Наталья Игоревна Восковская
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Экстремумы функции
Для того чтобы ввести понятие наибольшего и наименьшего значения функций, вначале познакомимся с таким понятием, как экстремумы функций. Это понятие нам будет необходимо не для самого определения значений таких функций, а для построения схемы нахождения таких промежутков для конкретно заданных функций.
Определение 1
Точка $x’$ входящая в область определения функции называется точкой экстремума, если она либо будет точкой максимума, либо будет точкой минимума для функции $f(x)$.
Определение 2
Точка $x’$ будет называться точкой максимума для введенной функции $f(x)$, если у она имеет такую окрестность, что для всех точек $x$, которые входят в эту окрестность, будет верно $f(x)le f(x'{rm })$.
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Определение 3
Точка $x_0$ будет называться точкой минимума для введенной функции $f(x)$, если она имеет такую окрестность, что для всех точек $x$, которые входят в эту окрестность, будет верно $f(x)ge f(x'{rm })$.
Чтобы полностью разобраться в данном понятии, далее введем понятие критической точки функции.
Определение 4
Точка $x’$ будет называться критической точкой для данной функции $f(x)$, если выполняются два следующих условия:
- Точка $x’$ является внутренней точкой для области определения данной функции;
- $f’left(x'{rm }right)=0$ или не существует.
Сформулируем без доказательства теоремы о необходимом (теорема 1) и достаточном (теорема 2) условии для существования точки экстремума.
Если $y=f(x)$ имеет экстремум в точке $x_0$, то либо её производная в ней равняется нулю, либо производная в ней не существует.
«Точки экстремума, наибольшее и наименьшее значение на промежутке» 👇
Теорема 2
Пусть точка $x’$ будет критической для $y=f(x)$ и принадлежит интервалу $(a,b)$, причем на каждом интервале $left(a,x'{rm }right) и (x'{rm },b)$ производная $f'(x)$ существует и сохраняет один и тот же знак. В этом случае:
- Если в $(a,x'{rm })$ $f’left(xright) >0$, а в $(x'{rm },b)$ $f’left(xright)
- Если в $(a,x'{rm })$ $f’left(xright)0$, то $x’$ –будет точкой минимума для этой функции.
- Если и в $(a,x'{rm })$, и в $(x'{rm },b)$ производная $имеет один и тот же постоянный знак$, то $x’$ не будет точкой экстремума для этой функции.
На рисунке 1 мы можем наглядно увидеть смысл теоремы 2.
Рисунок 1.
Примеры точек экстремумов вы можете видеть на рисунке 2.
Рисунок 2.
Правило исследования на экстремум
- Найти $D(f)$;
- Найти $f'(x)$;
- Найти точки, где $f’left(xright)=0$;
- Найти точки, где $f'(x)$ не будет существовать;
- Отметить на координатной прямой $D(f)$ и все найденные в 3 и 4 пункте точки;
- Определить знак $f'(x)$ на полученных промежутках;
- Используя теорему 2, сделать заключение по поводу всех найденных точек.
Понятие наибольшего и наименьшего значений
Определение 5
Функция $y=f(x)$, которая имеет областью определения множество $X$, имеет наибольшее значение в точке $x’in X$, если выполняется
[fleft(xright)le f(x’)]
Определение 6
Функция $y=f(x)$, которая имеет областью определения множество $X$, имеет наименьшее значение в точке $x’in X$, если выполняется
[fleft(xright)ge f(x’)]
Чтобы найти наименьшее и наибольшее значение заданной функции на каком либо отрезке необходимо произвести следующие действия:
- Найти $f'(x)$;
- Найти точки, в которых $f’left(xright)=0$;
- Найти точки, в которых $f'(x)$ не будет существовать;
- Выкинуть из точек, найденных в пунктах 2 и 3 те, которые не лежат в отрезке $[a,b]$;
- Вычислить значения в оставшихся точках и на концах $[a,b]$;
- Выбрать из этих значений наибольшее и наименьшее.
Примеры задач
Пример 1
Найти наибольшее и наименьшее значения на [0,6]: $fleft(xright)=x^3-3x^2-45x+225$
Решение.
- $f’left(xright)=3x^2-6x-45$;
- $f’left(xright)=0$;
- [3x^2-6x-45=0]
- [x^2-2x-15=0]
- [x=5, x=-3]
- $f'(x)$ существует на всей $D(f)$;
- $5in left[0,6right]$;
-
Значения:
[fleft(0right)=225] [fleft(5right)=50] [fleft(6right)=63]
-
Наибольшее значение равняется $225$, наименьшее равняется $50.$
Ответ: $max=225, min=50$.
Пример 2
Найти наибольшее и наименьшее значения на [-1,1]:$fleft(xright)=frac{x^2-4x+4}{x-2}$
Решение.
[fleft(xright)=frac{x^2-4x+4}{x-2}=frac{{(x-2)}^2}{x-2}=x-2, xne 2]
-
$f’left(xright)=(x-2)’=1$;
Точек экстремума нет.
-
Значения:
[fleft(-1right)=-3] [fleft(1right)=-1]
Ответ: $max=-1, min=-3$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Как найти наибольшее и наименьшее значения функции на отрезке. Задание 12.
Как найти наибольшее и наименьшее значения функции на отрезке?
Для этого мы следуем известному алгоритму:
1 . Находим ОДЗ функции.
2 . Находим производную функции
3 . Приравниваем производную к нулю
4 . Находим промежутки, на которых производная сохраняет знак, и по ним определяем промежутки возрастания и убывания функции:
Если на промежутке I производная функции 0″ title=”f^(x)>0″/>, то функция возрастает на этом промежутке.
Если на промежутке I производная функции , то функция убывает на этом промежутке.
5 . Находим точки максимума и минимума функции.
В точке максимума функции производная меняет знак с “+” на “-“.
В точке минимума функции производная меняет знак с “-” на “+”.
6 . Находим значение функции в концах отрезка,
- затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
- или сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции
Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.
Рассмотрим функцию . График этой функции выглядит так:
В зависимости от того, на каком промежутке мы будем рассматривать функцию, алгоритм нахождения наибольшего или наименьшего значения будет различным.
1. Рассмотрим функцию на отрезке
Функция возрастает на этом отрезке, поэтому наибольшее значение она будет принимать в правом конце отрезка: , а наименьшее – в левом: .
2. Рассмотрим функцию на отрезке
Очевидно, что наибольшее значение функция принимает в точке максимума , а наименьшее – в одном из концов отрезка, то есть надо найти значения и и выбрать из них наименьшее.
3. Если мы рассмотрим функцию на отрезке , то чтобы найти наибольшее значение, нам нужно будет сравнить значения функции в точке максимума и в правом конце отрезка, то есть и .
Чтобы найти наименьшее значение функции, нам нужно будет сравнить значения функции в точке минимума и в левом конце отрезка, то есть и .
Эти рассуждения очевидны, если перед глазами есть график функции. Но эскиз графика легко нарисовать, проведя исследование функции с помощью производной:
1. ОДЗ функции – множество действительных чисел.
2.
