На рубеже 21-го века произошел ряд космологических достижений, которые сыграли решающую роль в научном прогрессе. Концепция теории Большого взрыва непреднамеренно привела к открытию темной материи. Это, в свою очередь, свидетельствовало о существовании темной энергии, которая приводит к необъяснимому ускорению расширяющейся Вселенной.
От теории Большого Взрыва к темной материи и темной энергии
Когда была задумана теория Большого Взрыва, она дала ответы на множество вопросов, но также открыла для астрофизиков и физиков частиц множество новых вопросов. На некоторые вопросы ответила инфляционная гипотеза теории Большого взрыва. Но научное движение, начавшееся из-за теории Большого взрыва, натолкнулось на открытие, которое было совершенно необъяснимым.
Изучая гравитационные эффекты галактик, было обнаружено, что масса галактики на самом деле в шесть раз превышает массу видимых звезд в этой галактике. Остальная масса, большая часть массы в космосе, фактически невидима для нас; его гравитационные эффекты, однако, измеримы. Эта невидимая материя получила название темной материи.
Ученые с юмором начали называть частицы этой материи WIMP, или Слабо взаимодействующими массивными частицами. Они должны быть массивными, как предполагают их гравитационные эффекты. «Слабо взаимодействующие» в названии происходят из-за отсутствия у них других взаимодействующих сил.
WIMP теоретически необходимы для полного согласования наших существующих теорий материи, стандартной модели материи. В течение долгого времени физики экспериментировали с кварками и лептами, чтобы выяснить, как темная материя может существовать во Вселенной, но ответа на этот вопрос найдено не было.
Астрофизики не смогли увидеть их в реальном мире, несмотря на то, что некоторые из лучших умов были заняты их поиском.
Однако поиски не зашли в тупик. Например, расширение стандартной модели материи с помощью суперсимметрии могло бы объяснить существование темной материи.
Эта теория была настолько совершенна, что в 1990-х годах она достигла научного консенсуса. Однако, здесь было еще одно противоречие, которое озадачило научное сообщество того времени.
Аномалия расширения: открытие темной энергии
Гравитация является одной из четырех физических сил и единственной, которая работает на больших расстояниях. Это еще и сила притяжения.
Таким образом, вся материя во Вселенной должна притягивать всю другую материю во Вселенной силой гравитации, тем самым искривляя пространство-время, чтобы противостоять расширению, которое продолжается с самого большого взрыва. Это оставляло две возможные альтернативы для Вселенной в долгосрочной перспективе.
Во-первых, гравитационное притяжение во Вселенной достаточно велико, в силу наличия достаточного количества материи, чтобы остановить это расширение и повернуть вспять, чтобы Вселенная начала сжиматься. Этого сжатия могло быть достаточно, чтобы сделать плотность энергии настолько большой, что это могло бы вызвать еще один Большой взрыв, и Вселенная продолжила бы эту серию колебаний.
Другая возможность заключается в том, что не хватает материи, а следовательно, и гравитационной энергии, чтобы полностью остановить расширение Вселенной, хотя оно и замедлится. Вместо того чтобы сжиматься, расширение будет продолжаться до тех пор, пока плотность энергии не станет настолько мала, что она схлопнется сама на себя, создавая мертвую, холодную Вселенную.
Какая из двух возможностей будет реализована, зависит от энергии и материи, содержащихся во Вселенной.
Но произошла аномалия, о которой даже не мечтали. До сих пор рассматривались только эти два варианта: сжатие, последующий Большой взрыв и продолжающиеся колебания Вселенной, или замедление расширения, в конечном итоге ведущее к холодной мертвой Вселенной.
В 1998 году американские ученые Саул Перлмуттер, Брайан Шмидт и Адам Рисс обнаружили, что на самом деле все обстоит иначе: расширение Вселенной вовсе не замедляется, а, наоборот, ускоряется. В результате Вселенная расширяется с возрастающей скоростью.
Как такое могло случиться? Единственная известная сила, способная действовать на межзвездных расстояниях, – это гравитация, и это сила притяжения. Во всяком случае, это привело бы к снижению скорости расширения. Тем не менее тот факт, что расширение Вселенной ускоряется, был подтвержден много раз с 1998 года.
