Как найти знаменатель дроби с разными знаменателями

При нахождении наименьшего общего знаменателя при сложении (вычитании) обыкновенных дробей учащиеся часто поступают нерационально, принимая в качестве общего знаменателя произведение знаменателей исходных дробей.

Можно использовать следующий прием, использующий навык сокращения дробей

Удобный способ нахождения общего знаменателя

Пример 1. Найти сумму дробей с разными знаменателями

Удобный способ нахождения общего знаменателя

Составили дробь из знаменателей дробей слагаемых и после ее сокращения на 7 получили дополнительные множители к дробям слагаемым:
2 – дополнительный множитель к дроби со знаменателем 21,
3 – дополнительный множитель к дроби со знаменателем 14
Т.е. дополнительные множители соответствуют исходным знаменателям “крест-накрест”

Пример 2. Найти разность дробей с разными знаменателями

Удобный способ нахождения общего знаменателя

Составили дробь из знаменателей, сократили ее и получили дополнительные множители, которые соответствуют исходным знаменателям “крест-накрест”, как в пропорции

Способ можно применять для нахождения наименьшего общего кратного двух чисел (это очевидно, т.к. наименьший общий знаменатель является наименьшим общим кратным исходных знаменателей)

Пример 3. Найти наименьшее общее кратное

Удобный способ нахождения общего знаменателя

Составили дробь из чисел, для которых надо найти наименьшее общее кратное, сократили ее последовательно (сначала на 2, потом на 7, потом на 3) – получили несократимую дробь.
Числитель составленной дроби умножаем на знаменатель дроби после сокращения (84 умножаем на 3).
Знаменатель составленной дроби умножаем на числитель дроби после сокращения (126 умножаем на 2).
В обоих случаях получаем наименьшее общее кратное при условии, что получена именно
несократимая дробь.

Алгоритм усложняется, если надо найти общий знаменатель трех и более дробей. В этом случае надо найти общий знаменатель первых двух дробей, потом найти общий знаменатель результата и следующей дроби и т.д.
Алгоритм можно применять также при сложении (вычитании) алгебраических дробей.

Удобный способ нахождения общего знаменателя

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Сложение дробей

Поддержать сайтспасибо

При сложении дробей могут встретиться разные случаи.

Сложение дробей с одинаковыми знаменателями

Такой случай наиболее простой. При сложении дробей с равными знаменателями складывают
числители, а знаменатель оставляют тот же
.

Пример.

сложение дробей с одинаковыми знаменателями

C помощью букв это правило сложения можно записать так:

сложение дробей с одинаковыми знаменателями запись при помощи букв

Запомните!
!

Записывая ответ, проверьте нельзя ли полученную дробь сократить.

Сложение дробей с разными знаменателями

Чтобы сложить дроби с разными знаменателями нужно воспользоваться
следующими правилами.

  1. Привести данные дроби к наименьшему общему знаменателю (НОЗ). Для этого найти
    наименьшее общее кратное знаменателей.

Пример. Сложить дроби.

сложение дробей с разными знаменателями

Как найти общий знаменатель

Находим НОК (15, 18).

нахождение общего знаменателя
НОК (15, 18) = 3 · 2 · 3 · 5 = 90

  1. Найти дополнительные множители для каждой дроби. Для этого наименьший общий знаменатель (НОК из пункта 1)
    делим по очереди на знаменатель каждой дроби.

    Полученные числа и будут дополнительными множителями
    для каждой из дробей. Множители записываем над числителем дроби справа сверху.

    90 : 15 = 6 — дополнительный множитель для дроби

    .

    90 : 18 = 5 — дополнительный множитель для дроби

    .

    сложение дробей с разными знаменателями, запись дополнительных множителей.

  2. Числитель и знаменатель каждой дроби умножаем на свой дополнительный множитель, пользуясь
    основным свойством дроби.