3. , если или
Нанесем корни производной на числовую ось и расставим знаки. Теперь поведение функции легко определить, и, следуя за стрелками, символизирующими возрастание – убывание, можно схематично изобразить ее график:
Рассмотрим несколько примеров решения задач из Открытого банка заданий для подготовки к ЕГЭ по математике
1 . Задание B15 (№ 26695)
Найдите наибольшее значение функции на отрезке .
1. Функция определена при всех действительных значениях х
2.
3.
Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.
Ответ: 5.
2 . Задание B15 (№ 26702)
Найдите наибольшее значение функции на отрезке [].
1. ОДЗ функции /2+k, k” title=”x<>/2+k, k”/>
2.
Производная равна нулю при , однако, в этих точках она не меняет знак:
, следовательно, =3″ title=”3/>>=3″/>, значит, =0″ title=”3/>-3>=0″/>, то есть производная при всех допустимых значених х неотрицательна, следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, при .
Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:
=0″ title=”y^=3/>-3=<3-3cos^2>/>=<3sin^2>/>=3tg^2>=0″/>
Ответ: 5.
3 . Задание B15 (№ 26708)
Найдите наименьшее значение функции на отрезке [].
1. ОДЗ функции : /2+k, k” title=”x<>/2+k, k”/>
2.
3.
,
Расположим корни этого уравнения на тригонометрической окружности.
Промежутку принадлежат два числа: и
Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки и производная меняет знак.
Изобразим смену знаков производной функции на координатной прямой:
Очевидно, что точка является точкой минимума ( в ней производная меняет знак с “-” на “+”), и чтобы найти наименьшее значение функции на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .
Схитрим: так как результат должен быть целым числом, или конечной десятичной дробью, а таковым на является, следовательно подставим в уравнение функции
Ответ: -1
И.В. Фельдман, репетитор по математике.
Как решать задачи B15 без производных
Иногда в задачах B15 попадаются «плохие» функции, для которых сложно найти производную. Раньше такое было лишь на пробниках, но сейчас эти задачи настолько распространены, что уже не могут быть игнорированы при подготовке к настоящему ЕГЭ.
В этом случае работают другие приемы, один из которых — монотонность.
Функция f ( x ) называется на отрезке если для любых точек этого отрезка выполняется следующее:
Функция f ( x ) называется на отрезке если для любых точек этого отрезка выполняется следующее:
Другими словами, для возрастающей функции Для убывающей функции все наоборот:
Например, логарифм монотонно возрастает, если основание и монотонно убывает, если Не забывайте про область допустимых значений логарифма:
f ( x ) = log a x ( a > 0; a ≠ 1; x > 0)
Арифметический квадратный (и не только квадратный) корень монотонно возрастает на всей области определения:
Показательная функция ведет себя аналогично логарифму: растет и убывает Но в отличие от логарифма, показательная функция определена для всех чисел, а не только
f ( x ) = a x (a > 0)
Наконец, степени с отрицательным показателем. Можно записывать их как дробь. Имеют точку разрыва, в которой монотонность нарушается.
Все эти функции никогда не встречаются в чистом виде. В них добавляют многочлены, дроби и прочий бред, становится тяжело считать производную. Что при этом происходит — сейчас разберем.
Координаты вершины параболы
Чаще всего аргумент функции заменяется на квадратный трехчлен вида Его график — стандартная парабола, в которой нас интересуют:
- Ветви параболы — могут уходить вверх или вниз Задают направление, в котором функция может принимать бесконечные значения;
- Вершина параболы — точка экстремума квадратичной функции, в которой эта функция принимает свое наименьшее или наибольшее значение.
Наибольший интерес представляет именно вершина параболы, абсцисса которой рассчитывается по формуле:
Итак, мы нашли точку экстремума квадратичной функции. Но если исходная функция монотонна, для нее тоже будет точкой экстремума. Таким образом, сформулируем ключевое правило:
Точки экстремума квадратного трехчлена и сложной функции, в которую он входит, совпадают. Поэтому можно для квадратного трехчлена, а на функцию — забить.
Из приведенных рассуждений остается непонятным, какую именно точку мы получаем: максимума или минимума. Однако задачи специально составляются так, что это не имеет значения. Судите сами:
- Отрезок [ a ; b ] в условии задачи отсутствует. Следовательно, вычислять не требуется. Остается рассмотреть лишь точки экстремума;
- Но таких точек всего одна — это вершина параболы координаты которой вычисляются буквально устно и без всяких производных.
Таким образом, решение задачи резко упрощается и сводится всего к двум шагам:
- Выписать уравнение параболы и найти ее вершину по формуле:
- Найти значение исходной функции в этой точке: Если никаких дополнительных условий нет, это и будет ответом.
На первый взгляд, этот алгоритм и его обоснование могут показаться сложными. Я намеренно не выкладываю «голую» схему решения, поскольку бездумное применение таких правил чревато ошибками.
Рассмотрим настоящие задачи из пробного ЕГЭ по математике — именно там данный прием встречается чаще всего. Заодно убедимся, что таким образом многие задачи B15 становятся почти устными.
Задача. Найдите наименьшее значение функции:
Под корнем стоит квадратичная функция График этой функции − парабола ветвями вверх, поскольку коэффициент
x 0 = − b /(2 a ) = −6/(2 · 1) = −6/2 = −3
Поскольку ветви параболы направлены вверх, в точке функция принимает наименьшее значение.
Корень монотонно возрастает, значит точка минимума всей функции. Имеем:
Задача. Найдите наименьшее значение функции:
Под логарифмом снова квадратичная функция: График — парабола ветвями вверх,
x 0 = − b /(2 a ) = −2/(2 · 1) = −2/2 = −1
Итак, в точке квадратичная функция принимает наименьшее значение. Но функция монотонная, поэтому:
y min = y (−1) = log 2 ((−1) 2 + 2 · (−1) + 9) = . = log 2 8 = 3
Задача. Найдите наибольшее значение функции:
В показателе стоит квадратичная функция Перепишем ее в нормальном виде:
Очевидно, что график этой функции — парабола, ветви вниз Поэтому вершина будет точкой максимума:
Исходная функция — показательная, она монотонна, поэтому наибольшее значение будет в найденной точке
Внимательный читатель наверняка заметит, что мы не выписывали область допустимых значений корня и логарифма. Но этого и не требовалось: внутри стоят функции, значения которых всегда положительны.
Следствия из области определения функции
Иногда для решения задачи B15 недостаточно просто найти вершину параболы. Искомое значение может лежать на конце отрезка, а вовсе не в точке экстремума. Если в задаче вообще не указан отрезок, смотрим на область допустимых значений исходной функции. А именно:
Аргумент логарифма должен быть положительным:
y = log a f ( x ) ⇒ f ( x ) > 0
Арифметический квадратный корень существует только из неотрицательных чисел:
Знаменатель дроби не должен равняться нулю:
Обратите внимание еще раз: ноль вполне может быть под корнем, но в логарифме или знаменателе дроби — никогда. Посмотрим, как это работает на конкретных примерах:
Задача. Найдите наибольшее значение функции:
Под корнем снова квадратичная функция: Ее график — парабола, но ветви вниз, поскольку Значит, парабола уходит на минус бесконечность, что недопустимо, поскольку арифметический квадратный корень из отрицательного числа не существует.
