производная соответствует кривизне или выпуклости графика. График функции с положительной второй производной на некотором участке является выпуклым вниз на этом участке, в то время как график функции с отрицательной второй производной на некотором участке изгибается в противоположную сторону на этом участке.
Обозначение[править | править код]
Вторая производная функции обычно обозначается [1][2]. То есть:
- .
При использовании нотации Лейбница, частная вторая производная зависимой переменной по независимой переменной записывается как:
Данное обозначение получено из следующей формулы:
Вторая производная степенной функции[править | править код]
Взяв два раза производную, получается формула второй производной:
Пример[править | править код]
Дана функция
производная от — функция
Вторая производная от является производной от , а именно
Вторая производная на графике[править | править код]
Выпуклость[править | править код]
Вторая производная функции может использоваться для определения выпуклости/вогнутости графика [2]. Функция, вторая производная которой положительна, будет выпуклой вниз (также называется вогнутой вверх), что означает, что касательная будет лежать ниже графика функции. Точно так же функция, у которой вторая производная отрицательна, будет выпукла вверх (также называется просто вогнутой вниз), а её касательные линии будут лежать над графиком функции.
Точки перегиба[править | править код]
Если вторая производная функции меняет знак, то график функции меняется с выпуклого вверх на выпуклый вниз или наоборот. Точка, в которой график уже не выпуклый вверх, но еще не выпуклый вниз, называется точкой перегиба. Если вторая производная непрерывна, она принимает нулевое значение в любой точке перегиба, однако стоит учитывать, что не каждая точка, в которой вторая производная равна нулю, обязательно является точкой перегиба.
Исследование стационарных точек[править | править код]
Связь второй производной и графика можно использовать для проверки того, является ли стационарная точка функции (то есть точка, где ) локальным максимумом или локальным минимумом. Более подробно:
Причину, по которой вторая производная дает такие результаты, можно понять с помощью аналогии с реальным миром. Рассмотрим транспортное средство, которое вначале движется вперед с большой скоростью, но с отрицательным ускорением. Ясно, что положение автомобиля в точке, где скорость достигает нуля, будет наибольшим расстоянием от начального положения — следующим шагом скорость станет отрицательной, и автомобиль начнет ехать в противоположную сторону. То же самое верно и для минимума, когда транспортное средство сначала имеет отрицательную скорость, но положительное ускорение.
Предел[править | править код]
Можно записать вторую производную при помощи всего одного предела:
Данный предел можно называть второй симметричной производной[3][4]. Стоит обратить внимание, что вторая симметричная производная может существовать, даже если (обычная) вторая производная не существует.
Правую часть выражения можно записать в виде разностного отношения разностных отношений:
Этот предел можно рассматривать как непрерывную версию второй конечной разности[en] для последовательностей.
Однако существование указанного выше предела не означает, что функция имеет вторую производную. Приведенный выше предел просто дает возможность вычислить вторую производную, но не дает представления о ее существовании. Контрпримером является функция , которая определяется как:
Функция разрывна в нуле, поэтому вторая производная для не существует. Но вышеуказанный предел существует для :
Квадратичная аппроксимация[править | править код]
Так же, как первая производная связана с линейной аппроксимацией, вторая производная связана с квадратичной аппроксимацией для функции . Эта квадратичная функция, первые и вторые производные которой такие же, как у в данной точке. Формула квадратичного приближения функции вокруг точки имеет вид
Эта квадратичная аппроксимация представляет собой ряд Тейлора второго порядка для функции с центром в точке x = a.
Собственные значения и собственные векторы второй производной[править | править код]
Для многих краевых задач можно получить явные формулы для собственных значений и собственных векторов оператора второй производной. Например, если предположить, что и заданы однородные граничные условия Дирихле (то есть ), то собственные значения и соответствующие собственные векторы (также называемые собственными функциями) равны . Здесь
Для других известных случаев см. собственные значения и собственные векторы второй производной[en].
Обобщение на более высокие измерения[править | править код]
Гессиан[править | править код]
Вторая производная обобщается на более высокие измерения с помощью понятия вторых частных производных. Для функции есть три частные производные второго порядка:
- ,
и смешанные частные производные:
Если все эти производные непрерывны, то можно составить из них симметричную матрицу, известную как матрица Гессе. Собственные значения этой матрицы можно использовать для реализации многомерного аналога проверки второй производной.
