Логарифм по основанию (a) от (b) – это число (t), которое показывает, в какую степень нужно возвести (a), чтобы получить (b).
Ограничения: числа (a) и (b) такие, что (a>0, ane 1, b>0).
Таким образом, верно основное логарифмическое тождество [Large{{color{royalblue}{a^t=b quadLeftrightarrowquad
log_a{b}=t}}}]
Т.к. мы имеем право возводить в любую степень, то (tin
mathbb{R}).
(blacktriangleright) Если (a,b,c) – числа, удовлетворяющие ограничениям: (a,b,c>0, ane 1), то справедливы следующие формулы:
[begin{array}{|ccc|}
hline textbf{(1)} log_a1=0&&textbf{(2)} log_aa=1\
&&\
textbf{(3)} log_{a^n}{b^m}=frac mnlog_ab&&textbf{(4)}
a^{log_bc}=c^{log_ba}\
&&\
textbf{(5)} log_a{bc}=log_ab+log_ac&&textbf{(6)}
log_a{dfrac bc}=log_ab-log_ac\
&&\
textbf{(7)} log_abcdot log_bc=log_ac & text{или}
&textbf{(7′}) log_bc=dfrac{log_ac}{log_ab}\
&&\
hline
end{array}]
Заметим, что при выполнении ограничений данные формулы верны в обе стороны!
Некоторые частные случаи, которыми удобно пользоваться:
(blacktriangleright) Частные случаи формул (3) и (4): [m=log_a{a^m} text{и} b=a^{log_ab}]
С помощью первой формулы нагляднее видно, как заменить число на логарифм по нужному основанию:
(4=log_2{2^4}=log_2{16});
а с помощью второй – как заменить число на степень с нужным основанием:
(4=3^{log_34}).
(blacktriangleright) Частные случаи формул (7) и (7’): [log_abcdot log_ba=1 text{и}
log_ab=dfrac1{log_ba}]
Пример:
(log_3{25}+dfrac2{log_{frac15}3}={small{text{(применили}}}
{small{text{ формулу}}}
(2))=log_3{25}+2log_3{dfrac15}=log_3{25}+log_3{dfrac1{25}}=log_3{left(25cdotdfrac1{25}right)}=0)
Есть в Профильном ЕГЭ по математике, и даже в первой его части, такие задачи, для решения которых нужно знать ВСЁ. То есть всю школьную программу алгебры, с 5 класса до 11. Или почти всю.
Например, задание №6 Профильного ЕГЭ по математике – вычисления и преобразования. Вам могут встретиться и совсем простые задачи (на сложение дробей), и задания, которые не решить без подготовки. Например, вычисление и преобразование иррациональных выражений, тригонометрических, логарифмических. Задачи на определение модуля и понятие функции. В общем, типов задач здесь множество, по всему курсу алгебры.
И помните, что в ответе в заданиях первой части Профильного ЕГЭ по математике у вас должны получаться целые числа или конечные десятичные дроби.
Дробно-рациональные выражения. Формулы сокращенного умножения
Темы для повторения: Формулы сокращенного умножения, Приемы быстрого счета
Если вам встретится такое задание на ЕГЭ – значит, повезло!
1. Найдите значение выражения
Не спешите перемножать десятичные дроби. Посмотрите на задачу внимательно.
Первый множитель в знаменателе умножили на 10, а второй поделили на 10, просто передвинув запятую.
Ответ: 100.
2. Найдите значение выражения
Ответ: 20.
Корни и степени. Иррациональные выражения
Темы для повторения: Арифметический квадратный корень.
Арифметический квадратный корень из числа — это такое неотрицательное число, квадрат которого равен .
.
3. Вычислите .
Применили одну из формул сокращенного умножения.
Ответ: 8.
4. Вычислите:
Упростим множители:
Ответ: 8.
Действия со степенями
Темы для повторения:
Вспомним правила действий со степенями.
5. Найдите значение выражения: при
Применили формулу частного степеней
Ответ: 256.
6. Вычислите
Ответ: 2.
7. Вычислите , если .
Спокойно, не пугаемся. И конечно, не спешим подставлять значение Сначала упростим выражение.
Ответ: 4,5.
8. Вычислите
Применили формулу для произведения степеней:
Ответ: 12.
9. Вычислите
Записали корни в виде степеней (это удобно!) и применили формулу произведения степеней.
Ответ: 3.
Логарифмические выражения
Темы для повторения:
Логарифмы
Логарифм положительного числа по основанию — это показатель степени, в которую надо возвести , чтобы получить .
.
При этом > 0, > 0,
Основные логарифмические формулы:
Основное логарифмическое тождество:
Логарифм произведения равен сумме логарифмов:
Логарифм частного равен разности логарифмов:
Формула для логарифма степени:
Формула перехода к новому основанию:
10. Вычислите: .
Снова формула перехода к другому основанию.
, поэтому
11. Найдите , если .
12. Найдите значение выражения .
13. Найдите значение выражения .
.
14. Найдите значение выражения .
Тригонометрия. Формулы тригонометрии и формулы приведения
Темы для повторения:
Тригонометрический круг.
Формулы тригонометрии.
Формулы приведения.
15. Вычислите:
16. Найдите , если и .
Т.к. , то
17. Найдите , если и
Т.к. , то
18. Найдите значение выражения:
Применили формулу приведения.
19. Упростите выражение:
Применили формулу приведения.
20. Найдите , если .
21. Вычислите , если
Алгебраические выражения, корни, степени и логарифмы. И еще тригонометрия. Это всё, что может встретиться в задании 6 Профильного ЕГЭ по математике?
Оказывается, и это не всё! Еще нужно знать, что такое модуль. И как найти .