Единственным логическим объяснением было бы то, что за этим расширением должна стоять какая-то другая энергия. Что это за энергия, нам неизвестно. Но точно так же, как невидимая материя, увеличивающая массу вселенной, называлась темной материей, так и невидимая энергия, ускоряющая расширение вселенной, была названа темной энергией.
Что мы знаем о темной энергии?
Сходство между темной материей и темной энергией не заканчивается на имени. Как и в случае с темной материей, о темной энергии известно немногое. Мы не знаем, откуда на самом деле берется темная энергия и на что она похожа.
Что мы знаем, так это сколько ее должно быть, учитывая скорость ускорения во вселенной. И это много: нормальная материя и энергия, вещество, которое первоначально считалось всем, что есть во Вселенной, составляет только 5% от реальной вселенной. Темная материя составляет целую четверть, 25% всего содержимого Вселенной. А темная энергия, составляющая остальные 70%, составляет большую часть содержимого Вселенной. По сути, это означает, что подавляющее большинство, около 95%, нашей Вселенной невидимо для нас.
Но есть еще много вопросов на эту тему. Если бы темная энергия Вселенной была равномерно распределена, как любое другое энергетическое поле, она была бы разбавлена расширением, что привело бы к снижению скорости расширения с течением времени. Но это не было замечено до сих пор, подразумевая, что плотность темной энергии остается постоянной с течением времени.
Выход за пределы темной энергии
Темную энергию так трудно найти, потому что она не взаимодействует с нормальной материей, и то, что мы ничего о ней не знаем, делает ее такой аномалией. Существует установленная парадигма, картина реальности, которая регулируется как стандартной моделью, так и общей теорией относительности. Эта парадигма содержит материю, темную материю и темную энергию, хотя мы мало что знаем о большинстве содержания этой парадигмы.
И стандартная модель, и общая теория относительности безупречно предсказывают результаты, которые также были доказаны экспериментально. Тем не менее существует острая необходимость в теории, которая охватывала бы их обоих, примиряла бы их различия и, возможно, лучше отвечала бы на вопросы о строительных блоках Вселенной. Это создает потребность в теории всего, единой теории, которая, если бы она была задумана, могла бы объяснить функционирование вселенной таким образом, о котором раньше не думали.
Общие вопросы о темной энергии
Что такое темная энергия?
Темная энергия относится к таинственной энергии, которая отвечает за ускорение расширения Вселенной.
Что бы сделала Единая теория?
Единая теория необходима, чтобы свести воедино понимание стандартной модели и общей теории относительности, чтобы, возможно, обеспечить лучшее понимание темной материи и темной энергии.
Каков состав Вселенной?
Только 5% Вселенной состоит из нормальной материи и энергии, 25% состоит из темной материи, а большая часть, 70%, состоит из темной энергии.
Виды энергии: | ||
---|---|---|
Механическая | Потенциальная Кинетическая |
|
‹♦› | Внутренняя | |
Электромагнитная | Электрическая Магнитная |
|
Химическая | ||
Ядерная | ||
Гравитационная | ||
Вакуума | ||
Гипотетические: | ||
Тёмная | ||
См. также: Закон сохранения энергии |
Тёмная эне́ргия (англ. dark energy) в космологии — гипотетический вид энергии, введённый в математическую модель Вселенной для объяснения наблюдаемого её расширения с ускорением[1].
Существует три варианта объяснения сущности тёмной энергии:
- тёмная энергия есть космологическая константа — неизменная энергетическая плотность, равномерно заполняющая пространство Вселенной (другими словами, постулируется ненулевая энергия и давление вакуума)[2];
- тёмная энергия есть некая квинтэссенция — динамическое поле, энергетическая плотность которого может меняться в пространстве и времени.
- тёмная энергия есть модифицированная гравитация на расстояниях порядка размера видимой части Вселенной[3].
По состоянию на 2020 год надёжные наблюдательные данные, такие как измерения реликтового излучения, подтверждают существование тёмной энергии, Модель Лямбда-CDM принимается в космологии как стандартная[3].
Окончательный выбор между вариантами требует очень длительных и высокоточных измерений скорости расширения Вселенной, чтобы понять, как эта скорость изменяется со временем. Темпы расширения Вселенной описываются космологическим уравнением состояния. Разрешение уравнения состояния для тёмной энергии является одной из самых насущных задач современной наблюдательной космологии[3].
