Как найти значение выражения правило решения

В данной статье рассмотрено, как находить значения математических выражений. Начнем с простых числовых выражений и далее будем рассматривать случаи по мере возрастания их сложности. В конце приведем выражение, содержащее буквенные обозначения, скобки, корни, специальные математические знаки, степени, функции и т.д. Всю теорию, по традиции, снабдим обильными и подробными примерами.

Как найти значение числового выражения?

Числовые выражения, помимо прочего, помогают описывать условие задачи математическим языком. Вообще математические выражения могут быть как очень простыми, состоящими из пары чисел и арифметических знаков, так и очень сложными, содержащими функции, степени, корни, скобки и т.д. В рамках задачи часто необходимо найти значение того или иного выражения. О том, как это делать, и пойдет речь ниже.

Простейшие случаи

Это случаи, когда выражение не содержит ничего, кроме чисел и арифметических действий. Для успешного нахождения значений таких выражений понадобятся знания порядка выполнения арифметических действий без скобок, а также умение выполнять действия с различными числами. 

Если в выражении есть только числа и арифметические знаки “+”, “·”, “-“, “÷”, то действия выполняются слева направо в следующем порядке: сначала умножение и деление, затем сложение и вычитание. Приведем примеры.

Пример 1. Значение числового выражения

Пусть нужно найти значения выражения 14-2·15÷6-3.

Выполним сначала умножение и деление. Получаем:

14-2·15÷6-3=14-30÷6-3=14-5-3.

Теперь проводим вычитание и получаем окончательный результат:

14-5-3=9-3=6.

Пример 2. Значение числового выражения

Вычислим: 0,5-2·-7+23÷234·1112.

Сначала выполняем преобразование дробей, деление и умножение:

0,5-2·-7+23÷234·1112=12-(-14)+23÷114·1112

12-(-14)+23÷114·1112=12-(-14)+23·411·1112=12-(-14)+29.

Теперь займемся сложением и вычитанием. Сгруппируем дроби и приведем их к общему знаменателю:

12-(-14)+29=12+14+29=14+1318=141318.

Искомое значение найдено.

Выражения со скобками

Если выражение содержит скобки, то они определяют порядок действий в этом выражении. Сначала выполняются действия в скобках, а потом уже все остальные. Покажем это на примере.

Пример 3. Значение числового выражения

Найдем значение выражения 0,5·(0,76-0,06).

В выражении присутствуют скобки, поэтому сначала выполняем операцию вычитания в скобках, а уже потом – умножение.

0,5·(0,76-0,06)=0,5·0,7=0,35.

Значение выражений, содержащих скобки в скобках, находится по такому же принципу.

Пример 4. Значение числового выражения

Вычислим значение 1+2·1+2·1+2·1-14.

Выполнять действия будем начиная с самых внутренних скобок, переходя к внешним. 

1+2·1+2·1+2·1-14=1+2·1+2·1+2·34

1+2·1+2·1+2·34=1+2·1+2·2,5=1+2·6=13.

В нахождении значений выражений со скобками главное – соблюдать последовательность действий.

Выражения с корнями

Математические выражения, значения которых нам нужно найти, могут содержать знаки корня. Причем, само выражение может быть под знаком корня. Как быть в таком случае? Сначала нужно найти значение выражения под корнем, а затем извлечь корень из числа, полученного в результате. По возможности от корней в числовых выражениях нужно лучше избавляться, заменяя из на числовые значения.

Пример 5. Значение числового выражения

Вычислим значение выражения с корнями -2·3-1+60÷43+3·2,2+0,1·0,5.

Сначала вычисляем подкоренные выражения.

-2·3-1+60÷43=-6-1+153=83=2

2,2+0,1·0,5=2,2+0,05=2,25=1,5.

Теперь можно вычислить значение всего выражения.

-2·3-1+60÷43+3·2,2+0,1·0,5=2+3·1,5=6,5

Часто найти значение выражения с корнями часто нужно сначала провести преобразование исходного выражения. Поясним это на еще одном примере.

Пример 6. Значение числового выражения

Сколько будет 3+13-1-1

Как видим, у нас нет возможности заменить корень точным значением, что усложняет процесс счета. Однако, в данном случае можно применить формулу сокращенного умножения.

3+13-1=3-1.

Таким образом:

3+13-1-1=3-1-1=1.

Выражения со степенями

Если в выражении имеются степени, их значения нужно вычислить прежде, чем приступать ко всем остальным действиям. Бывает так, что сам показатель или основание степени являются выражениями. В таком случае, сначала вычисляют значение этих выражений, а затем уже значение степени.

Пример 7. Значение числового выражения

Найдем значение выражения 23·4-10+161-123,5-2·14.

Начинаем вычислять по порядку.

23·4-10=212-10=22=4

16·1-123,5-2·14=16*0,53=16·18=2.

Осталось только провести операцию сложение и узнать значение выражения:

23·4-10+161-123,5-2·14=4+2=6.

Также часто целесообразно бывает провести упрощение выражения  с использованием свойств степени.

Пример 8. Значение числового выражения

Вычислим значение следующего выражения: 2-25·45-1+3136.

Показатели степеней опять таковы, что их точные числовые значения получить не удастся. Упростим исходное выражение, чтобы найти его значение.

2-25·45-1+3136=2-25·225-1+313·6

2-25·225-1+313·6=2-25·22·5-2+32=22·5-2-25+32

22·5-2-25+32=2-2+3=14+3=314

Выражения с дробями

Если выражение содержит дроби, то при вычислении такого выражения все дроби в нем нужно представить в виде обыкновенных дробей и вычислить их значения. 

Если в числителе и знаменателе дроби присутствуют выражения, то сначала вычисляются значения этих выражений, и записывается финальное значение самой дроби. Арифметические действия выполняются в стандартном порядке. Рассмотрим решение примера.

Пример 9. Значение числового выражения

Найдем значение выражения, содержащего дроби: 3,22-3·7-2·36÷1+2+39-6÷2.

Как видим, в исходном выражении есть три дроби. Вычислим сначала их значения.

3,22=3,2÷2=1,6

7-2·36=7-66=16

1+2+39-6÷2=1+2+39-3=66=1.

Перепишем наше выражение и вычислим его значение:

1,6-3·16÷1=1,6-0,5÷1=1,1

Часто при нахождении значений выражений удобно бывает проводить сокращение дробей. Существует негласное правило: любое выражение перед нахождением его значения лучше всего упростить по максимуму, сводя все вычисления к простейшим случаям.

Пример 10. Значение числового выражения

Вычислим выражение 25-1-25-74-3.

Мы не можем нацело извлечь корень из пяти, однако можем упростить исходное выражение путем преобразований.

25-1=25+15-15+1=25+15-1=25+24

Исходное выражение принимает вид:

25-1-25-74-3=25+24-25-74-3.

Вычислим значение этого выражения:

25+24-25-74-3=25+2-25+74-3=94-3=-34.

Выражения с логарифмами

Когда в выражении присутствуют логарифмы, их значение, если это возможно, вычисляется с самого начала. К примеру, в выражении log24+2·4 можно сразу вместо log24 записать значение этого логарифма, а потом выполнить все действия. Получим: log24+2·4=2+2·4=2+8=10.

Под самим знаком логарифма и в его основании также могут находится числовые выражения. В таком случае, первым делом находятся их значения. Возьмем выражение log5-6÷352+2+7. Имеем:

log5-6÷352+2+7=log327+7=3+7=10.

Если же вычислить точное значение логарифма невозможно, упрощение выражения помогает найти его значение.

Пример 11. Значение числового выражения

Найдем значение выражения log2log2256+log62+log63+log5729log0,227.

log2log2256=log28=3.

По свойству логарифмов:

log62+log63=log6(2·3)=log66=1.

Вновь применяя свойства логарифмов, для последней дроби в выражении получим:

log5729log0,227=log5729log1527=log5729-log527=-log27729=-log27272=-2.

Теперь можно переходить к вычислению значения исходного выражения.

log2log2256+log62+log63+log5729log0,227=3+1+-2=2.

Выражения с тригонометрическими функциями

Бывает, что в выражении есть тригонометрические функции синуса, косинуса, тангенса и котангенса, а также функции, обратные им. Из значения вычисляются перед выполнением всех остальных арифметических действий. В противном случае, выражение упрощается.

Пример 12. Значение числового выражения

Найдите значение выражения: tg24π3-sin-5π2+cosπ.

Сначала вычисляем значения тригонометрических функций, входящих в выражение.

tg4π3=3

sin-5π2=-1

cosπ=-1.

Подставляем значения в выражение и вычисляем его значение:

tg24π3-sin-5π2+cosπ=32-(-1)+(-1)=3+1-1=3.

Значение выражения найдено.

Часто для того, чтобы найти значение выражения с тригонометрическими функциями, его предварительно нужно преобразовать. Поясним на примере.

Пример 13. Значение числового выражения

Нужно найти значение выражения cos2π8-sin2π8cos5π36cosπ9-sin5π36sinπ9-1.

Для преобразования будем использовать тригонометрические формулы косинуса двойного угла и косинуса суммы.

cos2π8-sin2π8cos5π36cosπ9-sin5π36sinπ9-1=cos2π8cos5π36+π9-1=cosπ4cosπ4-1=1-1=0.

Общий случай числового выражения

В общем случае тригонометрическое выражение может содержать все вышеописанные элементы: скобки, степени, корни, логарифмы, функции. Сформулируем общее правило нахождения значений таких выражений.

Как найти значение выражения
  1. Корни, степени, логарифмы и т.д. заменяются их значениями.
  2. Выполняются действия в скобках.
  3. Оставшиеся действия выполняются по порядку слева направо. Сначала – умножение и деление, затем – сложение и вычитание.

Разберем пример.

Пример 14. Значение числового выражения

Вычислим, чему равно значение выражения -2·sinπ6+2·2π5+3π5+3 lne2+1+39.

Выражение довольно сложное и громоздкое. Мы не случайно выбрали именно такой пример, постаравшись уместить в него все описанные выше случаи. Как найти значение такого выражения?

Известно, что при вычислении значения сложного дробного вида, сначала отдельно находятся значения числителя и знаменателя дроби соответственно. Будем последовательно преобразовывать и упрощать данное выражение. 

Первым делом вычислим значение подкоренного выражения 2·sinπ6+2·2π5+3π5+3. Чтобы сделать это, нужно найти значение синуса, и выражения, которое является аргументом тригонометрической функции. 

π6+2·2π5+3π5=π6+2·2π+3π5=π6+2·5π5=π6+2π

Теперь можно узнать значение синуса:

sinπ6+2·2π5+3π5=sinπ6+2π=sinπ6=12.

Вычисляем значение подкоренного выражения:

2·sinπ6+2·2π5+3π5+3=2·12+3=4

Отсюда:

2·sinπ6+2·2π5+3π5+3=4=2.

Со знаменателем дроби все проще:

lne2=2.

Теперь мы можем записать значение всей дроби:

2·sinπ6+2·2π5+3π5+3 lne2=22=1.

С учетом этого, запишем все выражение:

-1+1+39=-1+1+33=-1+1+27=27.

Окончательный результат:

-2·sinπ6+2·2π5+3π5+3 lne2+1+39=27.

В данном случае мы смогли вычислить точные значения корней, логарифмов, синусов и т.д. Если такой возможности нет, можно попробовать избавиться от них путем математических преобразований.

Вычисление значений выражений рациональными способами

Вычислять значения числовых нужно последовательно и аккуратно. Данный процесс можно рационализировать и ускорить, используя различные свойства действий с числами. К примеру, известно, что произведение равно нулю, если нулю равен хотя бы один из множителей. С учетом этого свойства, можно сразу сказать, что выражение 2·386+5+58941-sin3π4·0 равно нулю. При этом, вовсе не обязательно выполнять действия по порядку, описанному в статье выше.

Также удобно использовать свойство вычитания равных чисел. Не выполняя никаких действий, можно заказать, что значение выражения 56+8-3,789lne2-56+8-3,789lne2 также равно нулю.

Еще один прием, позволяющий ускорить процесс – использование тождественных преобразований таких как группировка слагаемых и множителей и вынесение общего множителя за скобки. Рациональный подход к вычислению выражений с дробями – сокращение одинаковых выражений в числителе и знаменателе. 