Другим распространенным обобщением второй производной является лапласиан. Это дифференциальный оператор (или же ), определяется как:
Лапласиан функции равен дивергенции градиента и следу матрицы Гессе.
См. также[править | править код]
- Конечная разность, используемая для аппроксимации второй производной
- Проверка на точку перегиба[en]
- Равенство смешанных производных
Примечания[править | править код]
- ↑ Content – The second derivative. amsi.org.au. Дата обращения: 16 сентября 2020. Архивировано 24 марта 2022 года.
- ↑ 1 2 Second Derivatives (амер. англ.) (недоступная ссылка — история). Math24. Дата обращения: 16 сентября 2020.
- ↑ A. Zygmund. Trigonometric Series. — Cambridge University Press, 2002. — P. 22–23. — ISBN 978-0-521-89053-3.
- ↑ Thomson. Symmetric Properties of Real Functions. — Marcel Dekker, 1994. — ISBN 0-8247-9230-0.
Литература[править | править код]
Печатные ресурсы[править | править код]
- Anton, Howard; Bivens, Irl & Davis, Stephen (February 2, 2005), Calculus: Early Transcendentals Single and Multivariable (8th ed.), New York: Wiley, ISBN 978-0-471-47244-5
- Apostol, Tom M. (June 1967), Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra (2nd ed.), Wiley, ISBN 978-0-471-00005-1, <https://archive.org/details/calculus01apos>
- Apostol, Tom M. (June 1969), Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications (2nd ed.), Wiley, ISBN 978-0-471-00007-5, <https://archive.org/details/calculus01apos>
- Eves, Howard (January 2, 1990), An Introduction to the History of Mathematics (6th ed.), Brooks Cole, ISBN 978-0-03-029558-4
- Larson, Ron; Hostetler, Robert P. & Edwards, Bruce H. (February 28, 2006), Calculus: Early Transcendental Functions (4th ed.), Houghton Mifflin Company, ISBN 978-0-618-60624-5
- Spivak, Michael (September 1994), Calculus (3rd ed.), Publish or Perish, ISBN 978-0-914098-89-8
- Stewart, James (December 24, 2002), Calculus (5th ed.), Brooks Cole, ISBN 978-0-534-39339-7, <https://archive.org/details/calculus0000stew>
- Thompson, Silvanus P. (September 8, 1998), Calculus Made Easy[en] (Revised, Updated, Expanded ed.), New York: St. Martin’s Press, ISBN 978-0-312-18548-0
Книги, доступные в интернете[править | править код]
- Crowell, Benjamin (2003), Calculus, <http://www.lightandmatter.com/calc/>
- Garrett, Paul (2004), Notes on First-Year Calculus, <http://www.math.umn.edu/~garrett/calculus/>
- Hussain, Faraz (2006), Understanding Calculus, <http://www.understandingcalculus.com/>
- Keisler, H. Jerome (2000), Elementary Calculus: An Approach Using Infinitesimals, <http://www.math.wisc.edu/~keisler/calc.html>
- Mauch, Sean (2004), Unabridged Version of Sean’s Applied Math Book, <http://www.its.caltech.edu/~sean/book/unabridged.html>
- Sloughter, Dan (2000), Difference Equations to Differential Equations, <http://synechism.org/drupal/de2de/>
- Strang, Gilbert (1991), Calculus, <http://ocw.mit.edu/ans7870/resources/Strang/strangtext.htm>
- Stroyan, Keith D. (1997), A Brief Introduction to Infinitesimal Calculus, <http://www.math.uiowa.edu/~stroyan/InfsmlCalculus/InfsmlCalc.htm>
- Wikibooks, Calculus, <http://en.wikibooks.org/wiki/Calculus>
Ссылки[править | править код]
- Дискретная вторая производная от неравномерно расположенных точек
Вторая производная
Всё
очень просто. Вторая производная –
это производная
от первой производной:
Стандартные
обозначения второй производной:
,
или
(дробь
читается так: «дэ два игрек по дэ икс
квадрат»). Чаще всего вторую производную
обозначают первыми двумя вариантами.
Но третий вариант тоже встречается,
причем, его очень любят включать в
условия контрольных заданий, например:
«Найдите
функции…».
А студент сидит и битый час чешет репу,
что это вообще такое.
Рассмотрим
простейший пример. Найдем вторую
производную от функции
.