Выписываем область допустимых значений (ОДЗ):
3 − 2 x − x 2 ≥ 0 ⇒ x 2 + 2 x − 3 ≤ 0 ⇒
Теперь найдем вершину параболы:
Точка принадлежит отрезку ОДЗ — и это хорошо. Теперь считаем значение функции а также на концах ОДЗ:
Итак, получили числа 2 и 0. Нас просят найти наибольшее — это число 2.
Задача. Найдите наименьшее значение функции:
Внутри логарифма стоит квадратичная функция Это парабола ветвями вниз, но в логарифме не может быть отрицательных чисел, поэтому выписываем ОДЗ:
6 x − x 2 − 5 > 0 ⇒ x 2 − 6 x + 5 x 0 = − b /(2 a ) = −6/(2 · (−1)) = −6/(−2) = 3
Вершина параболы подходит по ОДЗ: Но поскольку концы отрезка нас не интересуют, считаем значение функции только
y min = y (3) = log 0,5 (6 · 3 − 3 2 − 5) =
Наибольшее и наименьшее значение функции
На практике довольно часто приходится использовать производную для того, чтобы вычислить самое большое и самое маленькое значение функции. Мы выполняем это действие тогда, когда выясняем, как минимизировать издержки, увеличить прибыль, рассчитать оптимальную нагрузку на производство и др., то есть в тех случаях, когда нужно определить оптимальное значение какого-либо параметра. Чтобы решить такие задачи верно, надо хорошо понимать, что такое наибольшее и наименьшее значение функции.
Обычно мы определяем эти значения в рамках некоторого интервала x , который может в свою очередь соответствовать всей области определения функции или ее части. Это может быть как отрезок [ a ; b ] , так и открытый интервал ( a ; b ) , ( a ; b ] , [ a ; b ) , бесконечный интервал ( a ; b ) , ( a ; b ] , [ a ; b ) либо бесконечный промежуток – ∞ ; a , ( – ∞ ; a ] , [ a ; + ∞ ) , ( – ∞ ; + ∞ ) .
В этом материале мы расскажем, как вычисляется наибольшее и наименьшее значение явно заданной функции с одной переменной y=f(x) y = f ( x ) .
Основные определения
Начнем, как всегда, с формулировки основных определений.
Наибольшее значение функции y = f ( x ) на некотором промежутке x – это значение m a x y = f ( x 0 ) x ∈ X , которое при любом значении x x ∈ X , x ≠ x 0 делает справедливым неравенство f ( x ) ≤ f ( x 0 ) .
Наименьшее значение функции y = f ( x ) на некотором промежутке x – это значение m i n x ∈ X y = f ( x 0 ) , которое при любом значении x ∈ X , x ≠ x 0 делает справедливым неравенство f(X f ( x ) ≥ f ( x 0 ) .
Данные определения являются достаточно очевидными. Еще проще можно сказать так: наибольшее значение функции – это ее самое большое значение на известном интервале при абсциссе x 0 , а наименьшее – это самое маленькое принимаемое значение на том же интервале при x 0 .
Стационарными точками называются такие значения аргумента функции, при которых ее производная обращается в 0 .
Зачем нам нужно знать, что такое стационарные точки? Для ответа на этот вопрос надо вспомнить теорему Ферма. Из нее следует, что стационарная точка – это такая точка, в которой находится экстремум дифференцируемой функции (т.е. ее локальный минимум или максимум). Следовательно, функция будет принимать наименьшее или наибольшее значение на некотором промежутке именно в одной из стационарных точек.
Еще функция может принимать наибольшее или наименьшее значение в тех точках, в которых сама функция является определенной, а ее первой производной не существует.
Первый вопрос, который возникает при изучении этой темы: во всех ли случаях мы может определить наибольшее или наименьшее значение функции на заданном отрезке? Нет, мы не можем этого сделать тогда, когда границы заданного промежутка будут совпадать с границами области определения, или если мы имеем дело с бесконечным интервалом. Бывает и так, что функция в заданном отрезке или на бесконечности будет принимать бесконечно малые или бесконечно большие значения. В этих случаях определить наибольшее и/или наименьшее значение не представляется возможным.
Более понятными эти моменты станут после изображения на графиках:
Наибольшее и наименьшее значение функции на отрезке
Первый рисунок показывает нам функцию, которая принимает наибольшее и наименьшее значения ( m a x y и m i n y ) в стационарных точках, расположенных на отрезке [ – 6 ; 6 ] .
Разберем подробно случай, указанный на втором графике. Изменим значение отрезка на [ 1 ; 6 ] и получим, что наибольшее значение функции будет достигаться в точке с абсциссой в правой границе интервала, а наименьшее – в стационарной точке.
На третьем рисунке абсциссы точек представляют собой граничные точки отрезка [ – 3 ; 2 ] . Они соответствуют наибольшему и наименьшему значению заданной функции.
Наибольшее и наименьшее значение функции на открытом интервале
Теперь посмотрим на четвертый рисунок. В нем функция принимает m a x y (наибольшее значение) и m i n y (наименьшее значение) в стационарных точках на открытом интервале ( – 6 ; 6 ) .
Если мы возьмем интервал [ 1 ; 6 ) , то можно сказать, что наименьшее значение функции на нем будет достигнуто в стационарной точке. Наибольшее значение нам будет неизвестно. Функция могла бы принять наибольшее значение при x , равном 6 , если бы x = 6 принадлежала интервалу. Именно этот случай нарисован на графике 5 .
На графике 6 наименьшее значение данная функция приобретает в правой границе интервала ( – 3 ; 2 ] , а о наибольшем значении мы не можем сделать определенных выводов.
Наибольшее и наименьшее значение функции на бесконечности
На рисунке 7 мы видим, что функция будет иметь m a x y в стационарной точке, имеющей абсциссу, равную 1 . Наименьшего значения функция достигнет на границе интервала с правой стороны. На минус бесконечности значения функции будут асимптотически приближаться к y = 3 .
Если мы возьмем интервал x ∈ 2 ; + ∞ , то увидим, что заданная функция не будет принимать на нем ни наименьшего, ни наибольшего значения. Если x стремится к 2 , то значения функции будут стремиться к минус бесконечности, поскольку прямая x = 2 – это вертикальная асимптота. Если же абсцисса стремится к плюс бесконечности, то значения функции будут асимптотически приближаться к y = 3 . Именно этот случай изображен на рисунке 8 .
Как найти наибольшее и наименьшее значение непрерывной функции на заданном отрезке
В этом пункте мы приведем последовательность действий, которую нужно выполнить для нахождения наибольшего или наименьшего значения функции на некотором отрезке.
- Для начала найдем область определения функции. Проверим, входит ли в нее заданный в условии отрезок.
- Теперь вычислим точки, содержащиеся в данном отрезке, в которых не существует первой производной. Чаще всего их можно встретить у функций, аргумент которых записан под знаком модуля, или у степенных функций, показатель которых является дробно рациональным числом.
- Далее выясним, какие стационарные точки попадут в заданный отрезок. Для этого надо вычислить производную функции, потом приравнять ее к 0 и решить получившееся в итоге уравнение, после чего выбрать подходящие корни. Если у нас не получится ни одной стационарной точки или они не будут попадать в заданный отрезок, то мы переходим к следующему шагу.
