Как найти значение выражения 6 клас

Поиск значений выражений — основное математическое действие. Им сопровождается каждый пример, задача. Поэтому чтобы вам было проще работать с различными математическими выражениями, подробно разберем способы и правила их решения в данной статье. Правила представлены в порядке увеличения сложности: от простейших выражений до выражений с функциями. Для лучшего понимания каждый пункт сопровождается подробным пояснением и расписанными примерами.

Поиск значения числовых выражений

Числовые выражения представляют собой математические задачи, состоящие, преимущественно, из чисел. Они подразделяются на несколько групп в зависимости от своей сложности: простейшие, со скобками, корнями, дробями и т.д. Каждый тип выражений подразумевает свои правила нахождения значения, порядок действий. Рассмотрим каждый случай подробнее.

Простейшие числовые выражения. К простейшим числовым выражениям относятся примеры, состоящие из двух элементов:

  • Числа (целые, дробные и т.д.);
  • Знаки: «+», «—», «•» и «÷».

Чтобы найти значение выражения в данном случае, необходимо выполнить все арифметические действия (которые подразумевают конкретные знаки). В случае отсутствия скобок решение примера производится слева направо. Первыми выполняются действия деления и умножения. Вторыми — сложение и вычитание.

Пример 1. Решение числового выражения

Задача. Решить:

20 — 2 • 10 ÷ 5 — 4 = ?

Решение. Чтобы решить выражение, нам необходимо выполнить все арифметические действия в соответствии с установленными правилами. Поиск значения начинается с решения деления и умножения. В первую очередь находим произведение цифр 2 и 10 (если рассматривать с левой стороны, данное действие является первым по значимости). Получаем 20. Теперь это число делим на 5. Итог — 4. Когда известно значение основных действий, можем подставить его в наш пример:

20 — 4 — 4 = ?

Упрощенный пример также решаем слева направо: 20 — 4 = 16. Второе действие: 16 — 4 = 12. Ответ 12.

Решение без пояснений. 20 — 2 • 10 ÷ 5 — 4 = 20 — (2 • 10 ÷ 5) — 4 = 20 — 4 — 4 = 12.

Ответ. 12

Пример 2. Решение числового выражения

Задача. Решить:

0,2 — 5 • (— 4) + 1/2 • 5 • 4 = ?

Решение. Начинаем решение с умножения и деления. Умножая 5 на (— 4) получаем (— 20), т.к. производное сохраняет знак множителя. Далее умножаем 1/2 на 5. Для этого преобразуем дробь: 1/2 = 5/10 = 0,5. 0,5 умножаем на 5. Ответ — 2,5. Далее умножаем полученное число на 4. 2,5 • 4 = 10. Получаем следующее выражение:

0,2 — (— 20) + 10

Теперь нам остается решить сложение и вычитание. В первую очередь раскрываем скобку и получаем:

0,2 + 20 + 10 = 30,2

Решение без пояснений. 0,2 — 5 • (— 4) + 1/2 • 5 • 4 = 0,2 — (— 20) + 10 = 0,2 + 20 + 10 = 30,2

Ответ. 30,2

Находим значение выражения со скобками

Скобки определяют порядок действий при решении примера. Выражения, находящиеся внутри скобок «()» имеют первостепенную значимость, независимо от того, какое математическое действие в них выполняется.

Пример 3. Значение числового выражения со скобками

Задача. Решить:

5 + (7 — 2 • 3) • (6 — 4) ÷ 2 = ?

Решение. Начинаем нахождение значения выражения с решения скобок. Порядок действий определяется слева направо. При этом не забываем, что после раскрытия скобок в первую очередь решаем умножение и деление и лишь потом — вычитание и сложение:

  • 7 — 2 • 3 = 7 — 6 = 1
  • 6 — 4 = 2

Когда скобки решены, подставляем полученные значения в наш пример:

5 + 1 • 2 ÷ 2

Снова решаем все по порядку, не забывая о том, что деление и умножение выполняется в первую очередь:

  • 1 • 2 = 2
  • 2 ÷ 2 = 1

Упрощенное выражение выглядит следующим образом:

5 + 1 = 6

Решение без пояснений. 5 + (7 — 2 • 3) • (6 — 4) ÷ 2 = 5 + (7 — 6) • 2 ÷ 2 = 5+ 1 • 2 ÷ 2 = 5 + 1 = 6

Ответ. 6

Значение числового выражения со скобками

Задача. Решить:

4 + (3 + 1 + 4 • (2+3)) = ?