    После умножения в знаменателях
    обеих дробей должен получиться наименьший общий знаменатель.
    Затем складываем дроби как дроби с одинаковыми знаменателями.
    сложение дробей с разными знаменателями

  3. Проверяем полученную дробь.
    • Eсли в результате получилась
      неправильная дробь,
      результат записываем в виде смешанного числа. Проверим нашу
      дробь.

      38 < 90

      У нас дробь правильная.

    • Если в результате получилась сократимая дробь, необходимо выполнить сокращение.
      сокращение полученной дроби
  4. Ещё раз весь пример целиком.
    пример сложения дробей

Сложение смешанных чисел

Сочетательное и переместитительное свойства сложения позволяют привести
сложение смешанных чисел к сложению их целых частей и к сложению их дробных частей.

Чтобы сложить смешанные числа нужно.

  1. Отдельно сложить их целые части.

    Пример.

    сложение смешанных чисел

    Складываем целые части.

    сложение целых частей смешанных чисел

  2. Отдельно сложить дробные части.

    Если у дробных частей знаменатели разные, то
    сначала приводим их к общему знаменателю, а затем складываем.

    сложение дробей с разными знаменателями

  3. Сложить полученные результаты из пунктов 1 и 2.
    сложение целой части и дроби
  4. Если при сложении дробных частей получилась неправильная дробь, то нужно
    выделить целую часть из этой дроби и прибавить к полученной
    в пункте 1 целой части.

Ещё один пример на сложение смешанных чисел.

пример сложения дробей


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

24 декабря 2018 в 11:19

Baur Nurgazinov
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Baur Nurgazinov
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

2 января 2019 в 14:18
Ответ для Baur Nurgazinov

Лина Аникеева
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Лина Аникеева
Профиль
Благодарили: 0

Сообщений: 2


1) приводим все дроби к общему знаменателю
(2 -1 ) · х= 
2) Вычислаем разность в скобках
(  —  ) · х= 
  · х= 
сократим дроби на 3
  · х= 
3) вычисляем х
х= : 
По правилу деления дробей делитель переворачиваем
x=  ·  = 
4 — сокращаем
х=3
Проверка:
(2 -1 ) · 3=( – )  · 3=  · 3=  · 3 =   ·  = = 

Ответ верный

0
Спасибоthanks
Ответить

24 января 2017 в 19:44

Фанис Газизов
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Фанис Газизов
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

24 января 2017 в 21:12
Ответ для Фанис Газизов

Marina Kazakova
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Marina Kazakova
Профиль
Благодарили: 0

Сообщений: 1



0
Спасибоthanks
Ответить

1 марта 2016 в 18:39

Денис Демидов
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Денис Демидов
Профиль
Благодарили: 0

Сообщений: 1

спасибо сайт класс тему не понял 

было очень непонятно
теперь понятно +  + 

+ +  +  +  ·  +  +  +  +  + smile

0
Спасибоthanks
Ответить

19 сентября 2016 в 13:05
Ответ для Денис Демидов

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


cool

0
Спасибоthanks
Ответить

6 февраля 2016 в 18:54

Денис Бочин
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Денис Бочин
Профиль
Благодарили: 0

Сообщений: 1

Сложи 

 числа 30 и 

 числа 14.

0
Спасибоthanks
Ответить

10 февраля 2016 в 19:03
Ответ для Денис Бочин

Алексей Пешков
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Алексей Пешков
Профиль
Благодарили: 0

Сообщений: 2


1) от 30=;  

 2)

  от 14= 

2)

+ ===24=24 

0
Спасибоthanks
Ответить

14 января 2016 в 15:31

Анжела Волк
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Анжела Волк
Профиль
Благодарили: 0

Сообщений: 1

2/6 или1/2 сравнение дробейsmile

0
Спасибоthanks
Ответить

14 января 2016 в 18:05
Ответ для Анжела Волк

Александр Хан
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Александр Хан
Профиль
Благодарили: 0

Сообщений: 1



 больше

0
Спасибоthanks
Ответить

19 сентября 2016 в 10:33
Ответ для Анжела Волк

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Отрицательное число всегда меньше положительного =)

0
Спасибоthanks
Ответить

27 декабря 2015 в 20:00

Надежда Егина
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Надежда Егина
Профиль
Благодарили: 0

Сообщений: 2

0
Спасибоthanks
Ответить

19 сентября 2016 в 10:07
Ответ для Надежда Егина

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


  · a12· b4 ·   · a8· b5 =   · a20 · b9=125· a20 · b9При раскрытии скобок отбросил знак ?, т.к. степень чётная, а значит получится +.