Для того чтобы
найти вторую производную, как многие
догадались, нужно сначала найти первую
производную:
Теперь находим
вторую производную:
Готово.
Рассмотрим более
содержательные примеры.
Пример 11
Найти
вторую производную функции
Найдем
первую производную:
На
каждом шаге всегда смотрим, нельзя ли
что-нибудь упростить? Сейчас нам предстоит
дифференцировать произведение двух
функций, и мы избавимся от этой
неприятности, применив
известную тригонометрическую
формулу
.
Точнее говоря, использовать формулу
будем в обратном направлении:
:
Находим
вторую производную:
Готово.
Можно
было пойти другим путём – понизить
степень функции еще перед дифференцированием,
используя формулу
:
Если интересно,
возьмите первую и вторую производные
снова. Результаты, естественно, совпадут.
Отмечу,
что понижение степени бывает очень
выгодно при нахождении частных
производных функции.
Здесь же оба способа решения будут
примерно одинаковой длины и сложности.
Как и
для первой производной, можно
рассмотреть задачу
нахождения второй производной в точке.
Например:
Вычислим значение найденной второй
производной в точке
:
Необходимость
находить вторую производную и вторую
производную в точке возникает при
исследовании графика функции на
выпуклость/вогнутость и перегибы.
Пример 12
Найти
вторую производную функции
.
Найти
Это пример для
самостоятельного решения.
Аналогично можно
найти третью производную, а также
производные более высоких порядков.
Такие задания встречаются, но встречаются
значительно реже.
Решения
и ответы:
Пример
2: Найдем производную:
Вычислим
значение функции в точке
:
Пример
4: Найдем производную:
Вычислим
производную в заданной точке:
Пример
6: Уравнение касательной составим по
формуле
1)
Вычислим значение функции в точке
:
2)
Найдем производную. Перед дифференцированием
функцию выгодно упростить:
3)
Вычислим значение производной в
точке
:
4)
Подставим значения
,
и
в
формулу
:
Пример
8: Преобразуем функцию:
Найдем
производную:
Запишем
дифференциал:
Пример
10: Найдем производную:
Запишем
дифференциал:
Вычислим
дифференциал в точке
:
Пример
12: Найдем первую производную:
Найдем
вторую производную:
Вычислим:
4. 2.Частные производные. Примеры решений
На
данном уроке мы познакомимся с понятием
функции двух переменных, а также подробно
рассмотрим наиболее распространенное
задание – нахождение частных
производныхпервого
и второго порядка, полного дифференциала
функции. Студенты-заочники, как правило,
сталкиваются с частными производными
на 1 курсе во 2 семестре. Причем, по моим
наблюдениям, задание на нахождение
частных производных практически всегда
встречается на экзамене.
Для
эффективного изучения нижеизложенного
материала Вам необходимо уметь
более или менее уверенно находить
«обычные» производные функции одной
переменной. Научиться правильно
обращаться с производными можно на
уроках Как
найти производную? иПроизводная
сложной функции.
Также нам потребуется таблица производных
элементарных функций и правил
дифференцирования, удобнее всего, если
она будет под рукой в распечатанном
виде. Раздобыть справочный материал
можно на страницеМатематические
формулы и таблицы.
Начнем
с самого понятия функции двух переменных,
я постараюсь ограничиться минимумом
теории, так как сайт имеет практическую
направленность. Функция двух переменных
обычно записывается как
,
при этом переменные
,
называются независимыми
переменными или аргументами.
Пример:
–
функция двух переменных.
Иногда
используют запись
.
Также встречаются задания, где вместо
буквы
используется
буква
.
Полезно
знать геометрический смысл функций.
Функции одной переменной
соответствует
определенная линия на плоскости,
например,
–
всем знакомая школьная парабола. Любая
функция двух переменных
с
геометрической точки зрения представляет
собой поверхность в трехмерном
пространстве (плоскости, цилиндры, шары,
параболоиды и т.д.). Но, собственно, это
уже аналитическая геометрия, а у нас на
повестке дня математический анализ.
Переходим
к вопросу нахождения частных производных
первого и второго порядков. Должен
сообщить хорошую новость для тех, кто
выпил несколько чашек кофе и настроился
на невообразимо трудный материал: частные
производные – это почти то же самое,
что и «обычные» производные функции
одной переменной.
Для
частных производных справедливы все
правила дифференцирования и таблица
производных элементарных функций. Есть
только пара небольших отличий, с которыми
мы познакомимся прямо сейчас.