- Определим, какие значения будет принимать функция в заданных стационарных точках (если они есть), или в тех точках, в которых не существует первой производной (если они есть), либо же вычисляем значения для x = a и x = b .
- 5. У нас получился ряд значений функции, из которых теперь нужно выбрать самое больше и самое маленькое. Это и будут наибольшее и наименьшее значения функции, которые нам нужно найти.
Посмотрим, как правильно применить этот алгоритм при решении задач.
Условие: задана функция y = x 3 + 4 x 2 . Определите ее наибольшее и наименьшее значение на отрезках [ 1 ; 4 ] и [ – 4 ; – 1 ] .
Решение:
Начнем с нахождения области определения данной функции. В этом случае ей будет множество всех действительных чисел, кроме 0 . Иными словами, D ( y ) : x ∈ ( – ∞ ; 0 ) ∪ 0 ; + ∞ . Оба отрезка, заданных в условии, будут находиться внутри области определения.
Теперь вычисляем производную функции согласно правилу дифференцирования дроби:
y ‘ = x 3 + 4 x 2 ‘ = x 3 + 4 ‘ · x 2 – x 3 + 4 · x 2 ‘ x 4 = = 3 x 2 · x 2 – ( x 3 – 4 ) · 2 x x 4 = x 3 – 8 x 3
Мы узнали, что производная функции будет существовать во всех точках отрезков [ 1 ; 4 ] и [ – 4 ; – 1 ] .
Теперь нам надо определить стационарные точки функции. Сделаем это с помощью уравнения x 3 – 8 x 3 = 0 . У него есть только один действительный корень, равный 2 . Он будет стационарной точкой функции и попадет в первый отрезок [ 1 ; 4 ] .
Вычислим значения функции на концах первого отрезка и в данной точке, т.е. для x = 1 , x = 2 и x = 4 :
y ( 1 ) = 1 3 + 4 1 2 = 5 y ( 2 ) = 2 3 + 4 2 2 = 3 y ( 4 ) = 4 3 + 4 4 2 = 4 1 4
Мы получили, что наибольшее значение функции m a x y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 будет достигнуто при x = 1 , а наименьшее m i n y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 – при x = 2 .
Второй отрезок не включает в себя ни одной стационарной точки, поэтому нам надо вычислить значения функции только на концах заданного отрезка:
y ( – 1 ) = ( – 1 ) 3 + 4 ( – 1 ) 2 = 3
Значит, m a x y x ∈ [ – 4 ; – 1 ] = y ( – 1 ) = 3 , m i n y x ∈ [ – 4 ; – 1 ] = y ( – 4 ) = – 3 3 4 .
Ответ: Для отрезка [ 1 ; 4 ] – m a x y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 , m i n y x ∈ [ 1 ; 4 ] = y ( 2 ) = 3 , для отрезка [ – 4 ; – 1 ] – m a x y x ∈ [ – 4 ; – 1 ] = y ( – 1 ) = 3 , m i n y x ∈ [ – 4 ; – 1 ] = y ( – 4 ) = – 3 3 4 .
Как найти наибольшее и наименьшее значение непрерывной функции на открытом или бесконечном интервале
Перед тем как изучить данный способ, советуем вам повторить, как правильно вычислять односторонний предел и предел на бесконечности, а также узнать основные методы их нахождения. Чтобы найти наибольшее и/или наименьшее значение функции на открытом или бесконечном интервале, выполняем последовательно следующие действия.
- Для начала нужно проверить, будет ли заданный интервал являться подмножеством области определения данной функции.
- Определим все точки, которые содержатся в нужном интервале и в которых не существует первой производной. Обычно они бывают у функций, где аргумент заключен в знаке модуля, и у степенных функций с дробно рациональным показателем. Если же эти точки отсутствуют, то можно переходить к следующему шагу.
- Теперь определим, какие стационарные точки попадут в заданный промежуток. Сначала приравняем производную к 0 , решим уравнение и подберем подходящие корни. Если у нас нет ни одной стационарной точки или они не попадают в заданный интервал, то сразу переходим к дальнейшим действиям. Их определяет вид интервала.
- Если интервал имеет вид [ a ; b ) , то нам надо вычислить значение функции в точке x = a и односторонний предел lim x → b – 0 f ( x ) .
- Если интервал имеет вид ( a ; b ] , то нам надо вычислить значение функции в точке x = b и односторонний предел lim x → a + 0 f ( x ) .
- Если интервал имеет вид ( a ; b ) , то нам надо вычислить односторонние пределы lim x → b – 0 f ( x ) , lim x → a + 0 f ( x ) .
- Если интервал имеет вид [ a ; + ∞ ) , то надо вычислить значение в точке x = a и предел на плюс бесконечности lim x → + ∞ f ( x ) .
- Если интервал выглядит как ( – ∞ ; b ] , вычисляем значение в точке x = b и предел на минус бесконечности lim x → – ∞ f ( x ) .
- Если – ∞ ; b , то считаем односторонний предел lim x → b – 0 f ( x ) и предел на минус бесконечности lim x → – ∞ f ( x )
- Если же – ∞ ; + ∞ , то считаем пределы на минус и плюс бесконечности lim x → + ∞ f ( x ) , lim x → – ∞ f ( x ) .
- В конце нужно сделать вывод на основе полученных значений функции и пределов. Здесь возможно множество вариантов. Так, если односторонний предел равен минус бесконечности или плюс бесконечности, то сразу понятно, что о наименьшем и наибольшем значении функции сказать ничего нельзя. Ниже мы разберем один типичный пример. Подробные описания помогут вам понять, что к чему. При необходимости можно вернуться к рисункам 4 – 8 в первой части материала.
Пример 2
Условие: дана функция y = 3 e 1 x 2 + x – 6 – 4 . Вычислите ее наибольшее и наименьшее значение в интервалах – ∞ ; – 4 , – ∞ ; – 3 , ( – 3 ; 1 ] , ( – 3 ; 2 ) , [ 1 ; 2 ) , 2 ; + ∞ , [ 4 ; + ∞ ) .
Решение
Первым делом находим область определения функции. В знаменателе дроби стоит квадратный трехчлен, который не должен обращаться в 0 :
x 2 + x – 6 = 0 D = 1 2 – 4 · 1 · ( – 6 ) = 25 x 1 = – 1 – 5 2 = – 3 x 2 = – 1 + 5 2 = 2 ⇒ D ( y ) : x ∈ ( – ∞ ; – 3 ) ∪ ( – 3 ; 2 ) ∪ ( 2 ; + ∞ )
Мы получили область определения функции, к которой принадлежат все указанные в условии интервалы.
Теперь выполним дифференцирование функции и получим:
y ‘ = 3 e 1 x 2 + x – 6 – 4 ‘ = 3 · e 1 x 2 + x – 6 ‘ = 3 · e 1 x 2 + x – 6 · 1 x 2 + x – 6 ‘ = = 3 · e 1 x 2 + x – 6 · 1 ‘ · x 2 + x – 6 – 1 · x 2 + x – 6 ‘ ( x 2 + x – 6 ) 2 = – 3 · ( 2 x + 1 ) · e 1 x 2 + x – 6 x 2 + x – 6 2
Следовательно, производные функции существуют на всей области ее определения.