Например, возьмем выражение 23-15+3·289·343·23-15+3·289·34. Не выполняя действий в скобках, а сокращая дробь, можно сказать, что значение выражения равно 13.

Нахождение значений выражений с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. 

Нахождение значений выражений с переменными

Чтобы найти значение буквенного выражения и выражения с переменными, нужно в исходное выражение подставить заданные значения букв и переменных, после чего вычислить значение полученного числового выражения.

Пример 15. Значение выражения с переменными

Вычислить значение выражения 0,5x-y при заданных x=2,4 и y=5.

Подставляем значения переменных в выражение и вычисляем:

0,5x-y=0,5·2,4-5=1,2-5=-3,8.

Иногда можно так преобразовать выражение, чтобы получить его значение независимо от значений входящих в него букв и переменных. Для этого от букв и переменных в выражении нужно по возможности избавиться, используя тождественные преобразования, свойства арифметических действий и все возможные другие способы.

Например, выражение х+3-х, очевидно, имеет значение 3, и для вычисления этого значения совсем необязательно знать значение переменной икс. Значение данного выражения равно трем для всех значений переменной икс из ее области допустимых значений. 

Еще один пример. Значение выражения xx равно единице для всех положительных иксов. 

Поиск значений выражений — основное математическое действие. Им сопровождается каждый пример, задача. Поэтому чтобы вам было проще работать с различными математическими выражениями, подробно разберем способы и правила их решения в данной статье. Правила представлены в порядке увеличения сложности: от простейших выражений до выражений с функциями. Для лучшего понимания каждый пункт сопровождается подробным пояснением и расписанными примерами.

Поиск значения числовых выражений

Числовые выражения представляют собой математические задачи, состоящие, преимущественно, из чисел. Они подразделяются на несколько групп в зависимости от своей сложности: простейшие, со скобками, корнями, дробями и т.д. Каждый тип выражений подразумевает свои правила нахождения значения, порядок действий. Рассмотрим каждый случай подробнее.

Простейшие числовые выражения. К простейшим числовым выражениям относятся примеры, состоящие из двух элементов:

  • Числа (целые, дробные и т.д.);
  • Знаки: «+», «—», «•» и «÷».

Чтобы найти значение выражения в данном случае, необходимо выполнить все арифметические действия (которые подразумевают конкретные знаки). В случае отсутствия скобок решение примера производится слева направо. Первыми выполняются действия деления и умножения. Вторыми — сложение и вычитание.

Пример 1. Решение числового выражения

Задача. Решить:

20 — 2 • 10 ÷ 5 — 4 = ?

Решение. Чтобы решить выражение, нам необходимо выполнить все арифметические действия в соответствии с установленными правилами. Поиск значения начинается с решения деления и умножения. В первую очередь находим произведение цифр 2 и 10 (если рассматривать с левой стороны, данное действие является первым по значимости). Получаем 20. Теперь это число делим на 5. Итог — 4. Когда известно значение основных действий, можем подставить его в наш пример:

20 — 4 — 4 = ?

Упрощенный пример также решаем слева направо: 20 — 4 = 16. Второе действие: 16 — 4 = 12. Ответ 12.

Решение без пояснений. 20 — 2 • 10 ÷ 5 — 4 = 20 — (2 • 10 ÷ 5) — 4 = 20 — 4 — 4 = 12.

Ответ. 12

Пример 2. Решение числового выражения

Задача. Решить:

0,2 — 5 • (— 4) + 1/2 • 5 • 4 = ?

Решение. Начинаем решение с умножения и деления. Умножая 5 на (— 4) получаем (— 20), т.к. производное сохраняет знак множителя. Далее умножаем 1/2 на 5. Для этого преобразуем дробь: 1/2 = 5/10 = 0,5. 0,5 умножаем на 5. Ответ — 2,5. Далее умножаем полученное число на 4. 2,5 • 4 = 10. Получаем следующее выражение:

0,2 — (— 20) + 10

Теперь нам остается решить сложение и вычитание. В первую очередь раскрываем скобку и получаем:

0,2 + 20 + 10 = 30,2

Решение без пояснений. 0,2 — 5 • (— 4) + 1/2 • 5 • 4 = 0,2 — (— 20) + 10 = 0,2 + 20 + 10 = 30,2

Ответ. 30,2

Находим значение выражения со скобками

Скобки определяют порядок действий при решении примера. Выражения, находящиеся внутри скобок «()» имеют первостепенную значимость, независимо от того, какое математическое действие в них выполняется.

Пример 3. Значение числового выражения со скобками

Задача. Решить:

5 + (7 — 2 • 3) • (6 — 4) ÷ 2 = ?

Решение. Начинаем нахождение значения выражения с решения скобок. Порядок действий определяется слева направо. При этом не забываем, что после раскрытия скобок в первую очередь решаем умножение и деление и лишь потом — вычитание и сложение:

  • 7 — 2 • 3 = 7 — 6 = 1
  • 6 — 4 = 2

Когда скобки решены, подставляем полученные значения в наш пример:

5 + 1 • 2 ÷ 2

Снова решаем все по порядку, не забывая о том, что деление и умножение выполняется в первую очередь:

  • 1 • 2 = 2
  • 2 ÷ 2 = 1

Упрощенное выражение выглядит следующим образом:

5 + 1 = 6

Решение без пояснений. 5 + (7 — 2 • 3) • (6 — 4) ÷ 2 = 5 + (7 — 6) • 2 ÷ 2 = 5+ 1 • 2 ÷ 2 = 5 + 1 = 6

Ответ. 6

Значение числового выражения со скобками

Задача. Решить:

4 + (3 + 1 + 4 • (2+3)) = ?

Решение. Подобные примеры решаются поэтапно. Помним, что поиск выражения со скобками начинается с решения скобок. Поэтому в первую очередь решаем:

3 + 1 + 4 • (2+3)

В уже упрощенном примере снова встречаются скобки. Их будем решать в первую очередь:

2 + 3 = 5

Теперь можем подставить определенное значение в общую скобку:

3 + 1 + 4 • 5

Начинаем решение с умножения и далее слева направо:

  • 4 • 5 = 20
  • 3 + 1 = 4
  • 4 + 20 = 24

Далее подставляем полученный ответ вместо большой скобки и получаем:

4 + 24 = 28

Решение без пояснений. 4 + (3 + 1 + 4 • (2+3)) = 4 + (3 + 1 + 4 • 5) = 4 + (3 + 1 + 20) = 4 + 24 = 28

Ответ. 28

Важно: Чтобы правильно определить значение числового выражения с множественными скобками, необходимо выполнять все действия постепенно. Скобки читаются слева направо. Приоритет в решении внутри скобок остается за делением и умножением.

Поиск значения выражения с корнями

Часто алгебраические задания основываются на нахождении значений из-под корня. И если определить √4 несложно (напомним, это будет 2), то с примерами, которые полностью расположены под корнем, возникает ряд вопросов. На самом деле в таких заданиях нет ничего сложного. В данном случае порядок действий следующий:

  • Решаем все выражение, которое находится под корнем (не забываем о правильной последовательности: сперва скобки, деление и умножение, а лишь потом — сложение и вычитание);
  • Извлекаем корень из числа, которое получили в результате решения обычного примера.

Если же и под корнем имеется корень (например: √ 4 + 8 — √4), то начинаем решение примера с его извлечения (в нашем примере это будет: √ 4 + 8 — 2). Если подкоренные числа возведены во вторую степень, то их квадратный корень будет равняться модулю подкоренного выражения.

Значение числового выражения с корнями

Задача. Решить:

√ 2² • 2² • 3² = ?

Решение. Все действия под корнем одинаковы — умножение. Это дает нам право разделить выражение на множители. Получаем:

√2² • √2² • √3² = ?

Т.к. под квадратным корнем у нас числа, возведенные во вторую степень, получаем:

2 • 2 • 3 = 12

Решение без пояснений. √ 2² • 2² • 3² = √2² • √2² • √3² = 2 • 2 • 3 = 12

Ответ. 12

Нет времени решать самому?

Наши эксперты помогут!

Находим значение числовых выражений со степенями

Следующий математический знак, который имеет приоритет в процессе решения, — степени. Они представляют собой результат многократного умножения числа на себя. Само число является основанием степени. А количество операций умножения — ее показателем. Причем выражен он может быть не только целым числом, но и дробью, полноценным числовым выражением.

Начинается решение выражения со степенями с вычисления самих степеней. Если они представляют собой полноценное выражение (например: [3^{3 cdot 4-10}]), то его необходимо решить в нашем примере это будет: [3^{12-10}=3^{2}=9].

Задача. Решите:

[ 3^{1 / 3} cdot 7^{1 / 3} cdot 21^{2 / 3}=? ]

Решение. Чтобы решить это выражение со степенями, воспользуемся равенством:

[(a cdot b)^{r}=a^{r} cdot b^{r}]

Рассматривая пример слева направо, видим, что у первых двух множителей одинаковые степени. Это позволяет нам упростить выражение:

[ (3 cdot 7)^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3} cdot 21^{2 / 3} ]

Зная, что при умножении степени с одинаковыми показателями складываются, получаем следующее выражение:

[ 21^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3+2 / 3}=21^{1}=21 ]

Решение без пояснений: [3^{1 / 3} cdot 7^{1 / 3} cdot 21^{2 / 3}=(3 cdot 7)^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3} cdot 21^{2 / 3}=21^{1 / 3+2 / 3}=21^{1}=21]

Ответ. 21

Интересно: Этот же пример можно решить и другим способом, преобразовав число 21 в степени ⅔ в два множителя. В данном случае решение будет выглядеть следующим образом:

[3^{1 / 3} cdot 7^{1 / 3} cdot 21^{2 / 3}=3^{1 / 3} cdot 7^{1 / 3} cdot(3 cdot 7)^{2 / 3}=3^{1 / 3} cdot 7^{1 / 3} cdot 3^{2 / 3} cdot 7^{2 / 3}=3^{1 / 3+2 / 3} cdot 7^{1 / 3+2 / 3}=3^{1}+7^{1}=21]

Ответ. 21

Задача. Решить:

[ 2^{-2 sqrt{5}} cdot 4^{sqrt{5}-1}+left((sqrt{3})^{1 / 3}right)^{6} ]

Решение. В данном случает получить точные числовые значения показателей степеней не удастся. Поэтому искать значение выражения с дробями в виде степени будем снова через упрощение:

Пример решения задач 1

Ответ. 3,25

Выражения с дробями

Поиск значения выражения дробей начинается с их приведения к общему виду. В большинстве случаев проще представить все значения в виде обыкновенной дроби с числителем и знаменателем. После преобразования всех чисел необходимо привести все дроби к общему знаменателю.

Важно: Прежде чем найти выражение дробей, необходимо провести вычисления в их знаменателе и числителе отдельно. В данном случае действуют стандартные правила решения.

Когда дроби приведены к единому знаменателю можно переходить к решению. Вычисление значений верхней строки (числителя) и нижней (знаменателя) производятся параллельно.

Задача. Решить:

[ 6 frac{2}{13}+4 frac{1}{13}=? ]

Решение. Действуя по главному правилу, прежде чем найти значение числового выражения, преобразуем всего его части в простую дробь. Получаем:

[ frac{6 cdot 13+2}{13}+frac{4 cdot 13+1}{13} ]

Теперь выполняем вычисления в знаменателе и числителе и находим ответ:

[ frac{6 cdot 13+2}{13}+frac{4 cdot 13+1}{13}=frac{80}{13}+frac{53}{13}=frac{133}{13}=10 frac{3}{13} ]

Ответ. [10 frac{3}{13}]

Примеры(2):

Пример решения задач 2

Задача. Решить:

[ frac{2}{sqrt{5}-1}-frac{2 sqrt{5}-7}{4}-3=? ]

Решение. В данном примере мы не можем извлечь корень из пятерки. Но мы можем воспользоваться формулой разложения корней:

[ frac{2}{sqrt{5}-1}=frac{2(sqrt{5}+1)}{(sqrt{5}-1)(sqrt{5}+1)}=frac{2(sqrt{5}+1)}{5-1}=frac{2 sqrt{5}+2}{4} ]

Теперь можем придать нашему первоначальному выражению следующий вид:

[ frac{2 sqrt{5}+2}{4} frac{2 sqrt{5}-7}{4}-3=frac{2 sqrt{5}+2-2 sqrt{5}+7}{4}-3=frac{9}{4} 3=-frac{3}{4} ]

Ответ. [-frac{3}{4}].