Решение. Подобные примеры решаются поэтапно. Помним, что поиск выражения со скобками начинается с решения скобок. Поэтому в первую очередь решаем:

3 + 1 + 4 • (2+3)

В уже упрощенном примере снова встречаются скобки. Их будем решать в первую очередь:

2 + 3 = 5

Теперь можем подставить определенное значение в общую скобку:

3 + 1 + 4 • 5

Начинаем решение с умножения и далее слева направо:

  • 4 • 5 = 20
  • 3 + 1 = 4
  • 4 + 20 = 24

Далее подставляем полученный ответ вместо большой скобки и получаем:

4 + 24 = 28

Решение без пояснений. 4 + (3 + 1 + 4 • (2+3)) = 4 + (3 + 1 + 4 • 5) = 4 + (3 + 1 + 20) = 4 + 24 = 28

Ответ. 28

Важно: Чтобы правильно определить значение числового выражения с множественными скобками, необходимо выполнять все действия постепенно. Скобки читаются слева направо. Приоритет в решении внутри скобок остается за делением и умножением.

Поиск значения выражения с корнями

Часто алгебраические задания основываются на нахождении значений из-под корня. И если определить √4 несложно (напомним, это будет 2), то с примерами, которые полностью расположены под корнем, возникает ряд вопросов. На самом деле в таких заданиях нет ничего сложного. В данном случае порядок действий следующий:

  • Решаем все выражение, которое находится под корнем (не забываем о правильной последовательности: сперва скобки, деление и умножение, а лишь потом — сложение и вычитание);
  • Извлекаем корень из числа, которое получили в результате решения обычного примера.

Если же и под корнем имеется корень (например: √ 4 + 8 — √4), то начинаем решение примера с его извлечения (в нашем примере это будет: √ 4 + 8 — 2). Если подкоренные числа возведены во вторую степень, то их квадратный корень будет равняться модулю подкоренного выражения.

Значение числового выражения с корнями

Задача. Решить:

√ 2² • 2² • 3² = ?

Решение. Все действия под корнем одинаковы — умножение. Это дает нам право разделить выражение на множители. Получаем:

√2² • √2² • √3² = ?

Т.к. под квадратным корнем у нас числа, возведенные во вторую степень, получаем:

2 • 2 • 3 = 12

Решение без пояснений. √ 2² • 2² • 3² = √2² • √2² • √3² = 2 • 2 • 3 = 12

Ответ. 12

Нет времени решать самому?

Наши эксперты помогут!

Находим значение числовых выражений со степенями

Следующий математический знак, который имеет приоритет в процессе решения, — степени. Они представляют собой результат многократного умножения числа на себя. Само число является основанием степени. А количество операций умножения — ее показателем. Причем выражен он может быть не только целым числом, но и дробью, полноценным числовым выражением.

Начинается решение выражения со степенями с вычисления самих степеней. Если они представляют собой полноценное выражение (например: [3^{3 cdot 4-10}]), то его необходимо решить в нашем примере это будет: [3^{12-10}=3^{2}=9].

Задача. Решите:

[ 3^{1 / 3} cdot 7^{1 / 3} cdot 21^{2 / 3}=? ]

Решение. Чтобы решить это выражение со степенями, воспользуемся равенством:

[(a cdot b)^{r}=a^{r} cdot b^{r}]

Рассматривая пример слева направо, видим, что у первых двух множителей одинаковые степени. Это позволяет нам упростить выражение:

[ (3 cdot 7)^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3} cdot 21^{2 / 3} ]

Зная, что при умножении степени с одинаковыми показателями складываются, получаем следующее выражение:

[ 21^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3+2 / 3}=21^{1}=21 ]

Решение без пояснений: [3^{1 / 3} cdot 7^{1 / 3} cdot 21^{2 / 3}=(3 cdot 7)^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3+2 / 3}=21^{1}=21]

Ответ. 21

Интересно: Этот же пример можно решить и другим способом, преобразовав число 21 в степени ⅔ в два множителя. В данном случае решение будет выглядеть следующим образом:

[3^{1 / 3} cdot 7^{1 / 3} cdot 21^{2 / 3}=3^{1 / 3} cdot 7^{1 / 3} cdot(3 cdot 7)^{2 / 3}=3^{1 / 3} cdot 7^{1 / 3} cdot 3^{2 / 3} cdot 7^{2 / 3}=3^{1 / 3+2 / 3} cdot 7^{1 / 3+2 / 3}=3^{1}+7^{1}=21]

Ответ. 21

Задача. Решить:

[ 2^{-2 sqrt{5}} cdot 4^{sqrt{5}-1}+left((sqrt{3})^{1 / 3}right)^{6} ]

Решение. В данном случает получить точные числовые значения показателей степеней не удастся. Поэтому искать значение выражения с дробями в виде степени будем снова через упрощение:

Пример решения задач 1

Ответ. 3,25

Выражения с дробями

Поиск значения выражения дробей начинается с их приведения к общему виду. В большинстве случаев проще представить все значения в виде обыкновенной дроби с числителем и знаменателем. После преобразования всех чисел необходимо привести все дроби к общему знаменателю.