Пример 1
Найти
частные производные первого и второго
порядка функции
Сначала найдем
частные производные первого порядка.
Их две.
Обозначения:
или
–
частная производная по «икс»
или
–
частная производная по «игрек»
Начнем
с
. Когда
мы находим частную производную по «икс»,
то переменная
считается
константой (постоянным числом).
Решаем. На данном
уроке я буду приводить полное решение
сразу, а комментарии давать ниже.
Комментарии к
выполненным действиям:
(1)
Первое, что мы делаем при нахождении
частной производной – заключаем всю функцию
в скобки под штрих с
подстрочным индексом.
Внимание,
важно! Подстрочные
индексы НЕ ТЕРЯЕМ по ходу решения. В
данном случае, если Вы где-нибудь
нарисуете «штрих» без
,
то преподаватель, как минимум, может
поставить рядом с заданием
(сразу
откусить часть балла за невнимательность).
Далее данный шаг
комментироваться не будет, все сделанные
замечания справедливы для любого примера
по рассматриваемой теме.
(2)
Используем правила дифференцирования
,
.
Для простого примера, как этот, оба
правила вполне можно применить на одном
шаге. Обратите внимание на первое
слагаемое: так как
считается
константой, а любую константу можно
вынести за знак производной,
то
мы
выносим за скобки. То есть в данной
ситуации
ничем
не лучше обычного числа. Теперь посмотрим
на третье слагаемое
:
здесь, наоборот, выносить нечего. Так
как
константа,
то
–
тоже константа, и в этом смысле она ничем
не лучше последнего слагаемого –
«семерки».
(3)
Используем табличные производные
и
.
(4) Упрощаем, или,
как я люблю говорить, «причесываем»
ответ.
Теперь
. Когда
мы находим частную производную по
«игрек», то переменная
считается
константой (постоянным числом).
(1)
Используем те же правила дифференцирования
,
.
В первом слагаемом выносим константу
за
знак производной, во втором слагаемом
ничего вынести нельзя поскольку
–
уже константа.
(2)
Используем таблицу производным
элементарных функций. Мысленно
поменяем в таблице все «иксы» на «игреки».
То есть данная таблица рАвно справедлива
и для
(да
и вообще почти для любой буквы). В
частности, используемые нами формулы
выглядят так:
и
.
Итак, частные
производные первого порядка найдены
Подведем итог, чем
же отличается нахождение частных
производных от нахождения «обычных»
производных функции одной переменной:
1)
Когда мы находим частную
производную
, переменная
считается
константой.
2)
Когда мы находим частную
производную
, переменная
считается
константой.
3)
Правила и таблица производных элементарных
функций справедливы и применимы для
любой переменной (
,
либо
какой-нибудь другой), по которой ведется
дифференцирование.
Шаг второй. Находим
частные производные второго порядка.
Их четыре.
Обозначения:
или
–
вторая производная по «икс»
или
–
вторая производная по
«игрек»
или
– смешанная производная
«икс по игрек»
или
– смешанная производная
«игрек по икс»
В
понятии второй производной нет ничего
сложного. Говоря простым языком, вторая
производная – это производная от первой
производной.
Для
наглядности я перепишу уже найденные
частные производные первого порядка:
Сначала
найдем смешанные производные:
Как
видите, всё просто: берем частную
производную
и
дифференцируем ее еще раз, но в данном
случае – уже по «игрек».
Аналогично:
Для
практических примеров справедливо
следующее равенство:
Таким образом,
через смешанные производные второго
порядка очень удобно проверить, а
правильно ли мы нашли частные производные
первого порядка.
Находим
вторую производную по «икс».
Никаких
изобретений, берем
и
дифференцируем её по «икс» еще раз:
Аналогично:
Следует
отметить, что при нахождении
,
нужно
проявить повышенное
внимание, так как
никаких чудесных равенств для проверки
не существует.
Пример 2
Найти
частные производные первого и второго
порядка функции
Это
пример для самостоятельного решения
(ответ в конце урока). Если возникли
трудности с дифференцированием корней,
рекомендую ознакомиться уроком Как
найти производную?
При определенном
опыте частные производные из примеров
№№1,2 будут решаться Вами устно.
Переходим к более
сложным примерам.
Пример 3
Найти
частные производные первого порядка
функции
.
Проверить, что
.