Перейдем к нахождению стационарных точек. Производная функции обращается в 0 при x = – 1 2 . Это стационарная точка, которая находится в интервалах ( – 3 ; 1 ] и ( – 3 ; 2 ) .
Вычислим значение функции при x = – 4 для промежутка ( – ∞ ; – 4 ] , а также предел на минус бесконечности:
y ( – 4 ) = 3 e 1 ( – 4 ) 2 + ( – 4 ) – 6 – 4 = 3 e 1 6 – 4 ≈ – 0 . 456 lim x → – ∞ 3 e 1 x 2 + x – 6 = 3 e 0 – 4 = – 1
Поскольку 3 e 1 6 – 4 > – 1 , значит, m a x y x ∈ ( – ∞ ; – 4 ] = y ( – 4 ) = 3 e 1 6 – 4 . Это не дает нам возможности однозначно определить наименьшее значение функции. Мы можем только сделать вывод, что внизу есть ограничение – 1 , поскольку именно к этому значению функция приближается асимптотически на минус бесконечности.
Особенностью второго интервала является то, что в нем нет ни одной стационарной точки и ни одной строгой границы. Следовательно, ни наибольшего, ни наименьшего значения функции мы вычислить не сможем. Определив предел на минус бесконечности и при стремлении аргумента к – 3 с левой стороны, мы получим только интервал значений:
lim x → – 3 – 0 3 e 1 x 2 + x – 6 – 4 = lim x → – 3 – 0 3 e 1 ( x + 3 ) ( x – 3 ) – 4 = 3 e 1 ( – 3 – 0 + 3 ) ( – 3 – 0 – 2 ) – 4 = = 3 e 1 ( + 0 ) – 4 = 3 e + ∞ – 4 = + ∞ lim x → – ∞ 3 e 1 x 2 + x – 6 – 4 = 3 e 0 – 4 = – 1
Значит, значения функции будут расположены в интервале – 1 ; + ∞
Чтобы найти наибольшее значение функции в третьем промежутке, определим ее значение в стационарной точке x = – 1 2 , если x = 1 . Также нам надо будет знать односторонний предел для того случая, когда аргумент стремится к – 3 с правой стороны:
y – 1 2 = 3 e 1 – 1 2 2 + – 1 2 – 6 – 4 = 3 e 4 25 – 4 ≈ – 1 . 444 y ( 1 ) = 3 e 1 1 2 + 1 – 6 – 4 ≈ – 1 . 644 lim x → – 3 + 0 3 e 1 x 2 + x – 6 – 4 = lim x → – 3 + 0 3 e 1 ( x + 3 ) ( x – 2 ) – 4 = 3 e 1 – 3 + 0 + 3 ( – 3 + 0 – 2 ) – 4 = = 3 e 1 ( – 0 ) – 4 = 3 e – ∞ – 4 = 3 · 0 – 4 = – 4
У нас получилось, что наибольшее значение функция примет в стационарной точке m a x y x ∈ ( 3 ; 1 ] = y – 1 2 = 3 e – 4 25 – 4 . Что касается наименьшего значения, то его мы не можем определить. Все, что нам известно, – это наличие ограничения снизу до – 4 .
Для интервала ( – 3 ; 2 ) возьмем результаты предыдущего вычисления и еще раз подсчитаем, чему равен односторонний предел при стремлении к 2 с левой стороны:
y – 1 2 = 3 e 1 – 1 2 2 + – 1 2 – 6 – 4 = 3 e – 4 25 – 4 ≈ – 1 . 444 lim x → – 3 + 0 3 e 1 x 2 + x – 6 – 4 = – 4 lim x → 2 – 0 3 e 1 x 2 + x – 6 – 4 = lim x → – 3 + 0 3 e 1 ( x + 3 ) ( x – 2 ) – 4 = 3 e 1 ( 2 – 0 + 3 ) ( 2 – 0 – 2 ) – 4 = = 3 e 1 – 0 – 4 = 3 e – ∞ – 4 = 3 · 0 – 4 = – 4
Значит, m a x y x ∈ ( – 3 ; 2 ) = y – 1 2 = 3 e – 4 25 – 4 , а наименьшее значение определить невозможно, и значения функции ограничены снизу числом – 4 .
Исходя из того, что у нас получилось в двух предыдущих вычислениях, мы можем утверждать, что на интервале [ 1 ; 2 ) наибольшее значение функция примет при x = 1 , а найти наименьшее невозможно.
На промежутке ( 2 ; + ∞ ) функция не достигнет ни наибольшего, ни наименьшего значения, т.е. она будет принимать значения из промежутка – 1 ; + ∞ .
lim x → 2 + 0 3 e 1 x 2 + x – 6 – 4 = lim x → – 3 + 0 3 e 1 ( x + 3 ) ( x – 2 ) – 4 = 3 e 1 ( 2 + 0 + 3 ) ( 2 + 0 – 2 ) – 4 = = 3 e 1 ( + 0 ) – 4 = 3 e + ∞ – 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x – 6 – 4 = 3 e 0 – 4 = – 1
Вычислив, чему будет равно значение функции при x = 4 , выясним, что m a x y x ∈ [ 4 ; + ∞ ) = y ( 4 ) = 3 e 1 14 – 4 , и заданная функция на плюс бесконечности будет асимптотически приближаться к прямой y = – 1 .
Сопоставим то, что у нас получилось в каждом вычислении, с графиком заданной функции. На рисунке асимптоты показаны пунктиром.
Это все, что мы хотели рассказать о нахождении наибольшего и наименьшего значения функции. Те последовательности действий, которые мы привели, помогут сделать необходимые вычисления максимально быстро и просто. Но помните, что зачастую бывает полезно сначала выяснить, на каких промежутках функция будет убывать, а на каких возрастать, после чего можно делать дальнейшие выводы. Так можно более точно определить наибольшее и наименьшее значение функции и обосновать полученные результаты.
[spoiler title=”источники:”]
http://www.berdov.com/ege/extremum/other_way/
http://zaochnik.com/spravochnik/matematika/funktsii/naibolshee-i-naimenshee-znachenie-funktsii/
[/spoiler]
Как найти наибольшее и наименьшее значения функции на отрезке. Задание 12.
Как найти наибольшее и наименьшее значения функции на отрезке?
Для этого мы следуем известному алгоритму:
1. Находим ОДЗ функции.
2. Находим производную функции
3. Приравниваем производную к нулю
4. Находим промежутки, на которых производная сохраняет знак, и по ним определяем промежутки возрастания и убывания функции:
Если на промежутке I производная функции , то функция возрастает на этом промежутке.
Если на промежутке I производная функции , то функция убывает на этом промежутке.
5. Находим точки максимума и минимума функции.
В точке максимума функции производная меняет знак с “+” на “-“.
В точке минимума функции производная меняет знак с “-” на “+”.
6. Находим значение функции в концах отрезка,
- затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
- или сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции
Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.
Рассмотрим функцию . График этой функции выглядит так:
В зависимости от того, на каком промежутке мы будем рассматривать функцию, алгоритм нахождения наибольшего или наименьшего значения будет различным.