Выражения с логарифмами

Как и степени, логарифмы (log), имеющиеся в выражении, вычисляются (если это возможно) в первую очередь. К примеру, зная, что [log _{2} 4=2] мы можем сразу упростить выражение  [log _{2} 4+5 cdot 6] до простого и понятного 2 + 5*6 = 32.

Со степенями логарифмы объединяет и порядок выполнения действий. Прежде чем искать значение выражения логарифмов, необходимо вычислить его основание (если оно представлено математическим выражением).

В случаях, когда полное вычисление логарифма невозможно, производится упрощение примера.

Задача. Решить:

[log _{27} 81+log _{27} 9=?]

Решение. Чтобы найти логарифм выражения, воспользуемся свойствами логарифмов и представим значение логарифмов со степенями:

Пример решения задач 3

Это позволит нам решить пример следующим образом:

Пример решения задач 4

Ответ. 2

Решаем выражения с тригонометрической функцией

Часто в выражениях встречаются тригонометрические функции. Всего их в математике шесть:

  • Синус;
  • Косинус;
  • Котангенс;
  • Тангенс;
  • Секанс;
  • Косеканс.

Изучение тригонометрии начинается в 9-м классе, когда ученики уже подготовлены к сложным задачам. Большинство заданий представляются с sin и cos. Остальные функции встречаются значительно реже.

В математических примерах, которые содержат sin, cos, tg и др. функции, вычисление тригонометрической функции производится в первую очередь. Если это невозможно — осуществляется упрощение выражения до получения краткой формулы.

Задача. Решить:

[ frac{24}{sin ^{2} 127+1+sin ^{2} 217} ]

Решение. Разложим 217 на 90 и 127. Т.к. по формуле приведения sin(90 + a) = cosa, получаем:

sin217 — sin (90 + 127) = cos127

Теперь заменяем полученной формулой наше слагаемое в знаменателе дроби:

[ frac{24}{sin ^{2} 127+cos ^{2} 127+1} ]

Вспоминаем, что по тригонометрическому тождеству sin2a+ cos2 a= 1 (независимо от значения угла a). Поэтому одну часть слагаемого знаменателя (sin2127+ cos2127) преобразуем в единицу и получаем:

[ frac{24}{sin ^{2} 127+cos ^{2} 127+1}=frac{24}{1+1}=frac{24}{2}=2 ]

Ответ. 2

Пример решения задач 5

Важно: Не стоит бояться буквенных тригонометрических значений. Большинство примеров построено таким образом, чтобы функции можно было заменить более удобной для вычисления формулой. Поэтому вместо того, чтобы пытаться сразу решить пример, стоит обратить внимание на особенности функций и возможность их приведения к подходящей формуле.

Задача. Решить:

[ sqrt{4} 8-sqrt{1} 92 sin ^{2} frac{19 pi}{12}=? ]

Решение. Начинаем решение с разбора второй дроби. Обращаем внимание, что 192 = 48 • 2. А значит, корень этого числа можно представить в виде 2√48. Зная это и используя формулу косинуса двойного угла, преобразим наше выражение:

Пример решения задач 6

Теперь по формуле приведения решаем наш пример:

[ sqrt{4} 8 cos left(3 pi+frac{pi}{6}right)=sqrt{4} 8left(-cos frac{pi}{6}right)=-sqrt{4} 8 cdot frac{sqrt{3}}{2}=-4 sqrt{3} cdot frac{sqrt{3}}{2}=-6 ]

Ответ. — 6.

Общий случай: находим значения выражений с дробями, функциями, степенями и не только

Самым сложным считается поиск числовых выражений общих случаев. Они представляют собой тригонометрические примеры, которые могут содержать:

  • Степени;
  • Скобки;
  • Корни;
  • Функции и т.д.

Общие числовые выражения сложны только длительностью решения. В остальном же они ничуть не сложнее, чем решение каждого примера (со скобкой, степенями, функциями и т.д.) по отдельности.

Чтобы найти значение выражения с логарифмами, тригонометрическими функциями, скобками и/или другими действиями, необходимо помнить три основных правила:

  • Упрощение. Прежде чем приступать к решению внимательно изучите выражение. Особенно — его степени, корни, логарифмы, функции. В большинстве случаев их можно сократить или заменить простым числовым значением еще до решения.
  • Скобки. Независимо от типа выражения, действий, начинать решение всегда необходимо со скобок. Часто именно игнорирование этого правила приводит к получению неверного ответа или отсутствию решения в принципе.
  • Общий вид. Старайтесь привести выражение к общему виду. Особенно это касается дробей. Смешанные и десятичные дроби преобразуйте в обычные.
  • Последовательность. Действия в скобках и действия после их решения выполняются слева направо. В первую очередь необходимо совершать умножение и деление. Когда все произведения и частные найдены, можно переходить к сложению и вычитанию.

Для удобства решения и устранения возможных ошибок рекомендуем расставлять порядок действий непосредственно над математическими знаками.

Задача. Решить:

[ -frac{sqrt{2} sin left(frac{pi}{6}+2left(frac{2 pi}{5}+frac{3 pi}{5}right)right)+3}{operatorname{Ln} e^{2}}+left(1+3^{sqrt{9}}right)=? ]

Решение. Чтобы решить этот пример, сначала найдем значение выражения числителя дроби, а точнее — подкоренного выражения. Для этого необходимо вычислить значение sin и общего выражения. Начинаем с раскрытия скобок в числителе:

Пример решения задач 7

Полученное значение можем подставить в подкоренное выражение для вычисления числителя дроби:

[ sqrt{2} sin cdotleft(frac{pi}{6}+2left(frac{2 pi}{5}+frac{3 pi}{5}right)+3=sqrt{4}=2right. ]

Со знаменателем дела обстоят куда проще:

[ ln e^{2}=2 ]

Числитель и знаменатель у нас одинаковые, что позволяет нам их сократить:

Пример решения задач 8

Теперь остается решить следующее выражение:

Пример решения задач 9

Ответ. 27

Как видите, при последовательном решении примеров с большим количеством действий нет ничего сложного. Главное — верно обозначить последовательность шагов и четко ей следовать.

Как найти значение выражения числителя дроби, подкорневого значения рационально?

Независимо от типа выражения решать его необходимо последовательно, руководствуясь стандартными правилами (описаны ранее). Но не стоит забывать, что во многих случаях поиск ответа может быть значительно упрощен за счет рационального подхода к решению. Основывается он на нескольких правилах.

Правило 1. Когда произведение равно нулю

Производное равно нулю в том случае, если хотя бы один из его сомножителей равен нулю. Если вы решаете пример из нескольких сомножителей, одним из которых является «0», то проводить многочисленные вычислительные действия не стоит.

Например, выражение [3 cdotleft(451+4+frac{18}{3}right)left(1-sin left(frac{3 pi}{4}right)right) cdot 0] будет равняться нулю.

Правило 2. Группировка и вынесение чисел

Ускорить процесс поиска ответа можно за счет группировки множителей, слагаемых или вынесения единого множителя за скобки. Также не стоит забывать о возможности сокращения дроби.

Например, выражение [frac{left(451+4+frac{18}{3}right)}{4left(451+4+frac{18}{3}right)}] решать не надо. Достаточно сократить скобки, чтобы получить ответ [=frac{1}{4}]

Решение примеров с переменными

Примеры с переменными отличаются от числовых только формой предоставления. В данном случае значения предоставляются дополнительно к выражению.

Пример задания: Найдите значение выражения 2x — y, если x = 2,5, а y = 2. В данном случае решение будет выглядеть следующим образом:

2x — y = 2 • 2,5 — 2 = 3

При этом в таких примерах сохраняются все описанные выше правила. Касается это и советов по рациональному решению примеров. Так, решать дробь [frac{sqrt{y}}{sqrt{y}}] бессмысленно, т.к. при любых значениях «y» ответ будет одинаковым — 1.

Нахождение значения выражения: правила, примеры, решения

В данной статье рассмотрено, как находить значения математических выражений. Начнем с простых числовых выражений и далее будем рассматривать случаи по мере возрастания их сложности. В конце приведем выражение, содержащее буквенные обозначения, скобки, корни, специальные математические знаки, степени, функции и т.д. Всю теорию, по традиции, снабдим обильными и подробными примерами.

Как найти значение числового выражения?

Числовые выражения, помимо прочего, помогают описывать условие задачи математическим языком. Вообще математические выражения могут быть как очень простыми, состоящими из пары чисел и арифметических знаков, так и очень сложными, содержащими функции, степени, корни, скобки и т.д. В рамках задачи часто необходимо найти значение того или иного выражения. О том, как это делать, и пойдет речь ниже.

Простейшие случаи

Это случаи, когда выражение не содержит ничего, кроме чисел и арифметических действий. Для успешного нахождения значений таких выражений понадобятся знания порядка выполнения арифметических действий без скобок, а также умение выполнять действия с различными числами.

Если в выражении есть только числа и арифметические знаки ” + ” , ” · ” , ” – ” , ” ÷ ” , то действия выполняются слева направо в следующем порядке: сначала умножение и деление, затем сложение и вычитание. Приведем примеры.

Пример 1. Значение числового выражения

Пусть нужно найти значения выражения 14 – 2 · 15 ÷ 6 – 3 .

Выполним сначала умножение и деление. Получаем:

14 – 2 · 15 ÷ 6 – 3 = 14 – 30 ÷ 6 – 3 = 14 – 5 – 3 .

Теперь проводим вычитание и получаем окончательный результат:

14 – 5 – 3 = 9 – 3 = 6 .

Вычислим: 0 , 5 – 2 · – 7 + 2 3 ÷ 2 3 4 · 11 12 .

Сначала выполняем преобразование дробей, деление и умножение:

0 , 5 – 2 · – 7 + 2 3 ÷ 2 3 4 · 11 12 = 1 2 – ( – 14 ) + 2 3 ÷ 11 4 · 11 12

1 2 – ( – 14 ) + 2 3 ÷ 11 4 · 11 12 = 1 2 – ( – 14 ) + 2 3 · 4 11 · 11 12 = 1 2 – ( – 14 ) + 2 9 .

Теперь займемся сложением и вычитанием. Сгруппируем дроби и приведем их к общему знаменателю:

1 2 – ( – 14 ) + 2 9 = 1 2 + 14 + 2 9 = 14 + 13 18 = 14 13 18 .

Искомое значение найдено.

Выражения со скобками

Если выражение содержит скобки, то они определяют порядок действий в этом выражении. Сначала выполняются действия в скобках, а потом уже все остальные. Покажем это на примере.

Пример 3. Значение числового выражения

Найдем значение выражения 0 , 5 · ( 0 , 76 – 0 , 06 ) .

В выражении присутствуют скобки, поэтому сначала выполняем операцию вычитания в скобках, а уже потом – умножение.

0 , 5 · ( 0 , 76 – 0 , 06 ) = 0 , 5 · 0 , 7 = 0 , 35 .

Значение выражений, содержащих скобки в скобках, находится по такому же принципу.

Пример 4. Значение числового выражения

Вычислим значение 1 + 2 · 1 + 2 · 1 + 2 · 1 – 1 4 .

Выполнять действия будем начиная с самых внутренних скобок, переходя к внешним.

1 + 2 · 1 + 2 · 1 + 2 · 1 – 1 4 = 1 + 2 · 1 + 2 · 1 + 2 · 3 4

1 + 2 · 1 + 2 · 1 + 2 · 3 4 = 1 + 2 · 1 + 2 · 2 , 5 = 1 + 2 · 6 = 13 .

В нахождении значений выражений со скобками главное – соблюдать последовательность действий.

Выражения с корнями

Математические выражения, значения которых нам нужно найти, могут содержать знаки корня. Причем, само выражение может быть под знаком корня. Как быть в таком случае? Сначала нужно найти значение выражения под корнем, а затем извлечь корень из числа, полученного в результате. По возможности от корней в числовых выражениях нужно лучше избавляться, заменяя из на числовые значения.