Согласно опубликованным в марте 2013 года данным наблюдений космической обсерватории «Планк», общая масса-энергия наблюдаемой Вселенной состоит из тёмной энергии на 68,3 % и тёмной материи на 26,8 %[4][5][6].
Открытие ускорения Вселенной[править | править код]
На основании проведённых в конце 1990-х годов наблюдений сверхновых звёзд типа Ia был сделан вывод, что расширение Вселенной ускоряется со временем. Затем эти наблюдения были подкреплены другими источниками: измерениями реликтового излучения, гравитационного линзирования, нуклеосинтеза Большого Взрыва. Все полученные данные хорошо вписываются в лямбда-CDM модель.
Расстояния до других галактик определяются измерением их красного смещения. По закону Хаббла, величина красного смещения света удалённых галактик прямо пропорциональна расстоянию до этих галактик. Соотношение между расстоянием и величиной красного смещения называется параметром Хаббла (или, не совсем точно, постоянной Хаббла).
Однако само значение параметра Хаббла требуется сначала каким-нибудь способом установить, а для этого нужно измерить значения красного смещения для галактик, расстояния до которых уже вычислены другими методами. Для этого в астрономии применяются «стандартные свечи», то есть объекты, светимость которых известна. Лучшим типом «стандартной свечи» для космологических наблюдений являются сверхновые звёзды типа Ia (все вспыхивающие Ia, находящиеся на одинаковом расстоянии, должны иметь почти одинаковую наблюдаемую яркость; при этом желательно делать поправки на вращение и состав исходной звезды). Сравнивая наблюдаемую яркость сверхновых в разных галактиках, можно определить расстояния до этих галактик.
В конце 1990-х годов было обнаружено, что в удалённых галактиках, расстояние до которых было определено по закону Хаббла, сверхновые типа Ia имеют яркость ниже той, которая им полагается. Иными словами, расстояние до этих галактик, вычисленное по методу «стандартных свеч» (сверхновых Ia), оказывается больше расстояния, вычисленного на основании ранее установленного значения параметра Хаббла. Был сделан вывод, что Вселенная не просто расширяется, она расширяется с ускорением.
Гипотеза о тёмной энергии и скрытой массе[править | править код]
Ранее существовавшие космологические модели предполагали, что расширение Вселенной замедляется. Они исходили из предположения, что основную часть массы Вселенной составляет материя — как видимая, так и невидимая (тёмная материя). На основании новых наблюдений, свидетельствующих об ускорении расширения, было постулировано существование неизвестного вида энергии с отрицательным давлением (см. уравнения состояния). Её назвали «тёмной энергией».
Гипотеза о существовании тёмной энергии (чем бы она ни являлась) решает и так называемую «проблему невидимой массы». Теория нуклеосинтеза Большого Взрыва объясняет формирование в молодой Вселенной лёгких химических элементов, таких как гелий, дейтерий и литий. Теория крупномасштабной структуры Вселенной объясняет формирование структуры Вселенной: образование звёзд, квазаров, галактик и скоплений галактик. Обе эти теории предполагают, что плотность барионной материи и тёмной материи составляет около 30 % от критической плотности, требуемой для образования «закрытой» Вселенной, то есть соответствует плотности, необходимой, чтобы форма Вселенной была плоской. Измерения реликтового излучения Вселенной, недавно проведённые спутником WMAP, показывают, что пространство-время во Вселенной действительно имеет глобальную кривизну, очень близкую к нулевой. Следовательно, некая ранее неизвестная форма невидимой энергии должна давать отсутствующие 70 % плотности Вселенной.[7]
Природа тёмной энергии[править | править код]
Сущность тёмной энергии является предметом споров. Известно, что она очень равномерно распределена в пространстве[7], испытывает гравитационное отталкивание вместо гравитационного притяжения[7], имеет низкую плотность и не взаимодействует сколько-нибудь заметно с обычной материей посредством известных фундаментальных типов взаимодействия — за исключением гравитации. Плотность тёмной энергии не зависит от времени (за последние 8 млрд лет её плотность изменилась не более, чем на 10 %).[7] Поскольку гипотетическая плотность тёмной энергии невелика (порядка 10−29 г/см³), её вряд ли удастся обнаружить лабораторным экспериментом. Тёмная энергия может оказывать такое глубокое влияние на Вселенную (составляя 70 % всей энергии) только потому, что она однородно наполняет пустое (в иных отношениях) пространство.