1. Рассмотрим функцию на отрезке
Функция возрастает на этом отрезке, поэтому наибольшее значение она будет принимать в правом конце отрезка: , а наименьшее – в левом: .
2. Рассмотрим функцию на отрезке
Очевидно, что наибольшее значение функция принимает в точке максимума , а наименьшее – в одном из концов отрезка, то есть надо найти значения и и выбрать из них наименьшее.
3. Если мы рассмотрим функцию на отрезке , то чтобы найти наибольшее значение, нам нужно будет сравнить значения функции в точке максимума и в правом конце отрезка, то есть и .
Чтобы найти наименьшее значение функции, нам нужно будет сравнить значения функции в точке минимума и в левом конце отрезка, то есть и .
Эти рассуждения очевидны, если перед глазами есть график функции. Но эскиз графика легко нарисовать, проведя исследование функции с помощью производной:
1. ОДЗ функции – множество действительных чисел.
2.
3. , если или
Нанесем корни производной на числовую ось и расставим знаки. Теперь поведение функции легко определить, и, следуя за стрелками, символизирующими возрастание – убывание, можно схематично изобразить ее график:
Рассмотрим несколько примеров решения задач из Открытого банка заданий для подготовки к ЕГЭ по математике
1. Задание B15 (№ 26695)
Найдите наибольшее значение функции на отрезке .
1. Функция определена при всех действительных значениях х
2.
3.
Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.
y(0)=5
Ответ: 5.
2. Задание B15 (№ 26702)
Найдите наибольшее значение функции на отрезке [].
1. ОДЗ функции
2.
Производная равна нулю при , однако, в этих точках она не меняет знак:
, следовательно, , значит, , то есть производная при всех допустимых значених х неотрицательна, следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, при .
Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:
у(0)=5
Ответ: 5.
3. Задание B15 (№ 26708)
Найдите наименьшее значение функции на отрезке [].
1. ОДЗ функции :
2.
3.
,
Расположим корни этого уравнения на тригонометрической окружности.
Промежутку принадлежат два числа: и
Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки и производная меняет знак.
Изобразим смену знаков производной функции на координатной прямой:
Очевидно, что точка является точкой минимума ( в ней производная меняет знак с “-” на “+”), и чтобы найти наименьшее значение функции на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .
Схитрим: так как результат должен быть целым числом, или конечной десятичной дробью, а таковым на является, следовательно подставим в уравнение функции
Ответ: -1
Вероятно, Ваш браузер не поддерживается. Попробуйте скачать
Firefox
И.В. Фельдман, репетитор по математике.
Математики и Data Science-специалисты должны хорошо разбираться в функциях. Предлагаем попрактиковаться в решении задач на обнаружение максимальных и минимальных значений у заданных функций.
Максимум
Задумываясь над тем, как найти максимальное значение функции, нужно четко понимать, с чем предстоит иметь дело. Для этого нужно запомнить такое определение:
Наибольшее значение функции y = f(x) на промежутке x – это max y = f(x0). Оно будет при любом значении x€ X, x≠x0 делает справедливым неравенство: f(x)≤f(x0).
Максимальное значение (максимум) – это точка на функции, в которой значение функции больше, чем в соседних «отметках».
Минимум
Наименьшее значение функции находить так же легко, как и наибольшее. Но сначала нужно понимать, что это такое.
Значение функции на отрезке будет считаться минимумом, если оно меньше, чем в соседних «отметках». Здесь действует такое определение:
Наименьшее значение функции y=f(x) на промежутке x – это miny=f(x0), которое при любом значении x€ X, x≠x0 делает справедливым неравенство f(x)≥f(x0).
Соответствующие определения являются достаточными и очевидными. Если говорить простыми словами, то максимум функции – это ее самое большое значение на заданном промежутке (участке) при абсциссе x0, а минимум – самое маленькое.
Стационарные точки
При решении вопроса о том, как найти наибольшее или наименьшее значение функции, стоит обратить внимание на так называемые «стационарные точки». Это – значения аргумента функции, при которых ее производная будет равняться нулю.
Стационарная точка – это «отметка», в которой расположен экстремум дифференцируемой функции. А именно – локальный минимум или максимум. В одной из таких «отметок» записанное выражение будет достигать своих предельных параметров.
Здесь рекомендуется запомнить следующее:
- Экстремум функции – это минимумы и максимумы.
- Если определить производную в точках экстремумов, она будет равно 0.
- Когда говорят «экстремумы», подразумевается значение функции. Если же речь идет об «отметках» экстремумов, рассматривать стоит x, в которых достигаются соответствующие пределы.
Этого достаточно для того, чтобы разобраться, как найти наибольшее на заданном отрезке у выражения. Для реализации поставленной задачи вовсе не обязательно составлять график. Поэтому сначала воспользуемся записями формул и вычислений.
План действий
Пример – дана функция f(x) на отрезке [a, b]. Наибольшее и наименьшее значение такой непрерывной функции достигаются в определенных местах. Это – критические точки. Там, где производная записанного выражения будет равно нулю.
Для того, чтобы найти наибольшие значения уравнения, потребуется придерживаться следующего алгоритма:
- Узнайте, какая перед вами функция. Для этого нужно проверить ее на непрерывность. В расчет обязательно берется заданный отрезок.
- Если запись непрерывная – ищем производную.
- После того, как найдем производную, приравниваем ее к нулю. Это поможет найти точки экстремумов. В результате получаются корни.
- Образовавшиеся корни – это критические точки. Нужно выбрать те «параметры», что относятся к промежутку [a, b].
- Вычислить значения функции на концах отрезка [a, b].
- Определить значения имеющегося выражения в критических «отметках».
Теперь понятно, как найти наибольшие функции на заданном отрезке. После произведенных подсчетов остается выбрать из результатов M (максимум) и m (минимум).
На отрезке
Разобравшись в тем, как найти наибольшие «параметры» выражения «на бумаге», стоит рассмотреть соответствующий процесс на графиках. Определять максимумы/минимумы в данном случае будет проще.
Первый график указывает на выражение, у которого точка минимума и максимума находятся в стационарных точках на промежутке [-6;6]. Соответствующие «пределы» обозначены жирным.
Второй график указывает на изменение отрезка. Теперь он будет [1;6]. Минимальное значение останется прежним. А вот максимальное – изменится. Оно образуется в правой части в точке с абсциссой. Поиск минимального «параметра» окажется в критической точке.
Задумываясь, как найти наименьшие или «самые крупные» параметры выражения на графике, можно также рассмотреть третий рисунок. Здесь функция принадлежала промежутку [-3;2]. Чтобы найти наибольшее и наименьшее в таком случае, предстоит учитывать абсциссы. В них достигаются соответствующие пределы.
Открытый интервал
Если промежуток задан конкретным числом, определить экстремумы будет не так сложно. Иначе происходит, если интервал открыт.
Здесь:
- Функция будет принимать максимум/минимум по значению в стационарных точках на открытом интервале от -6 до 6. Ответ – на 4 рисунке.
- Если взять отрезок [1;6), минимум будет достигнут в стационарной точке. А вот максимум – неизвестен. Связано это с тем, что 6 не принадлежит к заданному интервалу. Если бы «шестерка» относилась к соответствующему промежутку, ответ на вопрос относительно определения максимума оказался понятным. Максимальный параметр был бы в точке с абсциссой 6.