Пример 5. Значение числового выражения

Вычислим значение выражения с корнями – 2 · 3 – 1 + 60 ÷ 4 3 + 3 · 2 , 2 + 0 , 1 · 0 , 5 .

Сначала вычисляем подкоренные выражения.

– 2 · 3 – 1 + 60 ÷ 4 3 = – 6 – 1 + 15 3 = 8 3 = 2

2 , 2 + 0 , 1 · 0 , 5 = 2 , 2 + 0 , 05 = 2 , 25 = 1 , 5 .

Теперь можно вычислить значение всего выражения.

– 2 · 3 – 1 + 60 ÷ 4 3 + 3 · 2 , 2 + 0 , 1 · 0 , 5 = 2 + 3 · 1 , 5 = 6 , 5

Часто найти значение выражения с корнями часто нужно сначала провести преобразование исходного выражения. Поясним это на еще одном примере.

Пример 6. Значение числового выражения

Сколько будет 3 + 1 3 – 1 – 1

Как видим, у нас нет возможности заменить корень точным значением, что усложняет процесс счета. Однако, в данном случае можно применить формулу сокращенного умножения.

3 + 1 3 – 1 = 3 – 1 .

3 + 1 3 – 1 – 1 = 3 – 1 – 1 = 1 .

Выражения со степенями

Если в выражении имеются степени, их значения нужно вычислить прежде, чем приступать ко всем остальным действиям. Бывает так, что сам показатель или основание степени являются выражениями. В таком случае, сначала вычисляют значение этих выражений, а затем уже значение степени.

Пример 7. Значение числового выражения

Найдем значение выражения 2 3 · 4 – 10 + 16 1 – 1 2 3 , 5 – 2 · 1 4 .

Начинаем вычислять по порядку.

2 3 · 4 – 10 = 2 12 – 10 = 2 2 = 4

16 · 1 – 1 2 3 , 5 – 2 · 1 4 = 16 * 0 , 5 3 = 16 · 1 8 = 2 .

Осталось только провести операцию сложение и узнать значение выражения:

2 3 · 4 – 10 + 16 1 – 1 2 3 , 5 – 2 · 1 4 = 4 + 2 = 6 .

Также часто целесообразно бывает провести упрощение выражения с использованием свойств степени.

Пример 8. Значение числового выражения

Вычислим значение следующего выражения: 2 – 2 5 · 4 5 – 1 + 3 1 3 6 .

Показатели степеней опять таковы, что их точные числовые значения получить не удастся. Упростим исходное выражение, чтобы найти его значение.

2 – 2 5 · 4 5 – 1 + 3 1 3 6 = 2 – 2 5 · 2 2 5 – 1 + 3 1 3 · 6

2 – 2 5 · 2 2 5 – 1 + 3 1 3 · 6 = 2 – 2 5 · 2 2 · 5 – 2 + 3 2 = 2 2 · 5 – 2 – 2 5 + 3 2

2 2 · 5 – 2 – 2 5 + 3 2 = 2 – 2 + 3 = 1 4 + 3 = 3 1 4

Выражения с дробями

Если выражение содержит дроби, то при вычислении такого выражения все дроби в нем нужно представить в виде обыкновенных дробей и вычислить их значения.

Если в числителе и знаменателе дроби присутствуют выражения, то сначала вычисляются значения этих выражений, и записывается финальное значение самой дроби. Арифметические действия выполняются в стандартном порядке. Рассмотрим решение примера.

Пример 9. Значение числового выражения

Найдем значение выражения, содержащего дроби: 3 , 2 2 – 3 · 7 – 2 · 3 6 ÷ 1 + 2 + 3 9 – 6 ÷ 2 .

Как видим, в исходном выражении есть три дроби. Вычислим сначала их значения.

3 , 2 2 = 3 , 2 ÷ 2 = 1 , 6

7 – 2 · 3 6 = 7 – 6 6 = 1 6

1 + 2 + 3 9 – 6 ÷ 2 = 1 + 2 + 3 9 – 3 = 6 6 = 1 .

Перепишем наше выражение и вычислим его значение:

1 , 6 – 3 · 1 6 ÷ 1 = 1 , 6 – 0 , 5 ÷ 1 = 1 , 1

Часто при нахождении значений выражений удобно бывает проводить сокращение дробей. Существует негласное правило: любое выражение перед нахождением его значения лучше всего упростить по максимуму, сводя все вычисления к простейшим случаям.

Пример 10. Значение числового выражения

Вычислим выражение 2 5 – 1 – 2 5 – 7 4 – 3 .

Мы не можем нацело извлечь корень из пяти, однако можем упростить исходное выражение путем преобразований.

2 5 – 1 = 2 5 + 1 5 – 1 5 + 1 = 2 5 + 1 5 – 1 = 2 5 + 2 4

Исходное выражение принимает вид:

2 5 – 1 – 2 5 – 7 4 – 3 = 2 5 + 2 4 – 2 5 – 7 4 – 3 .

Вычислим значение этого выражения:

2 5 + 2 4 – 2 5 – 7 4 – 3 = 2 5 + 2 – 2 5 + 7 4 – 3 = 9 4 – 3 = – 3 4 .

Выражения с логарифмами

Когда в выражении присутствуют логарифмы, их значение, если это возможно, вычисляется с самого начала. К примеру, в выражении log 2 4 + 2 · 4 можно сразу вместо log 2 4 записать значение этого логарифма, а потом выполнить все действия. Получим: log 2 4 + 2 · 4 = 2 + 2 · 4 = 2 + 8 = 10 .

Под самим знаком логарифма и в его основании также могут находится числовые выражения. В таком случае, первым делом находятся их значения. Возьмем выражение log 5 – 6 ÷ 3 5 2 + 2 + 7 . Имеем:

log 5 – 6 ÷ 3 5 2 + 2 + 7 = log 3 27 + 7 = 3 + 7 = 10 .

Если же вычислить точное значение логарифма невозможно, упрощение выражения помогает найти его значение.

Пример 11. Значение числового выражения

Найдем значение выражения log 2 log 2 256 + log 6 2 + log 6 3 + log 5 729 log 0 , 2 27 .

log 2 log 2 256 = log 2 8 = 3 .

По свойству логарифмов:

log 6 2 + log 6 3 = log 6 ( 2 · 3 ) = log 6 6 = 1 .

Вновь применяя свойства логарифмов, для последней дроби в выражении получим:

log 5 729 log 0 , 2 27 = log 5 729 log 1 5 27 = log 5 729 – log 5 27 = – log 27 729 = – log 27 27 2 = – 2 .

Теперь можно переходить к вычислению значения исходного выражения.

log 2 log 2 256 + log 6 2 + log 6 3 + log 5 729 log 0 , 2 27 = 3 + 1 + – 2 = 2 .

Выражения с тригонометрическими функциями

Бывает, что в выражении есть тригонометрические функции синуса, косинуса, тангенса и котангенса, а также функции, обратные им. Из значения вычисляются перед выполнением всех остальных арифметических действий. В противном случае, выражение упрощается.

Пример 12. Значение числового выражения

Найдите значение выражения: t g 2 4 π 3 – sin – 5 π 2 + cosπ .

Сначала вычисляем значения тригонометрических функций, входящих в выражение.

Подставляем значения в выражение и вычисляем его значение:

t g 2 4 π 3 – sin – 5 π 2 + cosπ = 3 2 – ( – 1 ) + ( – 1 ) = 3 + 1 – 1 = 3 .

Значение выражения найдено.

Часто для того, чтобы найти значение выражения с тригонометрическими функциями, его предварительно нужно преобразовать. Поясним на примере.

Пример 13. Значение числового выражения

Нужно найти значение выражения cos 2 π 8 – sin 2 π 8 cos 5 π 36 cos π 9 – sin 5 π 36 sin π 9 – 1 .

Для преобразования будем использовать тригонометрические формулы косинуса двойного угла и косинуса суммы.

cos 2 π 8 – sin 2 π 8 cos 5 π 36 cos π 9 – sin 5 π 36 sin π 9 – 1 = cos 2 π 8 cos 5 π 36 + π 9 – 1 = cos π 4 cos π 4 – 1 = 1 – 1 = 0 .

Общий случай числового выражения

В общем случае тригонометрическое выражение может содержать все вышеописанные элементы: скобки, степени, корни, логарифмы, функции. Сформулируем общее правило нахождения значений таких выражений.

Как найти значение выражения

  1. Корни, степени, логарифмы и т.д. заменяются их значениями.
  2. Выполняются действия в скобках.
  3. Оставшиеся действия выполняются по порядку слева направо. Сначала – умножение и деление, затем – сложение и вычитание.

Пример 14. Значение числового выражения

Вычислим, чему равно значение выражения – 2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 ln e 2 + 1 + 3 9 .

Выражение довольно сложное и громоздкое. Мы не случайно выбрали именно такой пример, постаравшись уместить в него все описанные выше случаи. Как найти значение такого выражения?

Известно, что при вычислении значения сложного дробного вида, сначала отдельно находятся значения числителя и знаменателя дроби соответственно. Будем последовательно преобразовывать и упрощать данное выражение.

Первым делом вычислим значение подкоренного выражения 2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 . Чтобы сделать это, нужно найти значение синуса, и выражения, которое является аргументом тригонометрической функции.

π 6 + 2 · 2 π 5 + 3 π 5 = π 6 + 2 · 2 π + 3 π 5 = π 6 + 2 · 5 π 5 = π 6 + 2 π

Теперь можно узнать значение синуса:

sin π 6 + 2 · 2 π 5 + 3 π 5 = sin π 6 + 2 π = sin π 6 = 1 2 .

Вычисляем значение подкоренного выражения:

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 = 2 · 1 2 + 3 = 4

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 = 4 = 2 .

Со знаменателем дроби все проще:

Теперь мы можем записать значение всей дроби:

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 ln e 2 = 2 2 = 1 .

С учетом этого, запишем все выражение:

– 1 + 1 + 3 9 = – 1 + 1 + 3 3 = – 1 + 1 + 27 = 27 .

– 2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 ln e 2 + 1 + 3 9 = 27 .

В данном случае мы смогли вычислить точные значения корней, логарифмов, синусов и т.д. Если такой возможности нет, можно попробовать избавиться от них путем математических преобразований.

Вычисление значений выражений рациональными способами

Вычислять значения числовых нужно последовательно и аккуратно. Данный процесс можно рационализировать и ускорить, используя различные свойства действий с числами. К примеру, известно, что произведение равно нулю, если нулю равен хотя бы один из множителей. С учетом этого свойства, можно сразу сказать, что выражение 2 · 386 + 5 + 589 4 1 – sin 3 π 4 · 0 равно нулю. При этом, вовсе не обязательно выполнять действия по порядку, описанному в статье выше.

Также удобно использовать свойство вычитания равных чисел. Не выполняя никаких действий, можно заказать, что значение выражения 56 + 8 – 3 , 789 ln e 2 – 56 + 8 – 3 , 789 ln e 2 также равно нулю.

Еще один прием, позволяющий ускорить процесс – использование тождественных преобразований таких как группировка слагаемых и множителей и вынесение общего множителя за скобки. Рациональный подход к вычислению выражений с дробями – сокращение одинаковых выражений в числителе и знаменателе.

Например, возьмем выражение 2 3 – 1 5 + 3 · 289 · 3 4 3 · 2 3 – 1 5 + 3 · 289 · 3 4 . Не выполняя действий в скобках, а сокращая дробь, можно сказать, что значение выражения равно 1 3 .

Нахождение значений выражений с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных.

Нахождение значений выражений с переменными

Чтобы найти значение буквенного выражения и выражения с переменными, нужно в исходное выражение подставить заданные значения букв и переменных, после чего вычислить значение полученного числового выражения.

Вычислить значение выражения 0 , 5 x – y при заданных x = 2 , 4 и y = 5 .

Подставляем значения переменных в выражение и вычисляем:

0 , 5 x – y = 0 , 5 · 2 , 4 – 5 = 1 , 2 – 5 = – 3 , 8 .