Важно: Прежде чем найти выражение дробей, необходимо провести вычисления в их знаменателе и числителе отдельно. В данном случае действуют стандартные правила решения.

Когда дроби приведены к единому знаменателю можно переходить к решению. Вычисление значений верхней строки (числителя) и нижней (знаменателя) производятся параллельно.

Задача. Решить:

[ 6 frac{2}{13}+4 frac{1}{13}=? ]

Решение. Действуя по главному правилу, прежде чем найти значение числового выражения, преобразуем всего его части в простую дробь. Получаем:

[ frac{6 cdot 13+2}{13}+frac{4 cdot 13+1}{13} ]

Теперь выполняем вычисления в знаменателе и числителе и находим ответ:

[ frac{6 cdot 13+2}{13}+frac{4 cdot 13+1}{13}=frac{80}{13}+frac{53}{13}=frac{133}{13}=10 frac{3}{13} ]

Ответ. [10 frac{3}{13}]

Примеры(2):

Пример решения задач 2

Задача. Решить:

[ frac{2}{sqrt{5}-1}-frac{2 sqrt{5}-7}{4}-3=? ]

Решение. В данном примере мы не можем извлечь корень из пятерки. Но мы можем воспользоваться формулой разложения корней:

[ frac{2}{sqrt{5}-1}=frac{2(sqrt{5}+1)}{(sqrt{5}-1)(sqrt{5}+1)}=frac{2(sqrt{5}+1)}{5-1}=frac{2 sqrt{5}+2}{4} ]

Теперь можем придать нашему первоначальному выражению следующий вид:

[ frac{2 sqrt{5}+2}{4} frac{2 sqrt{5}-7}{4}-3=frac{2 sqrt{5}+2-2 sqrt{5}+7}{4}-3=frac{9}{4} 3=-frac{3}{4} ]

Ответ. [-frac{3}{4}].

Выражения с логарифмами

Как и степени, логарифмы (log), имеющиеся в выражении, вычисляются (если это возможно) в первую очередь. К примеру, зная, что [log _{2} 4=2] мы можем сразу упростить выражение  [log _{2} 4+5 cdot 6] до простого и понятного 2 + 5*6 = 32.

Со степенями логарифмы объединяет и порядок выполнения действий. Прежде чем искать значение выражения логарифмов, необходимо вычислить его основание (если оно представлено математическим выражением).

В случаях, когда полное вычисление логарифма невозможно, производится упрощение примера.

Задача. Решить:

[log _{27} 81+log _{27} 9=?]

Решение. Чтобы найти логарифм выражения, воспользуемся свойствами логарифмов и представим значение логарифмов со степенями:

Пример решения задач 3

Это позволит нам решить пример следующим образом:

Пример решения задач 4

Ответ. 2

Решаем выражения с тригонометрической функцией

Часто в выражениях встречаются тригонометрические функции. Всего их в математике шесть:

  • Синус;
  • Косинус;
  • Котангенс;
  • Тангенс;
  • Секанс;
  • Косеканс.

Изучение тригонометрии начинается в 9-м классе, когда ученики уже подготовлены к сложным задачам. Большинство заданий представляются с sin и cos. Остальные функции встречаются значительно реже.

В математических примерах, которые содержат sin, cos, tg и др. функции, вычисление тригонометрической функции производится в первую очередь. Если это невозможно — осуществляется упрощение выражения до получения краткой формулы.

Задача. Решить:

[ frac{24}{sin ^{2} 127+1+sin ^{2} 217} ]

Решение. Разложим 217 на 90 и 127. Т.к. по формуле приведения sin(90 + a) = cosa, получаем:

sin217 — sin (90 + 127) = cos127

Теперь заменяем полученной формулой наше слагаемое в знаменателе дроби:

[ frac{24}{sin ^{2} 127+cos ^{2} 127+1} ]

Вспоминаем, что по тригонометрическому тождеству sin2a+ cos2 a= 1 (независимо от значения угла a). Поэтому одну часть слагаемого знаменателя (sin2127+ cos2127) преобразуем в единицу и получаем:

[ frac{24}{sin ^{2} 127+cos ^{2} 127+1}=frac{24}{1+1}=frac{24}{2}=2 ]

Ответ. 2

Пример решения задач 5

Важно: Не стоит бояться буквенных тригонометрических значений. Большинство примеров построено таким образом, чтобы функции можно было заменить более удобной для вычисления формулой. Поэтому вместо того, чтобы пытаться сразу решить пример, стоит обратить внимание на особенности функций и возможность их приведения к подходящей формуле.