0
Спасибоthanks
Ответить

21 апреля 2015 в 15:17

Алина Гимадеева
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Алина Гимадеева
Профиль
Благодарили: 0

Сообщений: 2

1) 15 — 7

 4/7=                                                               2) 20

 4/5 — 1

 5/6 * 

 1/3
3) 5

 1/3 + 4

 1/3 + 

 2/5

0
Спасибоthanks
Ответить

14 апреля 2016 в 12:32
Ответ для Алина Гимадеева

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Судя по всему, не разобрались с использованием кнопки дробь. Интерпретирую задачу следующим образом:

1) 15 ? 7

 =8

2) 20

  ? 1  ·  =  ?  = = = =9  — похоже ошибка в примере, он гораздо сложнее двух других.

3) 5

 +4 +  = 9 + = + = = =10

0
Спасибоthanks
Ответить

7 апреля 2015 в 20:06

Александр Гридюшко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Александр Гридюшко
Профиль
Благодарили: 0

Сообщений: 1

cryкак решить?4

+

 

0
Спасибоthanks
Ответить

7 апреля 2015 в 21:13
Ответ для Александр Гридюшко

Анастасия Власова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Анастасия Власова
Профиль
Благодарили: 0

Сообщений: 1


4+ = + = + = = = = 6   

0
Спасибоthanks
Ответить

14 апреля 2015 в 16:55
Ответ для Александр Гридюшко

Asel Talantbekovna
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Asel Talantbekovna
Профиль
Благодарили: 0

Сообщений: 8


4  +  =  +  = = =16:3=1 

0
Спасибоthanks
Ответить

16 апреля 2015 в 19:06
Ответ для Александр Гридюшко

Мирон Федоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Мирон Федоров
Профиль
Благодарили: 0

Сообщений: 1


Asel не правильно

0
Спасибоthanks
Ответить



Загрузить PDF


Загрузить PDF

Для сложения или вычитания дробей с разными знаменателями (числа, стоящие под дробной чертой) сначала необходимо найти их наименьший общий знаменатель (НОЗ). Таким числом будет наименьшее кратное, которое встречается в списке кратных каждого знаменателя, то есть число, делящееся нацело на каждый знаменатель.[1]
Также вы можете вычислить наименьшее общее кратное (НОК) двух или более знаменателей. В любом случае речь идет о целых числах, методы нахождения которых весьма схожи. Определив НОЗ, вы сможете привести дроби к общему знаменателю, что в свою очередь позволит вам складывать и вычитать их.

  1. Изображение с названием Find the Least Common Denominator Step 1

    1

    Перечислите кратные каждого знаменателя. Составьте список из нескольких кратных для каждого знаменателя в уравнении. Каждый список должен состоять из произведения знаменателя на 1, 2, 3, 4 и так далее.

    • Пример: 1/2 + 1/3 + 1/5
    • Кратные 2: 2 * 1 = 2; 2 * 2 = 4; 2 * 3 = 6; 2 * 4 = 8; 2 * 5 = 10; 2 * 6 = 12; 2 * 7 = 14; и так далее.
    • Кратные 3: 3 * 1 = 3; 3 * 2 = 6; 3 *3 = 9; 3 * 4 = 12; 3 * 5 = 15; 3 * 6 = 18; 3 * 7 = 21; и так далее.
    • Кратные 5: 5 * 1 = 5; 5 * 2 = 10; 5 * 3 = 15; 5 * 4 = 20; 5 * 5 = 25; 5 * 6 = 30; 5 * 7 = 35; и так далее.
  2. Изображение с названием Find the Least Common Denominator Step 2

    2

    Определите наименьшее общее кратное. Просмотрите каждый список и отметьте любые кратные числа, которые являются общими для всех знаменателей. После выявления общих кратных определите наименьший знаменатель.