Иногда можно так преобразовать выражение, чтобы получить его значение независимо от значений входящих в него букв и переменных. Для этого от букв и переменных в выражении нужно по возможности избавиться, используя тождественные преобразования, свойства арифметических действий и все возможные другие способы.

Например, выражение х + 3 – х , очевидно, имеет значение 3 , и для вычисления этого значения совсем необязательно знать значение переменной икс. Значение данного выражения равно трем для всех значений переменной икс из ее области допустимых значений.

Еще один пример. Значение выражения x x равно единице для всех положительных иксов.

Выражения и уравнения – определение и вычисление с примерами решения

Содержание:

Выражения и уравнения

Вы уже знаете, что такое буквенные выражения, и умеете их упрощать с помощью законов сложения и умножения. Например,

Пример:

Есть ли коэффициент в выражении ? Да. Он равен 1, поскольку

Вспомним, что преобразование выражения со скобками в выражение без скобок называется раскрытием скобок. Например:

Обратным действием в этом примере является вынесение общего множителя за скобки.

Слагаемые, содержащие одинаковые буквенные множители, называют подобными слагаемыми. С помощью вынесения общего множителя за скобки сводят подобные слагаемые:

Правила раскрытия скобок

Правила раскрытия скобок

  1. Если перед скобками стоит знак , то при раскрытии скобок знаки слагаемых в скобках сохраняют;
  2. Если перед скобками стоит знак , то при раскрытии скобок знаки слагаемых в скобках изменяют на противоположные.

Пример:

Упростите выражение: 1) ; 2)

Решение:

1. Перед скобками стоит знак , поэтому при раскрытии скобок знаки всех слагаемых сохраняются:

2. Перед скобками стоит знак , поэтому при раскрытии скобок знаки всех слагаемых изменяются на противоположные:

Для раскрытия скобок используют распределительное свойство умножения: . Если , то знаки слагаемых и не изменяют. Если , то знаки слагаемых и изменяют на противоположные.

Пример:

Упростите выражение: 1) 2)

Решение:

1. Множитель перед скобками является положительным, поэтому при раскрытии скобок знаки всех слагаемых сохраняем:

2. Множитель перед скобками является отрицательным, поэтому при раскрытии скобок знаки всех слагаемых изменяем на противоположные:

  1. Слово «сумма» происходит от латинского summа, что значит «итог», «общее количество».
  2. Слово «плюс» происходит от латинского plus, что значит «больше», а слово «минус» — от латинского minus, что значит «меньше». Знаки и используют для обозначения действий сложения и вычитания. Эти знаки ввёл чешский учёный И. Видман в 1489 г в книге «Быстрый и приятный счёт для всех торговцев»(рис. 138).

Уравнения. Основные свойства уравнений

Вы уже знаете, что такое уравнение, корень уравнения. Вспомним основные формулировки.

Определение:

Уравнением называется равенство, содержащее неизвестное, значение которого нужно найти.

Неизвестное число в уравнении обозначают буквой или , или и т.п. Например, запись является

уравнением, где — неизвестное и является искомым.

Определение:

Значение неизвестного, обращающее уравнение в верное числовое равенство, называется корнем уравнения.

Так, корнем уравнения является число , поскольку .

Уравнение может иметь больше одного корня. Например, уравнение имеет бесконечно много корней, так как любое число обращает уравнение в верное числовое равенство. С уравнениями, имеющими два, три или более корней, вы ознакомитесь позднее.

Уравнение может не иметь корней. Например, уравнение не имеет корней, так как не существует числа, которое в произведении с числом даёт число .

Определение:

Решить уравнение — значит найти все его корни или установить, что уравнение не имеет ни одного корня.

В 5 классе вы находили корень уравнения как неизвестный компонент арифметического действия. При решении более сложных уравнений опираются на свойства равенств. Рассмотрим основные из них.

Посмотрите на рисунок 139. Вы видите, что на левой чаше весов находится арбуз неизвестной массы, а на правой — гири массой 5 кг и 3 кг. Если на обе чаши весов положить по гире массой 3 кг, то весы останутся в равновесии (рис. 140). Понятно, что, сняв эти гири или поставив навесы одинаковые гири другой массы, снова получим равновесие на весах. Этот пример иллюстрирует следующее свойство равенств.

Определение: Если к обеим частям равенства прибавить (из обеих частей равенства вычесть) одно и то же число, то равенство не изменится.

Пример:

Решите уравнение: 1) .

Решение:

К левой и правой частям уравнения прибавим число 12 и упростим полученное равенство:

Решая уравнение, в левой его части «уединили неизвестное». Такой же результат получим, если число 12 перенесём из левой части в правую, изменив при этом его знак.

Определение:

Слагаемое можно переносить из одной части уравнения в другую, изменяя знак этого слагаемого на противоположный.

Пример:

Можно ли переносить в другую часть уравнения слагаемое, содержащее неизвестное? Да.

Посмотрите на рисунок 141. Вы видите, что масса пакета муки равна 2 кг. Понятно, что масса трёх таких пакетов втрое больше (рис. 142). Этот пример иллюстрирует другое свойство равенств.

Определение: Если обе части равенства умножить (разделить) на одно и то же число, отличное от нуля, то равенство не изменится. Данное свойство используют для решения уравнений. Рассмотрим пример.

Пример:

Решите уравнение

Решение:

Чтобы избавиться от дробного коэффициента, умножим на 3 обе части уравнения:

Основные свойства уравнений

Основные свойства уравнений

  1. Корни уравнения не изменятся, если к обеим частям уравнения прибавить (из обеих частей уравнения вычесть) одно и то же число.
  2. Корни уравнения не изменятся, если обе части уравнения умножить (разделить) на одно и то же число, отличное от нуля.

Считают, что язык алгебры — это уравнения. «Чтобы решить вопросы. относящиеся к числам или к абстрактным отношениям величин, нужно лишь перевести задачу с родного языка на язык алгебраический», — писал великий И. Ньютон (1643-1727) в своём учебнике по алгебре, названном «Общая арифметика».

Применение уравнений к решению задач

В 5 классе с помощью уравнений вы решали задачи на нахождение суммы двух величин или их разности.

В 6 классе будем рассматривать особый вид задач — на равенство двух величин. В таких задачах тоже сравнивают две величины, например, количество книг на первой и второй полках. Значения же выражений с этими двумя величинами приравнивают.

Пример:

На первой полке книг в 3 раза больше, чем на второй. Если с первой полки переставить на вторую 12 книг, то на обеих полках их станет поровну. Сколько книг на каждой полке?

Решение:

Составим краткую запись задачи в виде таблицы 23

Пусть — количество книг на второй полке, тогда — количество книг на первой полке. Если с первой полки переставить на вторую 12 книг, то на первой полке их станет , а на второй — . По условию, это количество книг одинаково. Составим уравнение: . Решим уравнение: . Тогда . Следовательно, на первой полке 36 книг, а на второй — 12 книг.

Первым произведением, содержащим исследование алгебраических вопросов, считают трактат «Арифметика» Диофанта (середина IV в.). Из 13 книг, составляющих полное собрание трудов Диофанта, до нас дошло только 6. В них предложено решение сложных алгебраических задач. Основная часть трактата — сборник задач (в первых шести книгах их 189) с решениями и удачно подобранными иллюстрациями к способам решения.

Перпендикулярные и параллельные прямые

Вы знаете, что прямая — это геометрическая фигура. Две прямые могут по-разному размещаться на плоскости. В 6 классе вы узнаете о перпендикулярных и параллельных прямых.

Перпендикулярные прямые

Посмотрите па перекрёсток дорог на рисунке 143. Вы видите, что дороги напоминают пересекающиеся прямые, которые образуют четыре прямых угла. В этом случае говорят, что прямые пересекаются под прямым углом. В тетради по математике клеточки образуются перпендикулярными прямыми.

Определение:

Две прямые на плоскости называются перпендикулярными, если они пересекаются под прямым углом.

На рисунке 144 изображены прямые и , которые пересекаются в точке О под прямым углом, то есть являются перпендикулярными.

Записывают: , а на рисунке обозначают знаком прямого угла (см. рис. 145). Говорят: «Прямая перпендикулярна прямой ».

Если прямая перпендикулярна прямой , то и прямая перпендикулярна прямой . Иначе говорят: прямые и взаимно перпендикулярны.

Пример:

Бывают ли перпендикулярными отрезки? лучи? Да, если они являются частями соответствующих перпендикулярных прямых (рис. 145—146).

Для построения перпендикулярных прямых используют транспортир или угольник. На рисунке 147 вы видите, как строили прямую , перпендикулярную прямой , с помощью транспортира, а на рисунке рис. 148 — с помощью угольника.

Параллельные прямые

Посмотрите на рисунок 149. Вы видите рельсы трамвайных путей, напоминающие прямые, которые лежат в одной плоскости и не пересекаются. Это пример параллельных прямых. Вокруг нас много других примеров параллельных прямых. Так, в тетради в клеточку горизонтальные линии параллельны. То же самое можно сказать и про вертикальные линии. Противоположные края парты, противоположные стороны оконной рамы, троллейбусные штанги также параллельны.

Определение:

Две прямые на плоскости называются параллельными, если они не пересекаются.

На рисунке 150 изображены параллельные прямые и .

Записывают: . Говорят: «Прямая параллельна прямой ».

Если прямая параллельна прямой , то и прямая параллельна прямой . Однако для параллельных прямых термин «взаимно параллельные» не применяют.

Пример:

Бывают ли параллельными лучи? отрезки? Да, если они являются частями соответствующих параллельных прямых.

На рисунке 151 вы видите, как с помощью линейки и угольника через точку провели прямую , параллельную прямой .

Название «перпендикулярный» происходит от латинского слова «perpendicufaris», которое означает «отвесный». Знак предложил Пьер Еригон (1580—1643) — французский математик и астроном.

Название «параллельный» происходит от греческого слова «раralelos» — «идущий рядом». Символ параллельности известен с античных времён Его использовали Герои и Папп Александрийский. Сначала символ был похож на нынешний знак равенства, но с появлением последнего, чтобы избежать путаницы, символ был повёрнут вертикально Уильямом Отредом в 1677 году

Координатная плоскость

Вы уже знаете, что такое координатная прямая (рис. 162). На ней точка — начало отсчёта, стрелка показывает направление возрастания чисел, а цена деления составляет одну единицу.

Однако на практике часто приходится пользоваться ориентирами не только вдоль прямой, но и на плоскости.

Вы знаете, что в игре «Морской бой» положение корабля определяют с помощью «координат» из цифр и «координат» из букв (рис. 163). В зависимости от выбранной буквы передвигаются на определённое количество клеточек вправо или влево, а цифра указывает, на сколько клеточек нужно сместиться вверх или вниз. Итак, место корабля на поле боя определяют двумя « координатами».

Чтобы определить место в зале кинотеатра, также нужно знать две «координаты»: номер ряда и номер кресла в этом ряду (рис. 164). Причём порядок «координат» в такой паре является строго определённым. Действительно, например, пары чисел 3 и 12 и 12 и 3 направят нас в совершенно разные места зала: в 3-й ряд на 12-е место или в 12-й ряд на 3-е место. В отличие от предыдущего примера, для ориентирования в зале кинотеатра порядок координат не меняют, поскольку неудобно сначала искать номер места в ряду, а лишь затем — сам ряд.

Итак, чтобы охарактеризовать размещение точки на плоскости, нужно задать две координатные прямые с равными единичными отрезками, одна из которых задаёт направление вправо-влево, а вторая — вверх-вниз. Для этого координатные прямые изображают перпендикулярно друг к другу и так, чтобы начала отсчёта на них совпадали (рис. 165). Одну из этих прямых (как правило, горизонтальную) считают первой, а другую — второй. Такая пара координатных прямых образует прямоугольную систему координат.

Первую координатную прямую называют осью абсцисс. Её обозначают . Вторую координатную прямую называют осью ординат. Её обозначают . Общее начало отсчёта координатных прямых называют началом координат (рис. 166).

Плоскость с заданной на ней системой координат называют координатной плоскостью.

Каждой точке на плоскости можно поставить в соответствие пару чисел, взятых в определённом порядке, и наоборот, каждой паре чисел соответствует единственная точка координатной плоскости. Такая упорядоченная пара чисел называется координатами точки в данной системе координат. Координату по оси абсцисс называется абсциссой точки, а координату по оси ординат — ординатой точки.