Задача. Решить:

[ sqrt{4} 8-sqrt{1} 92 sin ^{2} frac{19 pi}{12}=? ]

Решение. Начинаем решение с разбора второй дроби. Обращаем внимание, что 192 = 48 • 2. А значит, корень этого числа можно представить в виде 2√48. Зная это и используя формулу косинуса двойного угла, преобразим наше выражение:

Пример решения задач 6

Теперь по формуле приведения решаем наш пример:

[ sqrt{4} 8 cos left(3 pi+frac{pi}{6}right)=sqrt{4} 8left(-cos frac{pi}{6}right)=-sqrt{4} 8 cdot frac{sqrt{3}}{2}=-4 sqrt{3} cdot frac{sqrt{3}}{2}=-6 ]

Ответ. — 6.

Общий случай: находим значения выражений с дробями, функциями, степенями и не только

Самым сложным считается поиск числовых выражений общих случаев. Они представляют собой тригонометрические примеры, которые могут содержать:

  • Степени;
  • Скобки;
  • Корни;
  • Функции и т.д.

Общие числовые выражения сложны только длительностью решения. В остальном же они ничуть не сложнее, чем решение каждого примера (со скобкой, степенями, функциями и т.д.) по отдельности.

Чтобы найти значение выражения с логарифмами, тригонометрическими функциями, скобками и/или другими действиями, необходимо помнить три основных правила:

  • Упрощение. Прежде чем приступать к решению внимательно изучите выражение. Особенно — его степени, корни, логарифмы, функции. В большинстве случаев их можно сократить или заменить простым числовым значением еще до решения.
  • Скобки. Независимо от типа выражения, действий, начинать решение всегда необходимо со скобок. Часто именно игнорирование этого правила приводит к получению неверного ответа или отсутствию решения в принципе.
  • Общий вид. Старайтесь привести выражение к общему виду. Особенно это касается дробей. Смешанные и десятичные дроби преобразуйте в обычные.
  • Последовательность. Действия в скобках и действия после их решения выполняются слева направо. В первую очередь необходимо совершать умножение и деление. Когда все произведения и частные найдены, можно переходить к сложению и вычитанию.

Для удобства решения и устранения возможных ошибок рекомендуем расставлять порядок действий непосредственно над математическими знаками.

Задача. Решить:

[ -frac{sqrt{2} sin left(frac{pi}{6}+2left(frac{2 pi}{5}+frac{3 pi}{5}right)right)+3}{operatorname{Ln} e^{2}}+left(1+3^{sqrt{9}}right)=? ]

Решение. Чтобы решить этот пример, сначала найдем значение выражения числителя дроби, а точнее — подкоренного выражения. Для этого необходимо вычислить значение sin и общего выражения. Начинаем с раскрытия скобок в числителе:

Пример решения задач 7

Полученное значение можем подставить в подкоренное выражение для вычисления числителя дроби:

[ sqrt{2} sin cdotleft(frac{pi}{6}+2left(frac{2 pi}{5}+frac{3 pi}{5}right)+3=sqrt{4}=2right. ]

Со знаменателем дела обстоят куда проще:

[ ln e^{2}=2 ]

Числитель и знаменатель у нас одинаковые, что позволяет нам их сократить:

Пример решения задач 8

Теперь остается решить следующее выражение:

Пример решения задач 9

Ответ. 27

Как видите, при последовательном решении примеров с большим количеством действий нет ничего сложного. Главное — верно обозначить последовательность шагов и четко ей следовать.

Как найти значение выражения числителя дроби, подкорневого значения рационально?

Независимо от типа выражения решать его необходимо последовательно, руководствуясь стандартными правилами (описаны ранее). Но не стоит забывать, что во многих случаях поиск ответа может быть значительно упрощен за счет рационального подхода к решению. Основывается он на нескольких правилах.

Правило 1. Когда произведение равно нулю

Производное равно нулю в том случае, если хотя бы один из его сомножителей равен нулю. Если вы решаете пример из нескольких сомножителей, одним из которых является «0», то проводить многочисленные вычислительные действия не стоит.

Например, выражение [3 cdotleft(451+4+frac{18}{3}right)left(1-sin left(frac{3 pi}{4}right)right) cdot 0] будет равняться нулю.

Правило 2. Группировка и вынесение чисел

Ускорить процесс поиска ответа можно за счет группировки множителей, слагаемых или вынесения единого множителя за скобки. Также не стоит забывать о возможности сокращения дроби.

Например, выражение [frac{left(451+4+frac{18}{3}right)}{4left(451+4+frac{18}{3}right)}] решать не надо. Достаточно сократить скобки, чтобы получить ответ [=frac{1}{4}]

Решение примеров с переменными

Примеры с переменными отличаются от числовых только формой предоставления. В данном случае значения предоставляются дополнительно к выражению.