Космологическая постоянная[править | править код]
Диаграмма, представляющая ускоренное расширение Вселенной из-за тёмной энергии.
Самое простое объяснение заключается в том, что тёмная энергия — это просто «стоимость существования пространства»: то есть любой объём пространства имеет некую фундаментальную, неотъемлемо присущую ему энергию. Её ещё иногда называют энергией вакуума, поскольку она является энергетической плотностью чистого вакуума. Это и есть космологическая постоянная, иногда называемая «лямбда-член» (от названия греческой буквы , используемой для её обозначения в уравнениях общей теории относительности)[8]. Введение космологической константы в стандартную космологическую модель, основанную на метрике Фридмана — Лемэтра — Робертсона — Уокера, привело к появлению современной модели космологии, известной как лямбда-CDM модель. Эта модель хорошо соответствует имеющимся космологическим наблюдениям.
Многие физические теории элементарных частиц предсказывают существование вакуумных флуктуаций, то есть наделяют вакуум именно таким видом энергии. Значение космологической константы оценивается в порядке 10−29 г/см³, или около 1,03 кэВ/см³ (около 10−123 в Планковских единицах)[9].
Космологическая константа имеет отрицательное давление, равное её энергетической плотности. Причины, по которым космологическая константа имеет отрицательное давление, вытекают из классической термодинамики. Количество энергии, заключённое в «коробке с вакуумом» объёма , равняется , где — энергетическая плотность космологической константы. Увеличение объёма «коробки» ( положительно) приводит к возрастанию её внутренней энергии, а это означает выполнение ею отрицательной работы. Так как работа, выполняемая изменением объёма , равняется , где — давление, то — отрицательно и, фактически, (коэффициент , связывающий массу и энергию, приравнен 1)[2].
Согласно общей теории относительности, гравитация зависит не только от массы (плотности), но и от давления, причём давление имеет бо́льший коэффициент, чем плотность. Отрицательное давление должно порождать отталкивание, антигравитацию, и поэтому вызывает ускорение расширения Вселенной[10].
Важнейшая нерешённая проблема современной физики состоит в том, что большинство квантовых теорий поля, основываясь на энергии квантового вакуума, предсказывают громадное значение космологической константы — на многие порядки превосходящее допустимое по космологическим представлениям. Обычная формула квантовой теории поля для суммирования вакуумных нулевых колебаний поля (с обрезанием по волновому числу колебательных мод, соответствующему планковской длине), даёт огромную плотность энергии вакуума[11][12]. Это значение, следовательно, должно быть скомпенсировано неким действием, почти равным (но не точно равным) по модулю, но имеющим противоположный знак. Некоторые теории суперсимметрии (SATHISH) требуют, чтобы космологическая константа в точности равнялась нулю, что также не способствует разрешению проблемы. Такова сущность «проблемы космологической константы», труднейшей проблемы «тонкой настройки» в современной физике: не найдено ни одного способа вывести из физики элементарных частиц чрезвычайно малое значение космологической константы, определённое в космологии. Некоторые физики, включая Стивена Вайнберга, считают так называемый «антропный принцип» наилучшим объяснением наблюдаемого тонкого баланса энергии квантового вакуума.
Несмотря на эти проблемы, космологическая константа — это во многих отношениях самое экономное решение проблемы ускоряющейся Вселенной. Единственное числовое значение объясняет множество наблюдений. Поэтому нынешняя общепринятая космологическая модель (лямбда-CDM модель) включает в себя космологическую константу как существенный элемент.
Квинтэссенция[править | править код]
Альтернативный подход был предложен в 1987 году немецким физиком-теоретиком Кристофом Веттерихом[13][14]. Веттерих исходил из предположения, что тёмная энергия — это своего рода частицеподобные возбуждения некоего динамического скалярного поля, называемого «квинтэссенцией»[15]. Отличие от космологической константы в том, что плотность квинтэссенции может варьироваться в пространстве и времени. Чтобы квинтэссенция не могла «собираться» и формировать крупномасштабные структуры по примеру обычной материи (звёзды и тому подобные), она должна быть очень лёгкой, то есть иметь большую комптоновскую длину волны.