Записать полный дифференциал первого
порядка
.
Решение:
Находим частные производные первого
порядка:
Обратите
внимание на подстрочный индекс:
,
рядом с «иксом» не возбраняется в скобках
записывать, что
–
константа. Данная пометка может быть
очень полезна для начинающих, чтобы
легче было ориентироваться в решении.
Дальнейшие
комментарии:
(1)
Выносим все константы за знак производной.
В данном случае
и
,
а, значит, и их произведение
считается
постоянным числом.
(2) Не забываем, как
правильно дифференцировать корни.
(1)
Выносим все константы за знак производной,
в данной случае константой является
.
(2) Под
штрихом у нас осталось произведение
двух функций, следовательно, нужно
использовать правило дифференцирования
произведения
.
(3) Не
забываем, что
– это сложная функция (хотя и простейшая
из сложных). Используем соответствующее
правило:
.
Теперь находим
смешанные производные второго порядка:
,
значит, все вычисления выполнены верно.
Запишем
полный дифференциал
.
В контексте рассматриваемого задания
не имеет смысла рассказывать, что такое
полный дифференциал функции двух
переменных. Важно, что этот самый
дифференциал очень часто требуется
записать в практических задачах.
Полный
дифференциал первого порядка функции
двух переменных имеет вид:
В данном случае:
То
есть, в формулу нужно просто подставить
уже найденные частные производные
первого порядка. Значки дифференциалов
и
в
этой и похожих ситуациях по возможности
лучше записывать в числителях:
Пример 4
Найти
частные производные первого порядка
функции
.
Проверить, что
.
Записать полный дифференциал первого
порядка
.
Это пример для
самостоятельного решения. Полное решение
и образец оформления задачи – в конце
урока.
Рассмотрим серию
примеров, включающих в себя сложные
функции.
Пример 5
Найти
частные производные первого порядка
функции
.
Записать
полный дифференциал
.
Решение:
(1)
Применяем правило дифференцирования
сложной функции
.
С урока Производная
сложной функции
следует помнить
очень важный момент: когда мы по таблице
превращаем синус (внешнюю функцию) в
косинус, то вложение
(внутренняя
функция) у нас не
меняется.
(2)
Здесь используем свойство корней:
,
выносим константу
за знак производной, а корень
представляем в нужном для дифференцирования
виде.
Аналогично:
Запишем
полный дифференциал первого порядка:
Пример 6
Найти
частные производные первого порядка
функции
.
Записать
полный дифференциал
.
Это пример для
самостоятельного решения (ответ в конце
урока). Полное решение не привожу, так
как оно достаточно простое
Довольно часто
все вышерассмотренные правила применяются
в комбинации.
Пример 7
Найти
частные производные первого порядка
функции
.
(1) Используем
правило дифференцирования суммы
(2)
Первое слагаемое в данном случае
считается константой, поскольку в
выражении
нет ничего, зависящего от «икс» – только
«игреки».
(Знаете,
всегда приятно, когда дробь удается
превратить в ноль).
Для
второго слагаемого применяем правило
дифференцирования произведения. Кстати,
в этом смысле ничего бы не изменилось,
если бы вместо
была дана функция
– важно, что здесь произведение
двух функций, КАЖДАЯ
из которых зависит от
«икс»,
а поэтому, нужно использовать правило
дифференцирования произведения. Для
третьего слагаемого применяем правило
дифференцирования сложной функции.
(1) В
первом слагаемом и в числителе и в
знаменателе содержится «игрек»,
следовательно, нужно использовать
правило дифференцирования частного:
.
Второе слагаемое зависит ТОЛЬКО от
«икс», значит,
считается
константой и превращается в ноль. Для
третьего слагаемого используем правило
дифференцирования сложной функции.
Для тех читателей,
которые мужественно добрались почти
до конца урока, расскажу старый
мехматовский анекдот для разрядки:
Однажды
в пространстве функций появилась злобная
производная и как пошла всех
дифференцировать. Все функции разбегаются
кто куда, никому не хочется превращаться!
И только одна функция никуда не убегает.
Подходит к ней производная и спрашивает:
– А
почему это ты от меня никуда не убегаешь?
– Ха.
А мне всё равно, ведь я «е в степени икс»,
и ты со мной ничего не сделаешь!
На
что злобная производная с коварной
улыбкой отвечает:
– Вот
здесь ты ошибаешься, я тебя продифференцирую
по «игрек», так что быть тебе нулем.