    • Обратите внимание, что если общий знаменатель не найден, возможно, потребуется продолжить выписывать кратные до тех пор, пока не появится общее кратное число.
    • Лучше (и легче) пользоваться этим методом в том случае, когда в знаменателях стоят небольшие числа.
    • В нашем примере общим кратным всех знаменателей является число 30: 2 * 15 = 30; 3 * 10 = 30; 5 * 6 = 30
    • НОЗ = 30
  3. Изображение с названием Find the Least Common Denominator Step 3

    3

    Перепишите исходное уравнение. Для того чтобы привести дроби к общему знаменателю, при этом не изменив их значения, умножьте каждый числитель (число, стоящее над дробной чертой) на число, равное частному от деления НОЗ на соответствующий знаменатель.

    • Пример: (15/15) * (1/2); (10/10) * (1/3); (6/6) * (1/5)
    • Новое уравнение: 15/30 + 10/30 + 6/30
  4. Изображение с названием Find the Least Common Denominator Step 4

    4

    Решите полученное уравнение. После нахождения НОЗ и изменения соответствующих дробей, просто решите полученное уравнение. Не забудьте упростить полученный ответ (если это возможно).

    • Пример: 15/30 + 10/30 + 6/30 = 31/30 = 1 1/30

    Реклама

  1. Изображение с названием Find the Least Common Denominator Step 5

    1

    Перечислите делители каждого знаменателя. Делитель – это целое число, которое делит нацело данное число.[4]
    Например, делителями числа 6 являются числа 6, 3, 2, 1. Делителем любого числа является 1, потому что любое число делится на единицу.

    • Пример: 3/8 + 5/12
    • Делители 8: 1, 2, 4, 8
    • Делители 12: 1, 2, 3, 4, 6, 12
  2. Изображение с названием Find the Least Common Denominator Step 6

    2

    Найдите наибольший общий делитель (НОД) обоих знаменателей. Перечислив делители каждого знаменателя, отметьте все общие делители. Самый большой общий делитель является наибольшим общим делителем, который понадобится вам для решения задачи.

    • В нашем примере общими делителями для знаменателей 8 и 12 являются числа 1, 2, 4.
    • НОД = 4.
  3. Изображение с названием Find the Least Common Denominator Step 7

    3

    Перемножьте знаменатели между собой. Если вы хотите использовать НОД для решения задачи, сначала перемножьте знаменатели между собой.

    • Пример: 8 * 12 = 96
  4. Изображение с названием Find the Least Common Denominator Step 8

    4

    Разделите полученное значение на НОД. Получив результат перемножения знаменателей, разделите его на вычисленный вами НОД. Полученное число будет наименьшим общим знаменателем (НОЗ).

    • Пример: 96 / 4 = 24
  5. Изображение с названием Find the Least Common Denominator Step 9

    5

    Разделите НОЗ на исходный знаменатель. Для вычисления множителя, который требуется для приведения дробей к общему знаменателю, разделите найденный вами НОЗ на исходный знаменатель. Умножьте числитель и знаменатель каждой дроби на этот множитель. Вы получите дроби с общим знаменателем.

    • Пример: 24 / 8 = 3; 24 / 12 = 2
    • (3/3) * (3/8) = 9/24; (2/2) * (5/12) = 10/24
    • 9/24 + 10/24
  6. Изображение с названием Find the Least Common Denominator Step 10

    6

    Решите полученное уравнение. НОЗ найден; теперь вы можете сложить или вычесть дроби. Не забудьте упростить полученный ответ (если это возможно).