Кратко записывают: . Читают: «Точка с координатами и », «Точка с координатами 3 и 2» или «3 — абсцисса точки , 2 — её ордината».

Пример:

На координатной плоскости постройте точку: 1) ; 2) .

Решение:

Введём прямоугольную систему координат на плоскости (рис. 167).

1. У точки абсцисса равна 3, а ордината — 2. На оси абсцисс отметим точку, соответствующую числу 3, а на оси ординат — точку, соответствующую числу 2. Через точки, построенные на осях координат, проведём две прямые, параллельные осям (рис. 167). Точка пересечения построенных прямых— искомая точка .

2. Поскольку ордината точки равна 0, то эта точка лежит на оси абсцисс и соответствует числу 5 на этой оси.

Обратите внимание:

Пример:

Как определить координаты точки, построенной на координатной плоскости, например, точки на рисунке 168? Для этого нужно через эту точку провести прямые, параллельные осям координат. Прямая, параллельная оси ординат, пересекает ось абсцисс в точке, которая соответствует числу . Значит, первой координатой этой точки является число . Прямая, параллельная оси абсцисс, пересекает ось ординат в точке, которая соответствует числу -4. Значит, другой координатой точки является число . Тогда точка имеет координаты и , то есть .

Координатные оси разбивают координатную плоскость на четыре части. Их называют координатными четвертями и обозначают так: I четверть, II четверть, III четверть, IV четверть (рис. 169).

Точки I четверти имеют положительную абсциссу и положительную ординату. И наоборот, если абсцисса и ордината точки положительные, то она лежит в I четверти, как, например, точка . Аналогично рассуждая, можно выяснить, что точки II четверти имеют отрицательную абсциссу и положительную ординату, точки III четверти — отрицательную абсциссу и отрицательную ординату, а точки IV четверти — положительную абсциссу и отрицательную ординату.

На рисунке 170 показаны знаки координат точек, лежащих в соответствующих четвертях.

Положение любой точки на поверхности Земли определяется двумя координатами: географической широтой и географической долготой.

Географические координаты ввёл древнегреческий учёный Гиппарх во И в. до н.э. Географические координаты применяют для определения положения точек земной поверхности относительно экватора и начального (нулевого) меридиана. Например, Киев имеет следующие географические координаты: восточной долготы, северной широты.

Графики зависимостей между величинами

Вы знаете, что стоимость товара зависит от его количества: чем большее количество товара покупают, тем большей будет его стоимость. Например, если цена одного килограмма конфет составляет 35 грн, то за 2 кг нужно заплатить 70 грн, за 3 кг — 105 грн и т.п. Вы знаете, что такое соответствие можно наглядно отобразить на диаграмме (рис. 174). Однако по диаграмме трудно определить, сколько стоит 2,5 кг конфет или иное их количество. Изобразим данные о стоимости конфет не в виде столбиков, а вертикальными отрезками в системе координат (рис. 175). Поскольку величины «масса конфет» и «стоимость покупки» являются прямо пропорциональными, то верхние концы столбиков диаграммы можно соединить отрезками. Получим линию, показывающую, как изменяется стоимость покупки в зависимости от массы конфет. Такая линия называется графиком зависимости величины «стоимость покупки» от величины «масса конфет».

Обратите внимание:

все точки графика зависимости прямо пропорциональных величин лежат на одной прямой.

Вы знаете, что расстояние и время на его преодоление являются прямо пропорциональными величинами. Поэтому все точки графика движения лежат на одной прямой.

Пример:

Поезд Харьков — Львов выходит из Харькова около и прибывает во Львов около . Скорость поезда составляет , на маршруте он делает 5 остановок, запланированных через каждые 3 часа. На рисунке 176 показан график движения этого поезда.

1) В котором часу новых суток поезд делает первую остановку? Какая это станция?

2) Что показывает число на оси абсцисс? А число ?

3) На каких расстояниях от первой остановки поезд останавливается на других станциях?

4) Что показывает число на оси ординат? А число ?

5) Каковы координаты конечных точек маршрута?

Решение:

По условию задачи, движение поезда начинается в , а заканчивается в следующего дня.

1. Начало новых суток поезд встречает недалеко от станции Лубны, а первую остановку делает в именно на этой станции.

2. Поскольку движение поезда началось в предыдущие сутки, то по оси абсцисс время его отправления из Харькова можно выразить отрицательным числом . Действительно, в предыдущих суток до начала новых суток должно пройти именно . Аналогично, времени остановки поезда в Полтаве на оси абсцисс соответствует отрицательное число.

3. Остановки запланированы через каждые . Поскольку скорость поезда составляет , то за он преодолевает . Следовательно, поезд останавливается на таких расстояниях от Полтавы: .

4. При помощи отрицательных чисел и на оси ординат показано, что в предыдущих суток поезд находился на расстоянии 300 км. не доезжая до станции Лубны, а в предыдущих суток — на расстоянии , не доезжая до этой станции.

5. Конечные результаты точки маршрута поезда имеют координаты .

Пример:

Обязательно ли выбирать конечные точки маршрута для построения графика движения? Нет. График можно построить по любым двум его точкам. Но концы маршрута нужно отметить обязательно.

Обратите внимание:

график движения является прямой (или её частью), поэтому такой график можно построить по любым двум его точкам.

С помощью графиков можно решать целый класс задач. Рассмотрим задачу.

Пример:

Из пунктов и , расстояние между которыми составляет 420 км. навстречу друг другу выехали два автомобиля. Красный автомобиль выехал в 6 ч из пункта и прибыл в пункт в 15 ч. Синий автомобиль выехал в 5 ч из пункта и прибыл в пункт в 11 ч. В котором часу встретятся автомобили?

Решение:

Построим в прямоугольной системе координат графики движения автомобилей (рис. 177). Красный отрезок — график движения красного автомобиля, синий — синего автомобиля. Точке пересечения этих отрезков соответствует время — 9 ч. Итак, автомобили встречаются в 9 ч.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Линейное уравнение с одной переменной
  • Целые выражения
  • Одночлены
  • Многочлены
  • Обыкновенные дроби
  • Отношения и пропорции
  • Рациональные числа и действия над ними
  • Делимость натуральных чисел

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = – 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

[spoiler title=”источники:”]

http://www.evkova.org/vyirazheniya-i-uravneniya

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij

[/spoiler]

Нахождение значения выражения: правила, примеры, решения

В данной статье рассмотрено, как находить значения математических выражений. Начнем с простых числовых выражений и далее будем рассматривать случаи по мере возрастания их сложности. В конце приведем выражение, содержащее буквенные обозначения, скобки, корни, специальные математические знаки, степени, функции и т.д. Всю теорию, по традиции, снабдим обильными и подробными примерами.

Как найти значение числового выражения?

Числовые выражения, помимо прочего, помогают описывать условие задачи математическим языком. Вообще математические выражения могут быть как очень простыми, состоящими из пары чисел и арифметических знаков, так и очень сложными, содержащими функции, степени, корни, скобки и т.д. В рамках задачи часто необходимо найти значение того или иного выражения. О том, как это делать, и пойдет речь ниже.

Простейшие случаи

Это случаи, когда выражение не содержит ничего, кроме чисел и арифметических действий. Для успешного нахождения значений таких выражений понадобятся знания порядка выполнения арифметических действий без скобок, а также умение выполнять действия с различными числами. 

Если в выражении есть только числа и арифметические знаки «+», «·», «-«, «÷», то действия выполняются слева направо в следующем порядке: сначала умножение и деление, затем сложение и вычитание. Приведем примеры.

Пример 1. Значение числового выражения

Пусть нужно найти значения выражения 14-2·15÷6-3.

Выполним сначала умножение и деление. Получаем:

14-2·15÷6-3=14-30÷6-3=14-5-3.

Теперь проводим вычитание и получаем окончательный результат:

14-5-3=9-3=6.

Пример 2. Значение числового выражения

Вычислим: 0,5-2·-7+23÷234·1112.

Сначала выполняем преобразование дробей, деление и умножение:

0,5-2·-7+23÷234·1112=12-(-14)+23÷114·1112

12-(-14)+23÷114·1112=12-(-14)+23·411·1112=12-(-14)+29.

Теперь займемся сложением и вычитанием. Сгруппируем дроби и приведем их к общему знаменателю:

12-(-14)+29=12+14+29=14+1318=141318.

Искомое значение найдено.

Выражения со скобками

Если выражение содержит скобки, то они определяют порядок действий в этом выражении. Сначала выполняются действия в скобках, а потом уже все остальные. Покажем это на примере.

Пример 3. Значение числового выражения

Найдем значение выражения 0,5·(0,76-0,06).

В выражении присутствуют скобки, поэтому сначала выполняем операцию вычитания в скобках, а уже потом — умножение.

0,5·(0,76-0,06)=0,5·0,7=0,35.

Значение выражений, содержащих скобки в скобках, находится по такому же принципу.

Пример 4. Значение числового выражения

Вычислим значение 1+2·1+2·1+2·1-14.

Выполнять действия будем начиная с самых внутренних скобок, переходя к внешним. 

1+2·1+2·1+2·1-14=1+2·1+2·1+2·34

1+2·1+2·1+2·34=1+2·1+2·2,5=1+2·6=13.

В нахождении значений выражений со скобками главное — соблюдать последовательность действий.

Выражения с корнями

Математические выражения, значения которых нам нужно найти, могут содержать знаки корня. Причем, само выражение может быть под знаком корня. Как быть в таком случае? Сначала нужно найти значение выражения под корнем, а затем извлечь корень из числа, полученного в результате. По возможности от корней в числовых выражениях нужно лучше избавляться, заменяя из на числовые значения.

Пример 5. Значение числового выражения

Вычислим значение выражения с корнями -2·3-1+60÷43+3·2,2+0,1·0,5.

Сначала вычисляем подкоренные выражения.

-2·3-1+60÷43=-6-1+153=83=2

2,2+0,1·0,5=2,2+0,05=2,25=1,5.

Теперь можно вычислить значение всего выражения.

-2·3-1+60÷43+3·2,2+0,1·0,5=2+3·1,5=6,5

Часто найти значение выражения с корнями часто нужно сначала провести преобразование исходного выражения. Поясним это на еще одном примере.

Пример 6. Значение числового выражения

Сколько будет 3+13-1-1

Как видим, у нас нет возможности заменить корень точным значением, что усложняет процесс счета. Однако, в данном случае можно применить формулу сокращенного умножения.

3+13-1=3-1.

Таким образом:

3+13-1-1=3-1-1=1.

Выражения со степенями

Если в выражении имеются степени, их значения нужно вычислить прежде, чем приступать ко всем остальным действиям. Бывает так, что сам показатель или основание степени являются выражениями. В таком случае, сначала вычисляют значение этих выражений, а затем уже значение степени.

Пример 7. Значение числового выражения

Найдем значение выражения 23·4-10+161-123,5-2·14.

Начинаем вычислять по порядку.

23·4-10=212-10=22=4

16·1-123,5-2·14=16*0,53=16·18=2.

Осталось только провести операцию сложение и узнать значение выражения:

23·4-10+161-123,5-2·14=4+2=6.

Также часто целесообразно бывает провести упрощение выражения  с использованием свойств степени.

Пример 8. Значение числового выражения

Вычислим значение следующего выражения: 2-25·45-1+3136.

Показатели степеней опять таковы, что их точные числовые значения получить не удастся. Упростим исходное выражение, чтобы найти его значение.

2-25·45-1+3136=2-25·225-1+313·6

2-25·225-1+313·6=2-25·22·5-2+32=22·5-2-25+32

22·5-2-25+32=2-2+3=14+3=314

Выражения с дробями

Если выражение содержит дроби, то при вычислении такого выражения все дроби в нем нужно представить в виде обыкновенных дробей и вычислить их значения. 

Если в числителе и знаменателе дроби присутствуют выражения, то сначала вычисляются значения этих выражений, и записывается финальное значение самой дроби. Арифметические действия выполняются в стандартном порядке. Рассмотрим решение примера.