Пример задания: Найдите значение выражения 2x — y, если x = 2,5, а y = 2. В данном случае решение будет выглядеть следующим образом:

2x — y = 2 • 2,5 — 2 = 3

При этом в таких примерах сохраняются все описанные выше правила. Касается это и советов по рациональному решению примеров. Так, решать дробь [frac{sqrt{y}}{sqrt{y}}] бессмысленно, т.к. при любых значениях «y» ответ будет одинаковым — 1.

В этом уроке мы познакомимся с понятием дробных выражений и с тем, как их считать. Узнаем интересные способы работы с дробями, в числителе или знаменателе которых стоят дроби.

Для начала определимся с определением дробного выражения.

Дробным выражением называется частное двух выражений или чисел, знак деления в котором обозначается чертой.

Пример:

$$mathbf{frac{1}{2}}$$

Мы привыкли называть такое выражение обыкновенной дробью. Она ничем не противоречит определению дробного выражения. Поэтому если вас спросят: “Является ли обыкновенная дробь дробным выражением?”, то можно смело ответить: “Да, является!”

$$mathbf{frac{1+2}{3+4}}$$

$$mathbf{frac{5cdot(1+2)}{(3+5)div2}}$$

Мы не накладываем никаких ограничений на то, что из себя представляют выражения; нужно только то, чтобы это было деление, записанное как дробь.

Также никто не запрещает записать в одну или даже в обе части выражения, содержащие дроби.

Примеры:

$$mathbf{frac{1}{1+frac{1}{8}}}$$

$$mathbf{frac{3+12frac{1}{2}}{7frac{1}{3}-2frac{3}{4}}}$$

$$mathbf{frac{(frac{1}{2}+frac{1}{4})cdotfrac{2}{3}}{frac{2}{7}cdot(frac{3}{8}-frac{1}{4})}}$$

Можем пойти дальше и записать так называемую многоэтажную дробь. Это дробь, в числителе или в знаменателе (а иногда и в числителе и в знаменателе) которой стоят дробные выражения.

Примеры:

$$mathbf{frac{frac{1}{2}}{3}}$$

$$mathbf{frac{1}{frac{12}{19}}}$$

$$mathbf{frac{frac{12}{89}}{frac{74}{99}}}$$

Помимо определения дробного выражения необходимо знать определения числителя и знаменателя дробного выражения.

Эта информация доступна зарегистрированным пользователям

Если мы считаем дробное выражение делением, то числителем будет являться делимое, а знаменателем делитель.

Например, существует следующее дробное выражение:

$$mathbf{frac{3+10cdot2}{2+frac{1}{2}}}$$

В данном случае (mathbf{3+10cdot2}) будет являться числителем, а (mathbf{2+frac{1}{2}})- знаменателем.

Также можно преобразовывать обычные выражения в дробные.

Это можно делать при условии, что выражение представляет из себя частное двух выражений или чисел, но пока что записанное через обычный знак деления.

Эта информация доступна зарегистрированным пользователям

Примеры преобразования обычного выражения в дробное:

(mathbf{(3+4)div(200+123)=frac{3+4}{200+123}})

(mathbf{(1247+523cdot(54+78))div((345+67)cdot56cdot87cdot(63+85))=})

(mathbf{=frac{1247+523cdot(54+78)}{(345+67)cdot56cdot87cdot(63+85)}})

(mathbf{(4+frac{1}{2})div(frac{3}{5}cdot8+2)=frac{4+frac{1}{2}}{frac{3}{5}cdot8+2}})

(mathbf{(452+789cdot(frac{7}{9}+frac{1}{2}))div(frac{4}{741}+582cdot741)=})

(mathbf{=frac{452+789cdot(frac{7}{9}+frac{1}{2})}{frac{4}{741}+582cdot741}})

Сформулируем правило: для того, чтобы преобразовать выражение, представляющее из себя частное двух выражений или чисел, необходимо делимое поместить в числитель дробного выражения, а делитель- в знаменатель.

Теперь вы видите, насколько большой класс формул покрывается понятием дробного выражения.

Давайте пройдем небольшой тест и перейдем к изучению того, как вычислять значения дробных выражений.

Эта информация доступна зарегистрированным пользователям

Начнем с самого простого способа вычисления значений дробных выражений.

Он заключается в том, чтобы отдельно посчитать значения числителя и знаменателя и получить дробное выражение, в знаменателе и числителе которого стоят числа.