Другие типы заданий
Темы для повторения:
Модуль числа.
Что такое функция.
22. Найдите значение выражения
при .
Запомним:
.
Если , то и .
При этом и .
При получаем: .
Ответ: 2.
23. Найдите значение выражения
при .
При получим:
Ответ: 12.
24. Найдите , если , при .
Что такое ? Это функция, каждому числу ставящая в соответствие число . Например, ;
Тогда:
Заметим, что .
Значит, при
.
25. Найдите , если , при .
— функция, каждому числу b ставящая в соответствии число
.
Тогда при
, и значение выражения равно 1.
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 6 ЕГЭ по математике. Вычисления и преобразования» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.05.2023
ЕГЭ Профиль №6. Вычисление значений логарифмических выражений
04
Авг 2013
Категория: 06 ВычисленияЛогарифмы
06. Логарифмические выражения
2013-08-04
2022-09-11
Задача 1. Найдите значение выражения .
Решение: + показать
Задача 2. Найдите значение выражения .
Решение: + показать
Задача 3. Найдите значение выражения .
Решение: + показать
Задача 4. Найдите значение выражения
Решение: + показать
Задача 5. Найдите значение выражения .
Решение: + показать
Задача 6. Найдите значение выражения .
Решение: + показать
Задача 7. Найдите значение выражения .
Решение: + показать
Задача 8. Найдите значение выражения .
Решение: + показать
Задача 9. Найдите значение выражения .
Решение: + показать
Задача 10. Найдите значение выражения .
Решение: + показать
Задача 11. Найдите значение выражения .
Решение: + показать
Задача 12. Найдите значение выражения .
Решение: + показать
Задача 13. Найдите значение выражения .
Решение: + показать
Задача 14. Найдите значение выражения .
Решение: + показать
Задача 15. Вычислите значение выражения: .
Решение: + показать
Задача 16. Найдите значение выражения .
Решение: + показать
Задача 17. Найдите значение выражения
Решение: + показать
Задача 18. Найдите , если .
Решение: + показать
Задача 19. Найдите значение выражения , если .
Решение: + показать
Вы можете пройти обучающий тест по теме «Преобразование логарифмических выражений».
Автор: egeMax |
комментариев 11
Задание 903
Найдите значение выражения $$log^{3}_{sqrt{3}}{{frac{1}{3}}^3}$$
Ответ: -216
Скрыть
Рассмотрим сам логарифм: $$ log_{sqrt{3}}{{frac{1}{3}}^3}=log_{3^{1/2}}{3^{-3}}=frac{1}{frac{1}{2}}*left(-3right)log_33=-6 $$ Так как он был в третьей степени, то возведем -6 в нее и получим -216
Задание 939
Известно, что $$log_a b *log_b c = -5$$ . Найдите значение выражения $$log_c a$$
Ответ: -0.2
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$log_a b *log_b c = frac{1}{log_b a}*log_b c=frac{log_b c}{log_b a}=log_a c=-5$$ $$log_c a=frac{1}{log_a c}=frac{1}{-5}=-0.2$$
Задание 2494
Найдите значение выражения: $$6^{2+log_{6}8}$$
Ответ: 288
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$6^{2+log_{6}8}=$$ $$=36cdot 6^{log_{6}8}=36cdot 8=288$$
Задание 2825
Найдите значение выражения: $$frac{log_{9}10}{log_{9}11}+log_{11}0,1$$
Ответ: 0
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$frac{log_{9}10}{log_{9}11}+log_{11}0,1=$$ $$=log_{11}10+log_{11}0,1=log_{11}(10cdot 0,1)=log_{11}1=0$$
Задание 3030
Найдите значение выражения $$64^{log_{8}sqrt{3}}$$
Ответ: 3
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$64^{log_{8}sqrt{3}}=8^{2log_{8}sqrt{3}}=8^{log_{8}3}=3$$
Задание 3114
Найдите значение выражения $$lg(lgsqrt[10]{10})$$
Ответ: -1
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$lg(lgsqrt[10]{10})=lgfrac{1}{10}cdotlg 10=lgfrac{1}{10}=-1$$
Задание 3285
Найдите значение выражения $$log_5 312,5 – log_5 2,5$$
Ответ: 3
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$log_5 312,5 – log_5 2,5 = log_5 frac{312,5}{2,5}= log_5 125 = 3$$
Задание 3372
Найдите значение выражения: $$(log_{0,5}sqrt{8sqrt[3]{2}})^{-1}$$
Ответ: -0,6
Скрыть
Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!
Скрыть
$$(log_{0,5}sqrt{8sqrt[3]{2}})^{-1}=$$ $$=(log_{0,5}(2^{3}cdot2^{frac{1}{3}})^{frac{1}{2}})^{-1}=$$ $$=(-1cdotlog_{2}2^{frac{5}{3}})^{-1}=(-frac{5}{3})^{-1}=-frac{3}{5}=-0,6$$
Задание 4236
Найдите значение выражения $$(log_{2}16)cdot(log_{6}36)$$
Ответ: 8
Задание 4237
Найдите значение выражения $$7cdot5^{log_{5}4}$$
Ответ: 28
Задание 4238
Найдите значение выражения $$36^{log_{6}5}$$
Ответ: 25
Задание 4239
Найдите значение выражения $$log_{0,25}2$$
Ответ: -0,5
Задание 4240
Найдите значение выражения $$log_{4}8$$
Ответ: 1,5
Задание 4241
Найдите значение выражения $$log_{5}60-log_{5}12$$
Ответ: 1
Задание 4242
Найдите значение выражения $$log_{5}0,2+log_{0,5}4$$
Ответ: -3