Пример 9. Значение числового выражения

Найдем значение выражения, содержащего дроби: 3,22-3·7-2·36÷1+2+39-6÷2.

Как видим, в исходном выражении есть три дроби. Вычислим сначала их значения.

3,22=3,2÷2=1,6

7-2·36=7-66=16

1+2+39-6÷2=1+2+39-3=66=1.

Перепишем наше выражение и вычислим его значение:

1,6-3·16÷1=1,6-0,5÷1=1,1

Часто при нахождении значений выражений удобно бывает проводить сокращение дробей. Существует негласное правило: любое выражение перед нахождением его значения лучше всего упростить по максимуму, сводя все вычисления к простейшим случаям.

Пример 10. Значение числового выражения

Вычислим выражение 25-1-25-74-3.

Мы не можем нацело извлечь корень из пяти, однако можем упростить исходное выражение путем преобразований.

25-1=25+15-15+1=25+15-1=25+24

Исходное выражение принимает вид:

25-1-25-74-3=25+24-25-74-3.

Вычислим значение этого выражения:

25+24-25-74-3=25+2-25+74-3=94-3=-34.

Выражения с логарифмами

Когда в выражении присутствуют логарифмы, их значение, если это возможно, вычисляется с самого начала. К примеру, в выражении log24+2·4 можно сразу вместо log24 записать значение этого логарифма, а потом выполнить все действия. Получим: log24+2·4=2+2·4=2+8=10.

Под самим знаком логарифма и в его основании также могут находится числовые выражения. В таком случае, первым делом находятся их значения. Возьмем выражение log5-6÷352+2+7. Имеем:

log5-6÷352+2+7=log327+7=3+7=10.

Если же вычислить точное значение логарифма невозможно, упрощение выражения помогает найти его значение.

Пример 11. Значение числового выражения

Найдем значение выражения log2log2256+log62+log63+log5729log0,227.

log2log2256=log28=3.

По свойству логарифмов:

log62+log63=log6(2·3)=log66=1.

Вновь применяя свойства логарифмов, для последней дроби в выражении получим:

log5729log0,227=log5729log1527=log5729-log527=-log27729=-log27272=-2.

Теперь можно переходить к вычислению значения исходного выражения.

log2log2256+log62+log63+log5729log0,227=3+1+-2=2.

Выражения с тригонометрическими функциями

Бывает, что в выражении есть тригонометрические функции синуса, косинуса, тангенса и котангенса, а также функции, обратные им. Из значения вычисляются перед выполнением всех остальных арифметических действий. В противном случае, выражение упрощается.

Пример 12. Значение числового выражения

Найдите значение выражения: tg24π3-sin-5π2+cosπ.

Сначала вычисляем значения тригонометрических функций, входящих в выражение.

tg4π3=3

sin-5π2=-1

cosπ=-1.

Подставляем значения в выражение и вычисляем его значение:

tg24π3-sin-5π2+cosπ=32-(-1)+(-1)=3+1-1=3.

Значение выражения найдено.

Часто для того, чтобы найти значение выражения с тригонометрическими функциями, его предварительно нужно преобразовать. Поясним на примере.

Пример 13. Значение числового выражения

Нужно найти значение выражения cos2π8-sin2π8cos5π36cosπ9-sin5π36sinπ9-1.

Для преобразования будем использовать тригонометрические формулы косинуса двойного угла и косинуса суммы.

cos2π8-sin2π8cos5π36cosπ9-sin5π36sinπ9-1=cos2π8cos5π36+π9-1=cosπ4cosπ4-1=1-1=0.

Общий случай числового выражения

В общем случае тригонометрическое выражение может содержать все вышеописанные элементы: скобки, степени, корни, логарифмы, функции. Сформулируем общее правило нахождения значений таких выражений.

Как найти значение выражения

  1. Корни, степени, логарифмы и т.
    д. заменяются их значениями.
  2. Выполняются действия в скобках.
  3. Оставшиеся действия выполняются по порядку слева направо. Сначала — умножение и деление, затем — сложение и вычитание.

Разберем пример.

Пример 14. Значение числового выражения

Вычислим, чему равно значение выражения -2·sinπ6+2·2π5+3π5+3 lne2+1+39.

Выражение довольно сложное и громоздкое. Мы не случайно выбрали именно такой пример, постаравшись уместить в него все описанные выше случаи. Как найти значение такого выражения?

Известно, что при вычислении значения сложного дробного вида, сначала отдельно находятся значения числителя и знаменателя дроби соответственно. Будем последовательно преобразовывать и упрощать данное выражение. 

Первым делом вычислим значение подкоренного выражения 2·sinπ6+2·2π5+3π5+3. Чтобы сделать это, нужно найти значение синуса, и выражения, которое является аргументом тригонометрической функции. 

π6+2·2π5+3π5=π6+2·2π+3π5=π6+2·5π5=π6+2π

Теперь можно узнать значение синуса:

sinπ6+2·2π5+3π5=sinπ6+2π=sinπ6=12.

Вычисляем значение подкоренного выражения:

2·sinπ6+2·2π5+3π5+3=2·12+3=4

Отсюда:

2·sinπ6+2·2π5+3π5+3=4=2.

Со знаменателем дроби все проще:

lne2=2.

Теперь мы можем записать значение всей дроби:

2·sinπ6+2·2π5+3π5+3 lne2=22=1.

С учетом этого, запишем все выражение:

-1+1+39=-1+1+33=-1+1+27=27.

Окончательный результат:

-2·sinπ6+2·2π5+3π5+3 lne2+1+39=27.

В данном случае мы смогли вычислить точные значения корней, логарифмов, синусов и т.д. Если такой возможности нет, можно попробовать избавиться от них путем математических преобразований.

Вычисление значений выражений рациональными способами

Вычислять значения числовых нужно последовательно и аккуратно. Данный процесс можно рационализировать и ускорить, используя различные свойства действий с числами. К примеру, известно, что произведение равно нулю, если нулю равен хотя бы один из множителей. С учетом этого свойства, можно сразу сказать, что выражение 2·386+5+58941-sin3π4·0 равно нулю. При этом, вовсе не обязательно выполнять действия по порядку, описанному в статье выше.

Также удобно использовать свойство вычитания равных чисел. Не выполняя никаких действий, можно заказать, что значение выражения 56+8-3,789lne2-56+8-3,789lne2 также равно нулю.

Еще один прием, позволяющий ускорить процесс — использование тождественных преобразований таких как группировка слагаемых и множителей и вынесение общего множителя за скобки. Рациональный подход к вычислению выражений с дробями — сокращение одинаковых выражений в числителе и знаменателе. 

Например, возьмем выражение 23-15+3·289·343·23-15+3·289·34. Не выполняя действий в скобках, а сокращая дробь, можно сказать, что значение выражения равно 13.

Нахождение значений выражений с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. 

Нахождение значений выражений с переменными

Чтобы найти значение буквенного выражения и выражения с переменными, нужно в исходное выражение подставить заданные значения букв и переменных, после чего вычислить значение полученного числового выражения.

Пример 15. Значение выражения с переменными

Вычислить значение выражения 0,5x-y при заданных x=2,4 и y=5.

Подставляем значения переменных в выражение и вычисляем:

0,5x-y=0,5·2,4-5=1,2-5=-3,8.

Иногда можно так преобразовать выражение, чтобы получить его значение независимо от значений входящих в него букв и переменных. Для этого от букв и переменных в выражении нужно по возможности избавиться, используя тождественные преобразования, свойства арифметических действий и все возможные другие способы.

Например, выражение х+3-х, очевидно, имеет значение 3, и для вычисления этого значения совсем необязательно знать значение переменной икс. Значение данного выражения равно трем для всех значений переменной икс из ее области допустимых значений. 

Еще один пример. Значение выражения xx равно единице для всех положительных иксов. 

Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.

Помогите найти значение выражений. Стр 110. Задания базового уровня № 2. ГДЗ Математика 3 класс Моро М.

И. – Рамблер/класс Помогите найти значение выражений. Стр 110. Задания базового уровня № 2. ГДЗ Математика 3 класс Моро М.И. – Рамблер/класс

Интересные вопросы

Школа

Подскажите, как бороться с грубым отношением одноклассников к моему ребенку?

Новости

Поделитесь, сколько вы потратили на подготовку ребенка к учебному году?

Школа

Объясните, это правда, что родители теперь будут информироваться о снижении успеваемости в школе?

Школа

Когда в 2018 году намечено проведение основного периода ЕГЭ?

Новости

Будет ли как-то улучшаться система проверки и организации итоговых сочинений?

Вузы

Подскажите, почему закрыли прием в Московский институт телевидения и радиовещания «Останкино»?

Найди значения выражений.
35-40:8                                     9 + 81:9
76 — (26 + 14)                          28 — (18 + 9): 3
 

ответы

35 — 40 : 8 = 30                      9 + 81 : 9 = 18
76 — (26 + 14) = 36                  28 — (18 + 9) : 3 = 19
 

ваш ответ

Можно ввести 4000 cимволов

отправить

дежурный

Нажимая кнопку «отправить», вы принимаете условия  пользовательского соглашения

похожие темы

5 класс

Репетитор

Химия

Алгебра

похожие вопросы 5

ГДЗ, Моро М. И, математика, 4 класс Часть 2, Задание № задание на полях стр48

(Подробнее…)

Моро М.И.Математика4 класс

Сколько было на выставке рисунков учеников из 4 Б класса? ГДЗ 3 класс математика Моро Часть 1 Табличное умножение и деление стр 37 Задание на полях

Доброго дня! Сидим с дочкой над домашкой, и затрудняемся ответить((( Подскажите!
На выставке было 6 рисунков учеников из 4 А (Подробнее…)

ГДЗ3 классМатематикаМоро М.И.

ЕГЭ Математика 11 класс. Ященко И. В. Тренировочная работа 22 Вопрос 9 Найти значение выражения

Привет! ЕГЭ, а упражнения как выполнить не знаю((( Поможете!?
Найдите значение выражения
  (Подробнее…)

ЕГЭМатематикаЯщенко И.В.11 классСеменов А.В.

ЕГЭ Математика 11 класс. Ященко И. В. Тренировочная работа 22 Вопрос 10 Найти значение выражения

Привет) Возникла путаница с этим вопросом, кто-нибудь сможет оказать помощь?
Найдите значение выражения
  (Подробнее. ..)

ЕГЭМатематикаЯщенко И.В.Семенов А.В.11 класс

3. Вычислите… 6 класс А.П. Ершова Математика. К 2. Вариант А 1

3.
Вычислите: (Подробнее…)

ГДЗМатематика6 классЕршова А.П.

Основы алгебры — Вычисление выражений

Основы алгебры — Вычисление выражений — Первый взгляд

Дом
|
Учитель
|
Родители
|
Глоссарий
|
О нас

Мы
узнали, что в алгебраическом выражении буквы могут обозначать числа.
Когда мы подставляем конкретное значение для каждой переменной,
а затем выполнять операции, это называется оценкой
выражение.

Оценим
выражение 3y + 2y, когда 5 = y.

Нажмите
на шагах, чтобы увидеть, как это делается.

  1. Заменить
    каждая буква с присвоенным значением.

    Первый шаг: 3(5) + 2(5)

    (Используйте скобки!)

  1. Выполнить
    операции, чтобы найти значение выражения.

    Второй этап:

    3(5)
    + 2(5) = 15 + 10 = 25

Помощь с домашним заданием | Алгебра | Основы алгебры Отправить эту страницу другу по электронной почте
Поиск
  · ​​   Вычисление выражений
Первый
Взгляд
  В
Глубина
  Примеры   Тренировка
Вычисление выражений

Оценка выражений и формул: правила и методы

Когда я рос подростком, мне никогда особо не нравились ЗАДАЧИ СЛОВА, не потому что они были сложными, а из-за названия ЗАДАЧА СЛОВА. Разве нельзя было назвать это слово-задача, слово-математика или слово-что угодно, но только не ПРОБЛЕМА, потому что слово ПРОБЛЕМА само по себе было психологической проблемой для меня? Однако вскоре после этого я начал понимать, что эти ПРОБЛЕМЫ действительно лучше всего решать, когда выражает в алгебре , уравнениях, и формулах .