Далее надо смотреть, что получилось:

  • может получиться правильная дробь, тогда это будет готовым ответом
  • может получиться дробь неправильная, тогда необходимо выделить целую часть
  • в числителе и знаменателе дробного выражения могут получиться дробные числа; в таком случае нужно поделить числитель на знаменатель, это и будет ответом

Эта информация доступна зарегистрированным пользователям

Пример 1

Вычислим значение выражения (mathbf{frac{1+2cdot4}{5-2}})

Решение:

Для начала вычислим значения числителя и знаменателя:

(mathbf{frac{1+2cdot4}{5-2}=frac{1+8}{3}=frac{9}{3}})

В данном примере числитель делится на знаменатель, поэтому из дроби получится натуральное число.

(mathbf{frac{9}{3}=3})

Пример 2

Вычислим значение выражения (mathbf{frac{7+2cdot3cdot2}{2cdot9}})

Решение:

Сначала вычислим числитель и знаменатель:

(mathbf{frac{7+2cdot3cdot2}{2cdot9}=frac{7+12}{18}=frac{19}{18}})

В данном случае получилась неправильная дробь, выделим целую ее часть, чтобы получить в ответе смешанное число:

(mathbf{frac{19}{18}=frac{19}{18}=1frac{1}{18}})

Пока что были рассмотрены случаи, в которых выражения в числителе и знаменателе представляли из себя арифметические действия над натуральными числами. Но вас нисколько не должны смущать случаи, в которых выражения содержат в себе дроби как обыкновенные, так и десятичные.

Пример: 

(mathbf{frac{3+frac{3}{4}}{1.2+0.3}})

Решение:

Наверное, вы уже догадываетесь, что мы сделаем дальше. Правильно! Вычислим числитель и знаменатель:

(mathbf{frac{3+frac{3}{4}}{1.2+0.3}=frac{frac{3cdot4+3}{4}}{1.5}=})

(mathbf{=frac{frac{12+3}{4}}{1.5}=frac{frac{15}{4}}{1.5}})

В данном случае мы получили неправильную дробь в числителе и десятичную дробь в знаменателе.

Чтобы получить окончательный результат разделим одно на другое:

(mathbf{frac{frac{15}{4}}{1.5}=frac{15}{4}div1.5=frac{15}{4}divfrac{15}{10}=})

(mathbf{=frac{15}{4}cdotfrac{10}{15}=frac{15cdot10}{4cdot15}=frac{10}{4}=frac{5}{2}=2frac{1}{2}})

Прежде чем перейти к дополнительным приемам работы с дробными выражениями, решим небольшой тест для закрепления навыка вычисления дробных выражений.

Эта информация доступна зарегистрированным пользователям

Пока что во всех предыдущих случаях мы находили значения дробных выражений «в лоб», по достаточно простому алгоритму.

Но, как это часто бывает в математике, в некоторых случаях можно упростить себе подсчеты, вовремя заметив определенные вещи.

Вы уже наверняка хорошо освоили сокращение дробей.

Напомним, в чем его суть: если числитель представляет из себя произведение, и знаменатель также является произведением, и в этих произведениях есть одинаковый множитель, то мы можем сократить дробь на этот множитель.

Как же это относится к дробным выражениям?

Дело в том, что в некоторых случаях числитель и знаменатель могут быть произведениями или же могут стать произведениями в процессе подсчетов.

Тогда почему бы не сокращать их по возможности?!

Эта информация доступна зарегистрированным пользователям

Пример:

(mathbf{frac{7cdot(123+4)}{3cdot(120+7)}})

Начнем считать выражение и посмотрим, что получается.

(mathbf{frac{7cdot(123+4)}{3cdot(120+7)}=frac{7cdot127}{3cdot127}})

Числитель и знаменатель дробного выражения после первых преобразований превратились в произведения.

Также можно заметить, что в этих произведениях есть общий множитель: 127

Тогда мы можем поделить числитель и знаменатель дробного выражения на это число, тем самым значительно упростив выражение.

(mathbf{frac{7cdot127}{3cdot127}=frac{7}{3}=2frac{1}{3}})

Это и будет значением этого выражения.

Также мы можем быть еще более хитрыми и внимательными.

Найдем значение выражения (mathbf{frac{2cdot(478569-145236)}{(478569-145236)cdot3}})

Конечно же, можно начать вычислять сначала числитель, потом знаменатель. Для этого мы будем вычислять разность шестизначных чисел.

Но можно сделать проще: заметим, что числитель и знаменатель являются произведениями.

Числитель является произведением 2-х и выражения (478569-145236)

Знаменатель же является произведением выражения (478569-145236) и 3-х.

Выражение (478569-145236) является множителем и можно утверждать, что это один и тот же множитель в числителе и в знаменателе.

Значит, мы можем уверенно сокращать дробное выражение на это выражение.