- На рисунке 6, задумываясь, как найти наименьшие «параметры», нужно обратить внимание на заданный интервал. Он равен (-3;2]. Минимум будет достигнут в правой границе. А вот максимум – не определен.
Найти значения на графиках обычно проще, чем «в чистых формулах». Соответствующие задания можно отыскать тут.
Бесконечность
Иногда значения функций нужно найти на бесконечном промежутке. Графически возможны такие ситуации:
На 7 рисунке функция достигает максимума в стационарной точке с абсциссой 1. Минимум окажется на границе интервала справа. На минус бесконечности значения приближаются к y=3 асимптотически.
Если взять интервал от 2-х до «плюс бесконечности», заданная функция не будет иметь ни максимумов, ни минимумов. Значения здесь стремятся к бесконечности. Связано это с тем, что x=2 является вертикальной асимптотой. Если абсцисса стремится к плюс бесконечности, значения будут асимптотически подходить к y=3. Соответствующий пример показан на рисунке 8.
Чтобы не приходилось долго разбираться с тем, как найти наименьшее у заданной функции, не путаться с тем, какие знаки производной использовать, а также легко строить графики, можно воспользоваться специальными онлайн калькуляторами. А еще – закончить тематические дистанционные онлайн курсы.
На этой странице вы узнаете
- Кто всегда протянет руку помощи в определении производной?
- Что такое сложная функция и зачем тут матрешка?
- Как никогда не ошибаться при решении задач с производными?
Теория теорией, а дифференцировать хочется всегда. Эта статья посвящена практике нахождения производных.
Производные основных функций
Должно быть, вы уже слышали о производной и даже пробовали взять её мозговым штурмом. При отрицательном ответе вам обязательно нужно прокатиться на американских горках в нашей статье «Производная». В ней рассмотрели основные понятия производной.
Главный вопрос этой статьи: как ее находить? Для этого существуют свои формулы и правила, которых необходимо придерживаться для правильного решения заданий.
Ниже приведена таблица с формулами для нахождения производных основных функций. Применяя эти формулы, можно найти производную почти любой функции.
Не пугайтесь, если вам покажется, что их много: это основные формулы, с помощью которых можно решить большинство задач.
1 | C’ = 0, C = const |
2 | ((x^n)’ = n * x^{n — 1}, x > 0) |
3 | ((a^x)’ = a^x * ln(a), a > 0, a neq 1) |
4 | ((e^x)’ = e^x) |
5 | ((log_{a}x)’ = frac{1}{x * ln(a)}, x > 0, a > 0, a neq 1) |
6 | ((ln(x))’ = frac{1}{x}, x > 0) |
7 | ((sqrt{x})’ = frac{1}{2sqrt{x}}, x > 0) |
8 | (sin(x))’ = cos(x) |
9 | (cos(x))’ = -sin(x) |
10 | ((tg(x))’ = frac{1}{cos^{2}x}, x neq frac{pi}{2} + pi n, n in Z) |
11 | ((ctg(x))’ = -frac{1}{sin^{2}x}, x neq pi n, n in Z) |
Смотреть на формулы и учить их — это круто, прямо ощущаем себя великими учеными. Что может быть круче этого? Только применять их на практике. Рассмотрим несколько примеров нахождения производной.
Пример 1. Найдите производную функции f(x) = 5.
Решение: 5 — это число, то есть константа. Тогда, пользуясь первой формулой в таблице, получаем:
f'(x) = 5′ = 0.
Ответ: 0
Пример 2. Найдите производную функции (f(x) = x^4)
Решение: В этом случае необходимо воспользоваться второй формулой из таблицы.
(f'(x) = (x^4)’ = 4 * x^{4-1} = 4 * x^3)
Ответ: (4x^3)
Пример 3. Найдите производную функции (f(x) = e^x)
Решение: В этом случае необходимо воспользоваться четвертой формулой из таблицы.
(f'(x) = (e^x)’ = e^x)
Ответ: (e^x)
Правила дифференцирования
С полной уверенностью можем сказать, что вам встречались сложные функции. Даже намного сложнее, чем те, которые приведены в таблицах. Там и сумма, и произведение, и формула в формуле. Одним словом: ужас! Как брать производную, если перед функцией стоит коэффициент, или в функцию включено несколько разных выражений? На этот случай существуют правила дифференцирования.
В сложных функциях невозможно пользоваться только формулами для нахождения производной.
Если функция
— усложнена коэффициентом,
— представлена в виде суммы, произведения или частного
— или является сложной функцией,
то для выбора правильной производной необходимо воспользоваться правилами дифференцирования. Они играют роль супергероев от мира производных. Рассмотрим их внимательнее.
1. Коэффициент можно вынести за знак производной.
(k * f(x))’ = k * (f(x))’
Например, необходимо взять производную у функции f(x) = 6sin(x). Тогда, пользуясь правилом дифференцирования и таблицей, получаем ответ 6cos(x).
2. Производная суммы (разности) равняется сумме (разности) производных.
((f(x) pm g(x))’ = f'(x) pm g'(x))
Найдем производную (f(x) = 4x^5 — sqrt{x} + cos(x)).
(f'(x) = (4x^5 — sqrt{x} + cos(x))’ = (4x^5)’ — (sqrt{x})’ + (cos(x))’ = 4 * 5 * x^{5 — 1} — frac{1}{2sqrt{x}} — sin(x))
(f'(x) = 20x^4 — frac{1}{2sqrt{x}} — sin(x). )
3. Производная произведения.
(f(x) * g(x))’ = f'(x) * g(x) + f(x) * g'(x)
Для примера возьмем производную функции f(x) = x2 * ln(x)
f'(x) = (x2 * ln(x))’ = (x2)’ * ln(x) + x2 * (ln(x))’
(f'(x) = 2x * ln(x) + x^2 * frac{1}{x} = 2x * ln(x) + x)
4. Производная частного.
((frac{f(x)}{g(x)})’ = frac{f'(x) * g(x) — f(x) * g'(x)}{g^{2}(x)})
Возьмем производную функции (f(x) = frac{e^x}{3x})
(f'(x) = frac{(e^x)’ * 3x — ex * (3x)’}{(3x)^2} = frac{e^x * 3x — e^x * 3}{9x^2} = frac{3e^x * (x-1)}{9x^2} = frac{e^x * (x-1)}{3x^2})
5. Производная сложной функции.
Сложная функция — это функция, внутри которой есть другая функция.
Давайте представим матрешку: в одну большую куклу складывается куколка поменьше, а в нее еще меньше и так далее. Точно так же и с функцией: “внутри” одной функции может лежать другая функция.
Например, у нас есть две функции: (sqrt{x}) и cos(x). А теперь попробуем поместить корень в функцию с косинусом, и получим (cos(sqrt{x})). Это и будет сложная функция.
Чтобы найти производную сложной функции, необходимо найти производную “внутренней” функции и умножить ее на производную “внешней” функции.
(f(g(x))’ = g'(x) * f'(g(x))
Найдем производную уже рассмотренной функции (f(x) = cos(sqrt{x})).