(Кто
понял анекдот, тот освоил производные,
минимум, на «тройку»).
Пример 8
Найти
частные производные первого порядка
функции
.
Это пример для
самостоятельного решения. Полное решение
и образец оформления задачи – в конце
урока.
Ну вот почти и всё.
Напоследок не могу не обрадовать
любителей математики еще одним примером.
Дело даже не в любителях, у всех разный
уровень математической подготовки –
встречаются люди (и не так уж редко),
которые любят потягаться с заданиями
посложнее. Хотя, последний на данном
уроке пример не столько сложный, сколько
громоздкий с точки зрения вычислений.
Пример 9
Дана
функция двух переменных
.
Найти все частные производные первого
и второго порядков.
Это пример для
самостоятельного решения. Полное решение
и образец оформления где-то рядом.
Ответы:
Пример
2:
,
,
,
Пример
4: Ссылка для просмотра ниже.
Пример
6:
,
,
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
08.02.20157.31 Mб91.rtf
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Лекция 6. Вторая производная, её геометрический и
физический смысл. Применение производной к исследованию функций и построению
графиков. Нахождение скорости для процесса, заданного формулой и графиком.
План
1. Производная
второго порядка.
2. Физический смысл
второй производной.
3. Геометрический
смысл второй производной. Точки перегиба.
4. Исследование функции на экстремум с помощью
второй производной.
5. Решение задач
(Учебник: Ш.А.
Алимов Алгебра и начала математического анализа 10-11 класс глава IX §53 стр. 283-286)
1. Производная
второго порядка.
Пусть функция y = f(x) определена на
интервале (a; b), и пусть в каждой
точке этого интервала она имеет производную , тогда можно назвать первой
производной (или производной первого порядка) данной функции.
Рассмотрим функцию . Если имеет производную в точке , то эту производную
называют второй производной (или производной второго порядка) данной
функции f(x) в точке и обозначают .
Короче, вторая производная – это
производная от первой производной, т.е. .
Производная от , т.е. , называется третьей
производной (или производной третьего порядка) данной функции f(x) и т.д.
Определение. Вообще
n-й производной (или производного n-го
порядка) функции y = f(x) в точке x (или
на некотором интервале (a;b))
называется производная от производной (n-1)-го порядка в
этой точке x (или на этом интервале (a;b)). Она обозначается
Или .
Примеры
а) Если , то
б) если , то
и вообще
если .
2. Физический
смысл второй производной.
Пусть
материальная точка движется прямолинейно и
, – закон движения. Тогда
скорость в данный момент времени есть производная от пути по времени , вычисленная для
момента .
(1)
Ускорение в данный момент времени есть производная от
скорости по времени, вычисленная для момента .
. (2)
С другой стороны: .
. (3)
Физический смысл второй производной:
Ускорение движения в данный
момент времени есть вторая
производная от пути по времени.
Пример 1
Точка движется прямолинейно по закону . Найти величину скорости и
ускорения в момент времени .
Решение
Ответ: м/с, .
3.
Геометрический смысл второй производной. Точки перегиба.
Условия выпуклости
и точки перегиба графика функции
График функции имеет на интервале выпуклость, направленную вниз, если он расположен не ниже любых
касательных, проведенных к графику функции (рис. 2.14а).
Выпуклость,
направленная вверх, будет, если график функции на этом интервале расположен не выше любых касательных (рис. 2.14б).
Теорема. Если функция имеет на интервале вторую производную и она положительна , то функция выпукла вниз на этом интервале.
Если же , на интервале , то она выпукла вверх на этом интервале.
Точка
перегиба графика непрерывной функции – это точка, при переходе через которую функция меняет направление
выпуклости.
Геометрическая
интерпретация: в точке перегиба касательная пересекает
график функции, так как он переходит с одной стороны касательной на другую,
«перегибаясь» через неё (рис. 2.15).
Точка x = 0 – точка перегиба кубической параболы
Теорема (необходимое
условие существования точки перегиба). Если является точкой перегиба функции , то вторая производная, если она существует, должна обратиться в нуль:
.
Критические
точки – это точки графика, для которых .
Теорема
(достаточное условие существования точки перегиба).
Пусть функция имеет вторую производную в окрестности точки . Эта точка является точкой перегиба функции, если при переходе через неё вторая
производная меняет знак.