(mathbf{frac{2cdot(478569-145236)}{(478569-145236)cdot3}=frac{2}{3}})

В данном случае мы сразу получили правильную дробь, это и будет являться значением выражения.

Отдельно стоит упомянуть работу с многоэтажными дробями.

Мы всегда можем идти по алгоритму с последовательным вычислением числителя и знаменателя – это гарантированно дает результат.

Но также можно запомнить два правила, которые существенно экономят время.

Первое правило говорит о том, что, если в числителе дробного выражения находится дробь (или же дробное выражение), мы можем домножить дробное выражение на знаменатель дроби (или дробного выражения), стоящей в числителе, тем самым уменьшив «этажность» дробного выражения.

Эта информация доступна зарегистрированным пользователям

Парочка примеров:

(mathbf{frac{frac{2}{3}}{4}=frac{frac{2}{3}cdot3}{4cdot3}=frac{2}{12}=frac{1}{6}})

(mathbf{frac{frac{3}{7+13}}{5}=frac{frac{3}{7+13}cdot(7+13)}{5cdot(7+13)}=})

(mathbf{=frac{3}{5cdot20}=frac{3}{100}=0.03})

Второе правило рассматривает случай, когда дробь (или дробное выражение) находится в знаменателе дробного выражения.

В таком случае уменьшить «этажность» дробного выражения поможет домножение всего дробного выражения на знаменатель дроби (или дробного выражения), стоящей в знаменателе.

Эта информация доступна зарегистрированным пользователям

И парочка примеров на этот случай:

(mathbf{frac{3}{frac{2}{7}}=frac{3cdot7}{frac{2}{7}cdot7}=frac{21}{2}=10frac{1}{2}})

(mathbf{frac{11}{frac{3}{1+7}}=frac{11cdot(1+7)}{frac{3}{1+7}cdot(1+7)}=})

(mathbf{=frac{11cdot(1+7)}{3}=frac{11cdot8}{3}=frac{88}{3}=29frac{1}{3}})

И в завершение еще дам такой пример:

(mathbf{frac{frac{3}{4+1}}{frac{7-2}{4}}=frac{frac{3}{5}}{frac{5}{4}}=})

(mathbf{=frac{frac{3}{5}cdot5}{frac{5}{4}cdot5}=frac{3}{frac{25}{4}}=frac{3cdot4}{frac{25}{4}cdot4}=frac{12}{25}})

Эта информация доступна зарегистрированным пользователям

Десять интересных математических фактов:

1. Известные всем знаки сложения и вычитания впервые были использованы только около 500 лет назад

2. 2 и 5– единственные простые числа, которые оканчиваются на 2 или 5

3. Несмотря на то, что сохранилось много трудов древнегреческого ученого Евклида, о его биографии почти ничего не известно

4. В римской системе счисления не существует нуля

5. Знак равенства «=» появился только в XVI веке

6. Слово «миг» обозначает не только короткое мгновение, но и вполне конкретный временной промежуток: 0,01 секунды

7. У древних египтян отсутствовала таблицы умножения и прочие математические правила

8. В свое время заниматься математикой в высоких кругах было настолько популярно, что даже Наполеон Бонапарт оставил после себя научные труды

9. Самые древние математические записи были найдены написанными на костях

10. Ученый Муавр с помощью математики смог рассчитать дату своей смерти

Здравствуйте, дорогие читатели, подписчики и гости канала. В этой статье рассмотрим различные вычисления с дробями, которые встречаются в шестом задании ОГЭ по математике. В июле 2.07.2021 года состоится последняя пересдача по математике в основной этап. Дополнительный этап будет уже в сентябре.

Давайте начнем разбор заданий.

1) Умножение дробь на дробь. Чтобы умножить дробь на дробь, нужно числитель умножить на числитель, знаменатель на знаменатель, при возможности сократить.

6 и 4 сокращаем на 2 (6:2=3; 4:2=2)
6 и 4 сокращаем на 2 (6:2=3; 4:2=2)

2) Деление дроби на дробь. При делении дробь на дробь, первая дробь переписывается, вторая дробь переворачивается, а деление заменяется на умножение.

Числа 12 и 15 сократили на их общий делитель 3 (12:3=4; 15:3=5)
Числа 12 и 15 сократили на их общий делитель 3 (12:3=4; 15:3=5)

3) Вычитание и умножение дробей. Несколько действий.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Способ №1. Находим общий знаменатель при вычитании. Чтобы найти общий знаменатель, нужно найти такое число, которое будет делиться на первое и второе число. В нашем случае это числа 10 и 20. Общий знаменатель 20.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Способ №2. Распределительный закон умножения. Чтобы умножить число на сумму можно умножить это число на каждое слагаемое, и результат сложить. Также это действует и при вычитании.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Также встречаются выражения, в которых не стоит находить общий знаменатель, поскольку это будет сложно. Приведу два примера:

Пример №1

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Пример №2

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

4) Умножение целого числа на дробь. При умножении целого числа на дробь, целое число умножается на числитель, а знаменатель остается без изменений.