(f'(x) = (cos(sqrt{x}))’ = (sqrt{x})’ * (cos(sqrt{x}))’ = frac{1}{2sqrt{x}} * (-sin(sqrt{x})) = -frac{sin(sqrt{x})}{2sqrt{x}})
Исследование функции с помощью производной
В задании нам может быть дана только функция без ее графика. Что делать в таком случае, если нам нужно найти, например, отрезки возрастания, точки экстремума, наибольшее или наименьшее значение функции? Не во всех случаях получится построить график, да и это займет достаточно большое количество времени, которое и без того ограничено на экзамене.
В этом случае мы можем проанализировать поведение функции с помощью производной.
Исследуем функцию f(x) = (x — 4)2(x + 11) + 4.
Cначала возьмем производную от этой функции:
f'(x) = ((x — 4)2(x + 11))‘ + 4′ = ((x — 4)2(x + 11))’ = ((x — 4)2)'(x + 11) + (x — 4)2(x + 11)’
f'(x) = 2(x — 4)(x + 11) + (x — 4)2 * 1 = (x — 4)(2(x + 11) + (x — 4)) = (x — 4)(3x + 18)
Любое исследование функции с помощью производной начинается именно с дифференцирования функции.
Теперь рассмотрим алгоритм нахождения точек минимума и максимума:
2 шаг. Найденную производную необходимо приравнять к 0 и решить полученное уравнение.
3 шаг. Расставить корни полученного уравнения на числовой прямой.
4 шаг. Определяем знаки производной на промежутках. Для этого необходимо подставить любое значение с выбранного промежутка в производную функции.
5 шаг. Определить, какие точки будут точками минимума (в них знак меняется с минуса на плюс), а какие — точками максимума (знак меняется с плюса на минус).
Найдем точки минимума и максимума в нашей функции. Поскольку производную мы уже взяли, можно сразу перейти ко второму шагу:
(x — 4)(3x + 18) = 0
x = 4, x = -6.
Полученные значения х расставляем на числовой прямой:
Теперь определим знаки на промежутках слева направо.
1. Возьмем точку -10 и подставим ее в производную функции:
(-10 — 4)(3 * (-10) + 18) = (-14) * (-12) = 168. Производная на этом промежутке будет положительной.
2. Возьмем точку 0 и подставим ее в производную функции:
(0 — 4)(3 * 0 + 18) = (-4) * 18 = -72. Производная на этом промежутке будет отрицательной.
3. Возьмем точку 5 и подставим ее в производную функции:
(5 — 4)(3 * 5 + 18) = 33. Производная на этом промежутке будет положительной.
Расставим полученные знаки на прямой:
Остался последний пятый шаг. В точке -6 производная меняет знак с плюса на минус, значит, это точка максимума. В точке 4 производная меняет знак с минуса на плюс, значит, это точка минимума.
Важно!
Если в задании встречается формулировка “Найдите точку минимума (максимума) функции”, то необходимо пользоваться именно этим алгоритмом.
Но это не все выводы, которые уже можно сделать о функции. Вспомним, что функция возрастает, когда производная положительна, а убывает, когда производная отрицательна. Поскольку мы уже определили знаки производной, то смело можем сделать вывод, что на промежутках до -6 и после 4 функция будет возрастать, а на промежутке от -6 до 4 — убывать.
Однако могут встретиться задания, в которых необходимо найти наибольшее или наименьшее значение функции на определенном интервале.
Для выполнения таких заданий существует следующий алгоритм нахождения наибольшего и наименьшего значения функции.
Шаг 2. Найти точки минимума и максимума функции.
Шаг 3. Определить, какие из точек минимума и максимума принадлежат заданному интервалу.
Шаг 4. Найти значение функции в отобранных в предыдущем шаге точках, а также в точках, которые являются границами заданного интервала. Для этого необходимо подставить точки в функцию (не в производную от функции).
Для примера найдем наибольшее значение функции f(x) = (x — 4)2(x + 11) + 4 на отрезке [-10; 0].
Первые два шага мы уже выполнили, когда рассматривали алгоритм нахождения точек минимума и максимума. Из них отрезку [-10; 0] принадлежит х = -6 — точка максимума.
Теперь определим значение функции в трех точках:
f(-10) = (-10 — 4)2(-10 + 11) + 4 = 196 + 4 = 200
f(-6) = (-6 — 4)2(-6 + 11) + 4 = 500 + 4 = 504
f(0) = (0 — 4)2(0 + 11) + 4 = 176 + 4 = 180
Наибольшее из полученных значений — это 504. Это и будет ответ.
Может возникнуть вопрос, почему важно проверять значение функции и на границах отрезка? В заданиях ЕГЭ очень часто встречаются случаи, когда нужно найти наибольшее значение, и в интервале лежит точка максимума, или когда нужно найти наименьшее значение функции и в интервале лежит точка минимума. Логично будет проверить только экстремумы, поскольку в них, скорее всего, достигается наибольшее или наименьшее значение.
Однако стоит вспомнить, что мы не видим график функции и не можем с точностью определить, что в экстремуме достигается нужное нам значение. С помощью экстремумов мы можем описать поведение функции: где она возрастает, а где убывает. Но можно столкнуться с графиком, на котором граничная точка будет лежать выше или ниже точки экстремума. Тогда наибольшее или наименьшее значение будет достигаться именно в ней. Пример на картинке (красными линиями обозначены границы отрезка).
Подведем итог.
Как можно исследовать функцию с помощью производной?
С помощью производной можно с точностью сказать, на каких участках функция будет возрастать и убывать, сколько точек максимума и минимума у нее есть, какое наибольшее или наименьшее значение принимает функция на заданном участке.
Фактчек
- Для нахождения производной необходимо пользоваться специальными формулами для производной. С их помощью можно найти производную любой из основных функций.
- Если функция усложнена коэффициентом, является сложной или представлена в виде суммы, произведения или частного, то необходимо пользоваться правилами дифференцирования. Они помогут правильно найти производную.
- Сложная функция — это функция, внутри которой есть другая функция.
- С помощью производной можно исследовать функцию, а именно найти точки минимума и максимума, определить, на каких участках функция возрастает и убывает, найти наибольшее и наименьшее значение функции на заданном отрезке.
Проверь себя
Задание 1.
Чему будет равна производная f(x) = 3?
- 3;
- 1;
- 0;
- Производную этой функции невозможно найти.
Задание 2.
Чему будет равна производная f(x) = 5x2?
- 10x;
- 10x2;
- 5x2;
- 2x.
Задание 3.
Чему будет равна производная f(x) = 13x + 5 + x3?
- 18 + 3x2;
- 13 + 3x2;
- 18;
- 3x2.
Задание 4.
Чему будет равна производная f(x) = ln(x)?
- x
- (frac{1}{x})
- (frac{1}{2sqrt{x}})
- ex
Задание 5.
Чему будет равна производная f(x) = tg(x)?
- (frac{1}{cos^{2}(x)})
- (-frac{1}{sin^{2}(x)})
- (-frac{1}{cos^{2}(x)})
- (frac{1}{sin^{2}(x)})
Ответы: 1. — 3 2. — 1 3. — 2 4. — 2 5. — 1