Никаких свидетельств существования квинтэссенции пока не обнаружено, но исключить такое существование нельзя. Гипотеза квинтэссенции предсказывает чуть более медленное ускорение Вселенной, в сравнении с гипотезой космологической константы. Некоторые учёные полагают, что наилучшим свидетельством в пользу квинтэссенции явились бы нарушения принципа эквивалентности Эйнштейна и вариации фундаментальных констант в пространстве или времени. Существование скалярных полей предсказывается стандартной моделью и теорией струн, но при этом возникает проблема, аналогичная варианту с космологической константой: теория ренормализации предсказывает, что скалярные поля должны приобретать значительную массу.
Проблема космического совпадения ставит вопрос, почему ускорение Вселенной началось именно в определённый момент времени. Если бы ускорение во Вселенной началось раньше этого момента, звёзды и галактики просто не успели бы сформироваться, и у жизни не было бы никаких шансов на возникновение, по крайней мере, в известной нам форме. Сторонники «антропного принципа» считают этот факт наилучшим аргументом в пользу своих построений. Впрочем, многие модели квинтэссенции предусматривают так называемое «следящее поведение», которое решает эту проблему. В этих моделях поле квинтэссенции имеет плотность, которая подстраивается к плотности излучения (не достигая её) до того момента развития Большого Взрыва, когда складывается равновесие вещества и излучения. После этого момента квинтэссенция начинает вести себя как искомая «тёмная энергия» и в конце концов господствует во Вселенной. Такое развитие естественным образом устанавливает низкое значение уровня тёмной энергии.
Уравнение состояния (зависимость давления от плотности энергии) для квинтэссенции: где (для вакуума ).
Были предложены и другие возможные виды тёмной энергии: фантомная энергия, для которой энергетическая плотность возрастает со временем (в уравнении состояния этого типа тёмной энергии ), и так называемая «кинетическая квинтэссенция», имеющая форму нестандартной кинетической энергии. Они имеют необычные свойства: например, фантомная энергия может привести к Большому Разрыву[16] Вселенной.
В 2014 году данные проекта BOSS (Baryon Oscillation Spectroscopic Survey) показали, что с высокой степенью точности значение тёмной энергии является константой[17].
Проявление неизвестных свойств гравитации[править | править код]
Имеется гипотеза, что тёмной энергии нет вообще, а ускоренное расширение Вселенной объясняется неизвестными свойствами сил гравитации, которые начинают проявляться на расстояниях порядка размера видимой части Вселенной[3].
Последствия для судьбы Вселенной[править | править код]
По имеющимся оценкам, ускоряющееся расширение Вселенной началось приблизительно 5 миллиардов лет назад. Предполагается, что до этого расширение замедлялось благодаря гравитационному действию тёмной материи и барионной материи. Плотность барионной материи в расширяющейся Вселенной уменьшается быстрее, чем плотность тёмной энергии. В конце концов, тёмная энергия начинает преобладать. Например, когда объём Вселенной удваивается, плотность барионной материи уменьшается вдвое, а плотность тёмной энергии остается почти неизменной (или точно неизменной — в варианте с космологической константой).
Если ускоряющееся расширение Вселенной будет продолжаться бесконечно, то в результате галактики за пределами нашего Сверхскопления галактик рано или поздно выйдут за горизонт событий и станут для нас невидимыми, поскольку их относительная скорость превысит скорость света. Это не является нарушением специальной теории относительности. На самом деле невозможно даже определить «относительную скорость» в искривлённом пространстве-времени. Относительная скорость имеет смысл и может быть определена только в плоском пространстве-времени, или на достаточно малом (стремящемся к нулю) участке искривлённого пространства-времени. Любая форма коммуникации далее пределов горизонта событий становится невозможной, и всякий контакт между объектами теряется. Земля, Солнечная система, наша Галактика, и наше Сверхскопление будут видны друг другу и в принципе достижимы путём космических полётов, в то время как вся остальная Вселенная исчезнет вдали. Со временем наше Сверхскопление придёт в состояние тепловой смерти, то есть осуществится сценарий, предполагавшийся для предыдущей, плоской модели Вселенной с преобладанием материи.