1, Общий знаменатель 12, т.к. 12 - это наименьшее число, которое делится на 4 и 6.            2. Чтобы дробь перевести в десятичную, надо знаменатель умножить на такое число, чтобы в знаменателе дроби получилось 10, 100, 1000.....  Чтобы значение дроби не изменилось, то и числитель умножаем на такое же число. Поэтому дробь 7/4 умножили на 25/25
1, Общий знаменатель 12, т.к. 12 – это наименьшее число, которое делится на 4 и 6. 2. Чтобы дробь перевести в десятичную, надо знаменатель умножить на такое число, чтобы в знаменателе дроби получилось 10, 100, 1000….. Чтобы значение дроби не изменилось, то и числитель умножаем на такое же число. Поэтому дробь 7/4 умножили на 25/25

5) Сложение, деление и умножение смешанных чисел.

При сложении, вычитании, умножении и делении смешанных чисел иногда легче перевести смешанное число в неправильную дробь. Чтобы смешанное число перевести в неправильную дробь, нужно целую часть умножить на знаменатель, к полученному значению прибавить числитель дробной части и записать это в числитель, а знаменатель оставить прежним.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

6) Вынесение общего множителя за скобку.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

7) Действия с десятичными дробями

Совет: Если вас пугают вычитание десятичных дробей, то можно вычесть 66-24=42 и поставить запятую на место. При делении десятичной дроби на десятичную, можно умножить числитель и знаменатель на такое число, чтобы получились целые числа.
Совет: Если вас пугают вычитание десятичных дробей, то можно вычесть 66-24=42 и поставить запятую на место. При делении десятичной дроби на десятичную, можно умножить числитель и знаменатель на такое число, чтобы получились целые числа.
В числителе умножим каждую десятичную дробь на 10, Сколько цифр после запятой, на такое число и умножаем. Например, 1,52 будем умножать на 100. Числа 84 и 70 сократили на 7.
В числителе умножим каждую десятичную дробь на 10, Сколько цифр после запятой, на такое число и умножаем. Например, 1,52 будем умножать на 100. Числа 84 и 70 сократили на 7.

В итоге у нас получилось, что числитель дроби умножили на 100 (10*10=100), значит и знаменатель дроби тоже умножаем на 100, чтобы значение дроби не изменилось.

И еще один пример:

Число 1 можно представить в виде любой дроби с равным числителем и знаменателем.
Число 1 можно представить в виде любой дроби с равным числителем и знаменателем.

8) Десятичные дроби и действия со степенями

В таких задания, в первую очередь нужно возводить числа в степень.
В таких задания, в первую очередь нужно возводить числа в степень.
Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

При возведении отрицательного числа в четную степень, получится число положительное. При возведении отрицательного числа в нечетную степень, получится число отрицательное.

В этом задании скобки никакой роли не играют. Скобки можно просто убрать, переставить множители для удобства, и выполнить вычисления. Умножение степеней с одинаковым основанием разобраны в другой статье более подробно.
В этом задании скобки никакой роли не играют. Скобки можно просто убрать, переставить множители для удобства, и выполнить вычисления. Умножение степеней с одинаковым основанием разобраны в другой статье более подробно.

И последнее выражение

В этом выражении первым действием возводим числа в степень, затем выполняем умножения и последним действием вычитания.
В этом выражении первым действием возводим числа в степень, затем выполняем умножения и последним действием вычитания.

Для отработки этих примеров, можно воспользоваться сайтом. Там много аналогичных задания, а эта статья вам будет в помощь при их решений.

Спасибо, что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Задание №6 ОГЭ. Найти значение выражения. Действия с дробями.

Частное двух чисел или выражений, в котором знак деления обозначен чертой, называют дробным выражением.

57−3,48,32+15,2571−317,12⋅0,5:493,5:0,5,4xy5z,a−cb

  — дробные выражения.

Выражение, которое стоит над чертой, называют числителем,

а выражение, которое стоит под чертой — знаменателем дробного выражения.

При вычислении значения дробного выражения:

  • выполняют действия в числителе;
  • выполняют действия в знаменателе;
  • заменяют черту дроби делением и выполняют деление.

Пример:

найди значение выражения:

1. Выполним действие в числителе:

1,75+225=1,75+410=1,75+0,4=2,15

.

2. Выполним действие в знаменателе:

3. Заменим черту дроби делением и выполним деление:

Добавить комментарий