Таким образом, в дальнейшем вы узнаете об вычислении алгебраических выражений и формул, их правилах и шагах, а также о некоторых увлекательных примерах, чтобы манипулировать своей памятью. Перейти ВЫРАЖЕНИЕ, не ПРОБЛЕМА!

Вычисление алгебраических выражений с примерами

Выражения — это иллюстрации чисел, переменных и терминов, которые объединяются с помощью таких операций, как сложение, вычитание, деление и умножение. Другими словами, это предложения, используемые математиками для передачи своих идей. 92+6x+(−3))

Как бы математик выразил эту деталь: «Через (5) лет отец будет в два раза старше своего сына в настоящий момент»?

Решение:

Пусть текущий возраст отца равен (f), а сыну — (s). 2), (6xy) и (-3). 93)

Правила вычисления выражений

Правила, которым следуют при вычислении выражений, иначе называются законами алгебраических выражений.

Правило коммутативности

Правило коммутативности применимо как к операциям сложения, так и к умножению. В нем говорится, что положение термина (числа, переменной и т. д.), который подвергается любой из этих операций (сложение или умножение), не является определяющим фактором результата. Это означает, что если вам нужно найти сумму между (x) и (y) или произведение между (x) и (y), результат не изменится, даже если (y) равно позиционируется первым, а (x) позиционируется вторым в операции.

Коммутативность означает:

[x+y=y+x]

или

[xtimes y=ytimes x]

Вы должны попробовать числа с этим ниже.

Докажите коммутативный закон с помощью следующего:

a. (5+3)

б. (6 умножить на 11)

Решение:

а. Обратите внимание, что

[5+3=8]

и

[3+5=8]

Итак,

[5+3=3+5]

Следовательно, приведенное выше выражение удовлетворяет правилу коммутативности.

б. Обратите внимание, что

[6 times 11=66]

и

[11 times 6=66]

Следовательно,

[6times 11=11times 6]

Следовательно, приведенное выше выражение удовлетворяет правилу коммутативности.

Обратите внимание, что когда правило коммутативности включает сложение, оно называется аддитивной коммутативностью . Между тем, когда задействовано умножение, оно называется мультипликативной коммутативностью .

Правило ассоциативности

Ассоциативное правило применяется как к операциям сложения, так и к умножению. В нем объясняется, что разделение или группировка (с помощью круглых скобок или квадратных скобок) не влияет на результат сумм или произведений. Это означает, что если (x) и (y) должны были быть разделены и умножены отдельно перед умножением на (z), это все равно эквивалентно умножению разделения (y) и (z). ) перед умножением на (x). Это правило относится и к дополнению.

Ассоциативность означает:

[(x+y)+z=x+(y+z)]

или

[(xtimes y)times z=xtimes (ytimes z)]

Вы должны попробовать числа с этим ниже.

Покажите ассоциативное свойство, используя следующее:

a. ((5+3)+7)

б. ((3умножить на 2)умножить на 4)

Решение:

а. Вычисляя,

[(5+3)+7=8+7=15]

и

[5+(3+7)=5+10=15]

Таким образом, приведенное выше выражение подчиняется ассоциативному правилу.

б. Вычислив,

[(3times 2)times 4=6times 4=24]

и

[3times (2times 4)=3times 8=24]

На самом деле приведенное выше выражение демонстрирует ассоциативное свойство.

Обратите внимание, что когда правило ассоциативности включает сложение, это называется аддитивной ассоциативностью . Между тем, когда задействовано умножение, оно называется мультипликативной ассоциативностью .

Правило дистрибутивности

Закон дистрибутивности применяется, когда операции сложения и умножения выполняются одновременно (одновременно). В нем говорится, что когда термин умножается на сегрегацию (сгруппированную в скобках), действующую при сложении, результат эквивалентен сумме произведения между этим термином и отдельными компонентами сегрегации. Отдельные компоненты сегрегата известны как складывает или складывает . Это означает, что когда определенный термин (x) умножается на отдельную сумму (y) и (z), он эквивалентен сумме произведений (x) и (y ), а также (x) и (z).

Распределение означает:

[xtimes (y+z)=xy+xy]

где (y) и (z) называются сложением суммы ((у+г)).

Посмотрите на приведенный ниже пример, в котором используются числа, чтобы дать вам более четкое представление.

Определите закон распределения, используя следующее выражение:

[5times (4+3)]

Решение:

В первом случае

[5times (4+3) =5times 7=35]

и во втором случае

[5times (4+3)=(5times 4)+(5times 3)]

что равно

[5times (4+3)=20+15=35]

Следовательно, выражение (5times (4+3)) удовлетворяет правилу дистрибутивности.

Шаги по вычислению выражений и формул

Чтобы вычислить выражение, нужно выполнить два шага.

  1. Подставьте в выражение присвоенное значение каждой переменной. Лучше всего это сделать, заключив каждое заменяемое значение в круглые скобки.
  2. Выполнение операций над выражениями с использованием порядка операций.

Используйте PEMDAS. Взгляните на статью «Порядок операций» для лучшего понимания.

Если (x = 6), вычислить (6+x)

Решение:

Подставить (6) 92-(-4)-6]

[16+4-6]

[14]

Помните, что вычитание минуса равносильно добавлению плюса.

Правила вычисления формул

Так же, как и правила, которые использовались ранее для описания выражений, формулы определяются правилами коммутативности, ассоциативности и дистрибутивности. Однако при вычислении формул обычно применяется дополнительное правило. Это правило обратной функции. Это правило поможет вам отменить то, что было сделано, чтобы получить выражение по вашему выбору.

  1. Главная
  2. Справочники
  3. Справочник по математике для начальной школы
  4. Числовые и буквенные выражения

Числовые выражения

В этом разделе мы узнаем, что называют числовым выражением и значением выражения, научимся читать выражения.

Числовое выражение – это запись , состоящая из чисел и знаков действий между ними.

Например, 44 + 32

Значение выражения – это результат выполненных действий.

Например, в записи 44 + 32 = 76, значение выражения – это 76.


Чтение числовых выражений

12 + 9 – сумма

49 – 20 – разность

34 – (8 + 21) – из 34 вычесть сумму чисел 8 и 21

13 + (26 – 8) – к 13 прибавить разность чисел 26 и 8


Решение числовых выражений

45 – (30 + 2) = …
Сначала выполняем действие, записанное в скобках. К 30 прибавляем 2.
30 + 2 = 32
Теперь нужно из 45 вычесть 38.
45 – 32 = 13
45 – (30 + 2) = 13


Сравнение значений числовых выражений

 Сравнить числовое выражение – найти значение каждого из выражений и их сравнить.

Давай сравним значения двух выражений: 14 – 6 и 18 – 9.

Для этого найдем значения каждого из них:

14 – 6 = 8

18 – 9 = 9

8 < 9, значит, 

14 – 6 < 18 – 9


Буквенные выражения

Буквенным называется математическое выражение, в котором используются цифры, знаки действий и буквы. Например, (47 + d) – 11.

В этих выражениях буквы могут обозначать различные числа. Число, которым заменяют букву, называют значением.

Для записи буквенных выражений необходимо знать некоторые буквы латинского алфавита. Мы приводим его полностью, чтобы ты знал, с какими буквами можешь встретиться при составлении, решении или чтении буквенных выражений.

Чаще всего используются буквы:

a, b, c, d, x, y, k, m, n


Алгоритм решения буквенного выражения

Алгоритм – значит, порядок, план выполнения команд.

1.   Прочитать буквенное выражение

2.   Записать буквенное выражение

3.   Подставить значение неизвестного в выражении

4.   Вычислить результат

Например, 28 – с

Читаем выражение: Из 28 вычесть с или Найти разность числа 28 и с

Подставим вместо неизвестного «с» число 4.

У нас получается выражение: 28 – 4 

Вычисляем результат:

28 – 4 = 24


Переменные

Буквы, которые содержатся в буквенных выражениях называются переменными. Например, в выражении с + x + 2 переменными являются буквы c и x. Если вместо этих переменных подставить любые числа, то буквенное выражение с + x + 2 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных c и x. Для изменения значений используется знак равенства

c = 2, x = 3

Мы изменили значения переменных c и x. Переменной присвоили значение 2, переменной x присвоили значение 3, тогда выражение с + х + 2 будет выглядеть так:

2 + 3 + 2

Теперь мы можем найти значение этого выражения:

с + х + 2 = 2 + 3 + 2 = 5 + 2 = 7

Советуем посмотреть:

Уравнения


Правило встречается в следующих упражнениях:

1 класс

Страница 8. Урок 5,
Петерсон, Учебник, часть 2

Страница 11. Урок 6,
Петерсон, Учебник, часть 2

Страница 45. Урок 23,
Петерсон, Учебник, часть 2

Страница 57. Урок 29,
Петерсон, Учебник, часть 2

Страница 15. Урок 8,
Петерсон, Учебник, часть 3

Страница 19. Урок 10,
Петерсон, Учебник, часть 3

Страница 29. Урок 15,
Петерсон, Учебник, часть 3

Страница 35. Урок 18,
Петерсон, Учебник, часть 3

Страница 37. Урок 19,
Петерсон, Учебник, часть 3

Страница 43. Урок 22,
Петерсон, Учебник, часть 3

2 класс

Страница 52,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 91,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 25. Тест 1. Вариант 2,
Моро, Волкова, Проверочные работы

Страница 52,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 10. Урок 3,
Петерсон, Учебник, часть 2

Страница 56. Урок 22,
Петерсон, Учебник, часть 2

Страница 77. Урок 31,
Петерсон, Учебник, часть 2

Страница 86. Урок 36,
Петерсон, Учебник, часть 2

Страница 99. Урок 41,
Петерсон, Учебник, часть 2

Страница 42. Урок 14,
Петерсон, Учебник, часть 3

3 класс

Страница 25,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 54,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 65,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 39,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 15. ПР 2. Вариант 2,
Моро, Волкова, Проверочные работы

Страница 32,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 17,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 70. Урок 29,
Петерсон, Учебник, часть 2

Страница 82. Урок 35,
Петерсон, Учебник, часть 2

Страница 37. Урок 17,
Петерсон, Учебник, часть 3

4 класс

Страница 13,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 23,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 84,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1

Страница 3,
Моро, Волкова, Рабочая тетрадь, часть 1

Страница 33,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 36,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 50,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2

Страница 31,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 48,
Моро, Волкова, Рабочая тетрадь, часть 2

Страница 3. Урок 1,
Петерсон, Учебник, часть 1

5 класс

Задание 428,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 498,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 567,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 573,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 575,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1406,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Номер 291,
Мерзляк, Полонский, Якир, Учебник

Номер 736,
Мерзляк, Полонский, Якир, Учебник

Номер 1127,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

6 класс

Номер 314,
Мерзляк, Полонский, Якир, Учебник

Номер 898,
Мерзляк, Полонский, Якир, Учебник

Номер 962,
Мерзляк, Полонский, Якир, Учебник

Номер 966,
Мерзляк, Полонский, Якир, Учебник

Номер 1,
Мерзляк, Полонский, Якир, Учебник

Задание 885,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1083,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1110,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1122,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1153,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Номер 315,
Мерзляк, Полонский, Якир, Учебник

Номер 316,
Мерзляк, Полонский, Якир, Учебник

Номер 480,
Мерзляк, Полонский, Якир, Учебник

Номер 481,
Мерзляк, Полонский, Якир, Учебник

Номер 906,
Мерзляк, Полонский, Якир, Учебник

Номер 1071,
Мерзляк, Полонский, Якир, Учебник

Номер 1139,
Мерзляк, Полонский, Якир, Учебник

Номер 1,
Мерзляк, Полонский, Якир, Учебник

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 4,
Мерзляк, Полонский, Якир, Учебник

8 класс

Номер 2,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

Номер 4,
Мерзляк, Полонский, Якир, Учебник

Номер 46,
Мерзляк, Полонский, Якир, Учебник

Номер 47,
Мерзляк, Полонский, Якир, Учебник

Номер 229,
Мерзляк, Полонский, Якир, Учебник

Номер 391,
Мерзляк, Полонский, Якир, Учебник

Номер 392,
Мерзляк, Полонский, Якир, Учебник


Добавить комментарий