Пример 2
Найти интервалы
выпуклости и точки перегиба функции .
Решение
Найдём ,
.
На интервале , следовательно, функция выпукла вниз на этом интервале.
На интервале , следовательно, и на этом интервале функция выпукла вниз.
На интервале и, следовательно, функция выпукла вверх.
Рассмотрим точку x = -1. При переходе через неё меняет знак. Следовательно, x = -1 – это точка
перегиба данной функции.
Рассмотрим точку x = 1. Вторая производная так же меняет знак. Точка x = 1 – точка перегиба
данной функции.
4. Исследование функции на экстремум с
помощью второй производной.
Часто бывает
рациональнее исследовать функцию на экстремум с помощью второй производной.
Правило
исследования функции на экстремум с помощью второй производной:
1. Находят первую
производную .
2. Приравняв к нулю
первую производную, находят действительные корни полученного уравнения (т.е.
критические значения).
3. Находят вторую
производную .
4. Во вторую
производную подставляют поочередно все критические значения; если при этой
подстановке вторая производная окажется положительной, то в этой точке функция
имеет минимум; если же вторая производная окажется отрицательной, то функция
имеет максимум.
5. Вычисляют
значения функции в точках максимума и минимума.
Замечание. Если при подстановке критического значения во вторую производную она
обратится в нуль, то ничего определенного относительно существования экстремума
сказать нельзя, а исследование нужно продолжить с помощью первой производной.
Пример 3
Исследовать на
экстремум с помощью второй производной функцию
.
Решение
1. Находим
производную .
2. Из уравнения находим критические значения.
.
3. Находим вторую
производную .
4. Знаки второй
производной в критических точках:
;
.
5. Вычислим
значения функции в точках минимума и максимума:
,
.
Ответ: функция имеет максимум в точке и минимум в точке .
5. Задания для
самостоятельного решения
Задача 1. (1 балл) Найти производную третьего порядка функции .
Задача 2. (2 балла) Найдите точки перегиба кривой .
Задача 3. (2 балла) Найдите интервалы выпуклости вверх и интервалы выпуклости
вниз функции .
Задача 4. (3 балла) Исследовать на экстремум с помощью второй производной
функцию
.
Задача 5. (2 балла) В момент времени t тело находится на
расстоянии км от места отправления. Найти его ускорение через 2ч.
Данный онлайн калькулятор позволяет находить производную функции второго порядка.
Производная служит обобщенным понятием скорости изменения функции. Производная f’(x) функции f(x) в точке x – это предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю. Нахождение производной функции называется дифференцированием функции.
Так как производная функции также является функцией, то эту функцию можно дифференцировать еще раз. Если функция дифференцируема, то ее производную называют второй производной от f(x) и она обозначается f’’(x). Вторая производная определяет скорость изменения скорости, другими словами, ускорение. Нахождение производной второго порядка может быть использовано, например, для анализа выпуклости функций.
Калькулятор поможет найти производную функции второго порядка онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.
- : x^a
модуль x: abs(x)
Для того, чтобы найти производную функции
нужно написать в строке: f[x], x. Если Вам требуется
найти производную n-го порядка, то следует написать: f[x], {x, n}. В
том случае, если Вам требуется найти частную производную функции напишите в окне гаджета: f[x, y, z,…,t], j, где
— интересующая Вас переменная. Если нужно найти частную производную по
некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
n}, где означает тоже, что и Выше.
Важно подчеркнуть, что калькулятор выдает пошаговое нахождение
производной при нажатии на «Show Steps» в правом верхнем углу
выдаваемого ей ответа.
- Примеры
- x*E^x, x;
- x^3*E^x, {x,17};
- x^3*y^2*Sin[x+y], x;
- x^3*y^2*Sin[x+y], y,
- x/(x+y^4), {x,6}.
Алгебра и начала математического анализа, 11 класс
Урок №18. Производная второго порядка, выпуклость и точки перегиба.
Перечень вопросов, рассматриваемых в теме
1) Нахождение производной второго порядка;
2) Определение промежутка выпуклости графика функции с помощью алгоритма;
3) Решение прикладных задач с использованием производной второго порядка.
Глоссарий по теме
Возрастание функции. Функция y = f(x) возрастает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.
Выпуклость вверх. Функция выпукла вверх, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит выше проведенного отрезка.
Выпуклость вниз. Функция выпукла вниз, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит ниже проведенного отрезка.