Существуют и более экзотические гипотезы о будущем Вселенной. Одна из них предполагает, что фантомная энергия приведёт к т. н. «расходящемуся» расширению. Это подразумевает, что расширяющая сила действия тёмной энергии продолжит неограниченно увеличиваться, пока не превзойдёт все остальные силы во Вселенной. По этому сценарию, тёмная энергия со временем разорвёт все гравитационно связанные структуры Вселенной, затем превзойдёт силы электростатических и внутриядерных взаимодействий, разорвёт атомы, ядра и нуклоны и уничтожит Вселенную в Большом Разрыве.
С другой стороны, тёмная энергия может со временем рассеяться или даже сменить отталкивающее действие на притягивающее. В этом случае гравитация возобладает и приведёт Вселенную к «Большому Сжатию». Некоторые сценарии предполагают «циклическую модель» Вселенной. Хотя эти гипотезы пока не подтверждаются наблюдениями, они и не отвергаются полностью. Решающую роль в установлении конечной судьбы Вселенной (развивающейся по теории Большого Взрыва) должны сыграть точные измерения темпа ускорения.
Ускоренное расширение Вселенной было открыто в 1998 году при наблюдениях за сверхновыми типа Ia[18][19]. За это открытие Сол Перлмуттер, Брайан П. Шмидт и Адам Рисс получили премию Шао по астрономии за 2006 год и Нобелевскую премию по физике за 2011 год.
Критика[править | править код]
Регулярно появляются резонансные статьи с критикой тёмной энергии, и хотя в самих работах авторы выражаются обычно сдержанно, в аннотациях и комментариях журналистам представляют свои выводы в гипертрофированном виде,[20] к примеру, как ставящие под сомнение само существование тёмной энергии:
- В 2010 году Том Шэнкс из Даремского университета поставил под сомнение результаты WMAP, подтверждающие существование тёмной энергии, в связи с эффектом размытия реликтового излучения.[21]
- В 2016 году Николай Горькавый представил гипотезу, в которой место тёмной энергии заняли гравитационные волны.[22]
- В 2019 году Артем Асташёнок и Александр Тепляков выпустили статью, в которой предположили, что данные наблюдений, обычно интерпретируемых как свидетельство ускоренного расширения Вселенной, имеют другую природу, в частности из-за влияния эффекта Казимира.[23]
Часть работ с критикой тёмной энергии основана на том, что было обнаружено, что спектры сверхновых типа Ia, которые считались одинаковыми, на самом деле различны; кроме того, форма сверхновой типа Ia, которая является относительно редкой сегодня, была гораздо более распространенной ранее в истории Вселенной:
- В 2015 году команда во главе с исследователями из Аризонского университета установила, что сверхновые типа Ia делятся на две группы с разными светимостями, что уменьшило оценку скорости разлетания галактик во Вселенной.[24]
- В 2016 году Якоб Нильсен выпустил работу, в которой только на основании анализа светимости сверхновых типа Ia утверждал, что Вселенная расширяется не ускорено.[25]
- В 2020 году астрономы из университета Ёнсе совместно с коллегами из Лионского университета и KASI[en] завершили анализ, который показал, по мнению исследователей, что само предположение о существовании тёмной энергии было сделано на основе, вероятно, ошибочной оценки светимости «стандартных свечей».[26][27] Отмечается, что в саму работу авторы свои революционные выводы вставлять не стали, возможно, из-за небольшой выборки и рассогласованности других вычисленных астрономами космологических параметров с результатами наблюдений в том числе космической обсерватории Планк.[20]
Существуют различные экспериментальные установки, в задачи которых входит обнаружение тёмной энергии (в основном они занимаются поиском WIMP-частиц и по состоянию на 2018 год не получили никаких положительных результатов):[28]
- SNOLAB недалеко от Онтарио в Канаде, планируется также SuperCDMS и DEAP[en]-3600
- LUX-эксперимент[en] в Лиде, Южная Дакота
- EDELWEISS-эксперимент[en] во французских Альпах
- PandaX в подземной лаборатории Цзинь-Пин в Китае
- Подземная научная лаборатория Джадугуда в Индии
- XENON1T в итальянских Апеннинах
- ADMX[en] Вашингтонского университета, США (аксионы)
- BEST, Баксанская нейтринная обсерватория, Россия (стерильное нейтрино)[29]
Тем не менее, в научном сообществе превалирует мнение, что наличие тёмной энергии является установленным фактом.[22] Хотя нет прямых наблюдений тёмной энергии, наблюдения реликтового излучения космической обсерваторией Планк являются самым надёжным подтверждением существования тёмной энергии.[20] Многие результаты наблюдений, в частности барионные осцилляции[en][20] и слабое гравитационное линзирование[en] не находят других убедительных объяснений, кроме как в рамках модели Лямбда-CDM.