    • Пример: 9/24 + 10/24 = 19/24

    Реклама

  1. Изображение с названием Find the Least Common Denominator Step 11

    1

    Разложите каждый знаменатель на простые множители. Разложите каждый знаменатель на простые множители, то есть простые числа, которые при перемножении дают исходный знаменатель. Напомним, что простые множители – это числа, которые делятся только на 1 или самих себя.[6]

    • Пример: 1/4 + 1/5 + 1/12
    • Простые множители 4: 2 * 2
    • Простые множители 5: 5
    • Простые множители 12: 2 * 2 * 3
  2. Изображение с названием Find the Least Common Denominator Step 12

    2

    Подсчитайте число раз каждый простой множитель есть у каждого знаменателя. То есть определите, сколько раз каждый простой множитель появляется в списке множителей каждого знаменателя.

    • Пример: Есть две 2 для знаменателя 4; нуль 2 для 5; две 2 для 12
    • Есть нуль 3 для 4 и 5; одна 3 для 12
    • Есть нуль 5 для 4 и 12; одна 5 для 5
  3. Изображение с названием Find the Least Common Denominator Step 13

    3

    Возьмите только наибольшее число раз для каждого простого множителя. Определите наибольшее число раз наличия каждого простого множителя в любом знаменателе.

    • Например: наибольшее число раз для множителя 2 – 2 раза; для 3 – 1 раз; для 5 – 1 раз.
  4. Изображение с названием Find the Least Common Denominator Step 14

    4

    Запишите по порядку найденные в предыдущем шаге простые множители. Не записывайте число раз наличия каждого простого множителя во всех исходных знаменателях – делайте это с учетом наибольшего числа раз (как описано в предыдущем шаге).

    • Пример: 2, 2, 3, 5
  5. Изображение с названием Find the Least Common Denominator Step 15

    5

    Перемножьте эти числа. Результат произведения этих чисел равен НОЗ.

    • Пример: 2 * 2 * 3 * 5 = 60
    • НОЗ = 60
  6. Изображение с названием Find the Least Common Denominator Step 16

    6

    Разделите НОЗ на исходный знаменатель. Для вычисления множителя, который требуется для приведения дробей к общему знаменателю, разделите найденный вами НОЗ на исходный знаменатель. Умножьте числитель и знаменатель каждой дроби на этот множитель. Вы получите дроби с общим знаменателем.

    • Пример: 60/4 = 15; 60/5 = 12; 60/12 = 5
    • 15 * (1/4) = 15/60; 12 * (1/5) = 12/60; 5 * (1/12) = 5/60
    • 15/60 + 12/60 + 5/60
  7. Изображение с названием Find the Least Common Denominator Step 17

    7

    Решите полученное уравнение. НОЗ найден; теперь вы можете сложить или вычесть дроби. Не забудьте упростить полученный ответ (если это возможно).

    • Пример: 15/60 + 12/60 + 5/60 = 32/60 = 8/15

    Реклама

  1. Изображение с названием Find the Least Common Denominator Step 18

    1

    Преобразуйте каждое смешанное число в неправильную дробь. Для этого умножьте целую часть смешанного числа на знаменатель и сложите с числителем – это будет числитель неправильной дроби. Целое число тоже превратите в дробь (просто поставьте 1 в знаменателе).

    • Пример: 8 + 2 1/4 + 2/3
    • 8 = 8/1
    • 2 1/4, 2 * 4 + 1 = 8 + 1 = 9; 9/4
    • Переписанное уравнение: 8/1 + 9/4 + 2/3
  2. Изображение с названием Find the Least Common Denominator Step 19

    2

    Найти наименьший общий знаменатель. Вычислите НОЗ любым способом, описанным в предыдущих разделах. Для этого примера мы будем использовать метод “перечисление кратных”, в котором выписываются кратные каждого знаменателя и на их основе вычисляется НОЗ.