Максимум функции. Значение функции в точке максимума называют максимумом функции
Минимум функции. Значение функции в точке минимума называют минимумом функции
Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).
Производная второго порядка (вторая производная). Производная второго порядка есть первая производная от производной первого порядка.
Производную определяют, как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к 0, если такой предел существует.
Точка максимума функции. Точку х0 называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство .
Точка минимума функции. Точку х0называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство .
Точка перегиба. Точки, в которых выпуклость вверх меняется на выпуклость вниз или наоборот, называются точками перегиба.
Точки экстремума функции. Точки минимума и максимума называют точками экстремума.
Убывание функции. Функция y=f(x) убывает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.
Основная литература:
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Дополнительная литература:
Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.
Теоретический материал для самостоятельного изучения
Функция выпукла вниз, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит ниже проведенного отрезка.
Функция выпукла вверх, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит выше проведенного отрезка.
Алгоритм нахождения интервалов выпуклости графика функции:
- Найти область определения функции
- Найти вторую производную функции
- Найти точки, в которых вторая производная равна нулю или не существует
- Найти интервалы, на которые область определения функции разбивается этими точками
- Определить знаки второй производной на каждом интервале
- Если f ‘‘(х) < 0, то кривая выпукла вверх;
если f ‘‘(х) > 0 то кривая выпукла вниз.
- Точки, в которых вторая производная меняет знак, – точки перегиба.
Примеры и разбор решения заданий тренировочного модуля
Пример 1.Найти интервалы выпуклости и точки перегиба функции .
Решение:
- Область определения данной функции D(y) = (-∞; +∞)
- Найдем вторую производную функции:
- при х = 1, х = -1
- Определим знаки второй производной на каждом интервале (-∞; -1), (-1; 1), (1; +∞), используя метод интервалов (рис. 1).
Рисунок 1 – интервалы на числовой прямой
- Так как на интервалах (-∞; -1) и (1; +∞) вторая производная положительна, то на этих интервалах функция выпукла вниз.
Так как на интервале (-1; 1) вторая производная отрицательна, то на этом интервале функция выпукла вверх.
Так как при переходе через точки х = 1 и х = -1 вторая производная меняет знак, то эти точки являются точками перегиба.
Ответ: функция выпукла вниз на интервалах (-∞; -1), (1; +∞);
функция выпукла вверх на интервале (-1; 1);
х = 1, х = -1 – точки перегиба.
Пример 2.Найти точки перегиба функции у=sinх
Решение:
Найдем вторую производную заданной функции
У’=соsх
У”= -sinх
Приравняем её к нулю и найдем корни полученного уравнения -sinх=0
В промежутках
Функция у=sinх принимает положительные значения, следовательно, У”= -sinх <0, а в промежутках , sinх <0, следовательно
У” >0. Значит, в точках вторая производная меняет знак и в этих точках график функции у=sinх имеет перегиб
Ответ: точка перегиба
Пример 3.Точка движется по закону S(t) = 3t4 – 8t3 + 2t – 3. В какой момент времени ускорение точки будет равно 48?
Решение:
Ускорение – это вторая производная s(t).
Найдем уравнение ускорения.
v=S'(t) = 12t3 – 24t2 + 2
a= S”(t) = 36t2 – 48t
Остается подставить вместо ускорения его значение равное 48 и решить уравнение.
36t2 – 48t=48
36t2 – 48t-48=0
При решении один корень получается отрицательный, чего не может быть по условиям задачи, а второй корень равен 2
Ответ: 2
Пример 4. Найдите интервалы выпуклости вверх и выпуклости вниз и точки перегиба функции f(x) = x3 – 6xlnx.
Проверьте свое решение.
Решение:
- D(f) = (0; +∞)
- f (x) = (x3 – 6xln x)
- f (x) = 0 при х = 1, х = -1.
f (x) не существует при х = 0.
С учетом области определения функции, х = 1
- Так как на интервале (1; +∞) вторая производная положительна, то на этом интервале функция выпукла вниз.
Так как на интервале (0; 1) вторая производная отрицательна, то на этом интервале функция выпукла вверх.
Так как при переходе через точку х = 1 вторая производная меняет знак, то эта точка является точкой перегиба.
Ответ: функция выпукла вниз на интервале (1; +∞);
функция выпукла вверх на интервале (-1; 1);
х = 1– точка перегиба.