    • Обратите внимание, что вам не нужно перечислять кратные для 1, так как любое число, умноженное на 1, равно самому себе; иными словами, каждое число является кратным 1.
    • Пример: 4 * 1 = 4; 4 * 2 = 8; 4 * 3 = 12; 4 * 4 = 16; т.д.
    • 3 * 1 = 3; 3 * 2 = 6; 3 * 3 = 9; 3 * 4 = 12; т.д.
    • НОЗ = 12
  3. Изображение с названием Find the Least Common Denominator Step 20

    3

    Перепишите исходное уравнение. Числители и знаменатели исходных дробей умножьте на число, равное частному от деления НОЗ на соответствующий знаменатель.

    • Например: (12/12) * (8/1) = 96/12; (3/3) * (9/4) = 27/12; (4/4) * (2/3) = 8/12
    • 96/12 + 27/12 + 8/12
  4. Изображение с названием Find the Least Common Denominator Step 21

    4

    Решите уравнение. НОЗ найден; теперь вы можете сложить или вычесть дроби. Не забудьте упростить полученный ответ (если это возможно).

    • Пример: 96/12 + 27/12 + 8/12 = 131/12 = 10 11/12

    Реклама

Что вам понадобится

  • Карандаш
  • Бумага
  • Калькулятор (по желанию)

Об этой статье

Эту страницу просматривали 222 990 раз.

Была ли эта статья полезной?

Нахождение наименьшего общего знаменателя бывает нужно для сложения, вычитания и сравнения дробей.

Наименьший общий знаменатель – это наименьшее число, которое нацело делится и на первый, и на второй знаменатель двух дробей.

Правило нахождения наименьшего знаменателя следующее:

Наименьший знаменатель

Для того, чтобы найти наименьший общий знаменатель двух дробей, нужно найти методом подбора наименьшее общее число, которое бы делилось и на первый, и на второй знаменатель. После этого нужно умножить каждую дробь на такое число, чтобы в знаменателе этих дробей получилось найденное нами наименьшее общее число.

Пример 1

Найти наименьший общий знаменатель двух дробей: 56frac{5}{6} и 34frac{3}{4}.

Решение

Находим методом подбора такое наименьшее число, которое нацело делилось бы и на 6, и на 4. Это число 12. Далее умножаем каждую дробь на такие числа, чтобы в знаменателе получилось 12. Первую дробь умножаем на 2, а вторую на 3:

56=5⋅26⋅2=1012frac{5}{6}=frac{5cdot2}{6cdot2}=frac{10}{12}

34=3⋅34⋅3=912frac{3}{4}=frac{3cdot3}{4cdot3}=frac{9}{12}

Дроби приведены к наименьшему общему знаменателю: 12.

Ответ

12

Пример 2

Найти наименьший общий знаменатель двух дробей: 521frac{5}{21} и 27frac{2}{7}.

Решение

Находим методом подбора такое наименьшее число, которое нацело делилось бы и на 21, и на 7. В этом случае это – один из знаменателей, число 21. Далее нужно умножить вторую дробь на такое число, чтобы в знаменателе получилось 21. Умножаем вторую дробь на 3:

27=2⋅37⋅3=621frac{2}{7}=frac{2cdot3}{7cdot3}=frac{6}{21}

Дроби приведены к наименьшему общему знаменателю: 21.

Ответ

21

Решение задач по алгебре онлайн от экспертов Студворк!

Тест по теме “Наименьший общий знаменатель”

Так для чего нужен общий знаменатель, или когда нужен общий знаменатель?
Ответ довольно прост, мы имеем право дроби складывать и вычитать только когда у данных дробей есть общий знаменатель. Поэтому важно понять, как находить общий знаменатель.

Определение:
Общий знаменатель – это число всегда положительное на которое делятся знаменатели данных дробей.

Формула основного свойства рациональных чисел.

Основное свойство рациональных чисел гласит:

(frac{p}{q}=frac{p times n}{q times n})

Такое решение называется приведением к общему знаменателю. Мы имеем право умножать одновременно на одно и тоже число и числитель и знаменатель.

Рассмотрим пример:

(frac{1}{2}=frac{1 times 4}{2 times 4}=frac{4}{8})

Получаем,

(frac{1}{2}=frac{4}{8})

Наименьший общий знаменатель.

Что такое наименьший общий знаменатель?

Определение:
Наименьший общий знаменатель – это наименьшее положительное число кратное знаменателям данных дробей.

Как привести к наименьшему общему знаменателю? Чтобы ответить на этот вопрос рассмотрим пример:

Приведите дроби с разными знаменателями к наименьшему общему знаменателю .

Решение:
Чтобы найти наименьший общий знаменатель нужно найти наименьшее общее кратное (НОК) знаменателей этих дробей.

У первой дроби знаменатель равен 20 разложим его на простые множители.
20=2⋅5⋅2

Так же разложим и второй знаменатель дроби 14 на простые множители.
14=7⋅2

НОК(14,20)= 2⋅5⋅2⋅7=140

Ответ: наименьший общий знаменатель будет равен 140.

Как привести дробь к общему знаменателю?

Нужно первую дробь (frac{1}{20}) домножить на 7, чтобы получить знаменатель 140.

(frac{1}{20}=frac{1 times 7}{20 times 7}=frac{7}{140})
А вторую дробь  умножить на 10.

(frac{3}{14}=frac{3 times 10}{14 times 10}=frac{30}{140})

Правила или алгоритм приведения дробей к общему знаменателю.

Алгоритм приведения дробей к наименьшему общему знаменателю:

  1. Нужно разложить на простые множители знаменатели дробей.
  2. Нужно найти наименьшее общее кратное (НОК) для знаменателей данных дробей.
  3. Привести дроби к общему знаменателю, то есть умножить и числитель и знаменатель дроби на множитель.

Общий знаменатель для нескольких дробей.

Как найти общий знаменатель для нескольких дробей?

Рассмотрим пример:
Найдите наименьший общий знаменатель для дробей (frac{2}{11}, frac{1}{15}, frac{3}{22})

Решение:
Разложим знаменатели 11, 15 и 22 на простые множители.

Число 11 оно само по себе уже простое число, поэтому его расписывать не нужно.
Разложим число 15=5⋅3
Разложим число 22=11⋅2

Найдем наименьшее общее кратное (НОК) знаменателей 11, 15, и 22.
НОК(11, 15, 22)=11⋅2⋅5⋅3=330

Мы нашли наименьший общий знаменатель для данных дробей. Теперь приведем данные дроби (frac{2}{11}, frac{1}{15}, frac{3}{22}) к общему знаменатели равному 330.

(begin{align}
frac{2}{11}=frac{2 times 30}{11 times 30}=frac{60}{330} \\
frac{1}{15}=frac{1 times 22}{15 times 22}=frac{22}{330} \\
frac{3}{22}=frac{3 times 15}{22 times 15}=frac{60}{330} \\
end{align})

Вопросы по теме:
Какой общий знаменатель у дробей (bf frac{2}{25}) и (bf frac{1}{14})?
Ответ:
Какой наименьший общий знаменатель у дробей 14 и 25? Воспользуемся алгоритмом приведения дробей к общему знаменателю алгебраических дробей.

Сначала разложим на простые множители знаменатели 14 и 25.
14=2⋅7
25=5⋅5
Теперь найдем НОК(14,25)=2⋅7⋅5⋅5=350.

Это мы нашли наименьший общий знаменатель:

( begin{align}
frac{2}{25}=frac{2 times 14}{25 times 14}=frac{28}{350} \\
frac{1}{14}=frac{1 times 25}{14 times 25}=frac{25}{350} \\
end{align})

Но не всегда нужно находит наименьший общий знаменатель иногда, можно найти любой знаменатель, а потом можно конечную дробь сократить. Например, для дробей (frac{2}{25}) и (frac{1}{14}) знаменателем может быть число 700, 1400 и т.д.

Добавить комментарий