Примечания[править | править код]
- ↑ Тёмная энергия вблизи нас Архивная копия от 28 декабря 2005 на Wayback Machine // Астронет
- ↑ 1 2 Астронет > Тёмная энергия вблизи нас. Дата обращения: 29 марта 2010. Архивировано 10 июня 2011 года.
- ↑ 1 2 3 4 Марио Ливио, Адам Рисс. Ребус тёмной энергии // В мире науки. — 2016. — № 5—6. — С. 50—57. Архивировано 27 октября 2017 года.
- ↑ Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; et al. (Planck Collaboration). Planck 2013 results. I. Overview of products and scientific results – Table 9 (англ.) // Astronomy and Astrophysics (submitted) : journal. — 2013. — 22 March. — Bibcode: 2013arXiv1303.5062P. — arXiv:1303.5062. Архивировано 23 марта 2013 года.
- ↑ Francis, Matthew. First Planck results: the Universe is still weird and interesting. Arstechnica (22 марта 2013). Дата обращения: 3 октября 2017. Архивировано 2 мая 2019 года.
- ↑ Planck captures portrait of the young Universe, revealing earliest light. University of Cambridge (21 марта 2013). Дата обращения: 21 марта 2013. Архивировано 17 апреля 2019 года.
- ↑ 1 2 3 4 Борис Штерн, Валерий Рубаков Астрофизика. Троицкий вариант. — М., АСТ, 2020. — с. 34-51
- ↑ Игнатьев, 2016, с. 10.
- ↑ Игнатьев, 2016, с. 48.
- ↑ Астронет > Тёмная энергия вблизи нас. Дата обращения: 29 марта 2010. Архивировано 10 июня 2011 года.
- ↑ С. Вайнберг «Проблема космологической постоянной», Успехи физических наук, август 1989 г., т. 158, вып. 4, стр. 640—678
- ↑ Я. Б. Зельдович «Теория вакуума, быть может, решает загадку космологии» Архивная копия от 22 июля 2018 на Wayback Machine, Успехи физических наук, март 1981 г., т. 133, вып. 3, стр. 479—503
- ↑ Cosmology and the Fate of Dilatation Symmetry, C. Wetterich, Nucl. Phys. B 302, 668 (1988)
- ↑ The Cosmon Model for an Asymptotically Vanishing Time Dependent Cosmological «Constant», C. Wetterich, Astron. Astrophys. 301, 321 (1995), arXiv: hep-th/9408025v1
- ↑ Caldwell R. R., Steinhardt P. J. Phys.Rev. D 57, 6057 (1998).
- ↑ Разрыв Вселенной. Дата обращения: 27 марта 2013. Архивировано 8 июля 2012 года.
- ↑ Точная карта космоса подтверждает идею бесконечной плоской Вселенной. Дата обращения: 11 сентября 2014. Архивировано 13 февраля 2015 года.
- ↑ Riess, A. et al. 1998, Astronomical Journal, 116, 1009
- ↑ Perlmutter, S. et al. 1999, Astrophysical Journal, 517, 565
- ↑ 1 2 3 4 Олег Верходанов. О тёмной энергии замолвите слово // Троицкий вариант — Наука : газета. — 2020. — 28 января (вып. 296, № 2). — С. 10—11. Архивировано 27 января 2020 года.
- ↑ Clara Moskowitz. Dark Energy and Dark Matter Might Not Exist, Scientists Allege (англ.). space.com (13 июня 2010). Дата обращения: 16 января 2020. Архивировано 30 июня 2020 года.
- ↑ 1 2 Антон Бирюков, Павел Котляр. «Вы хороните тёмную энергию?» — «Полагаю, что да». gazeta.ru (1 августа 2016). Дата обращения: 27 января 2020. Архивировано 27 января 2020 года.
- ↑ A. V. Astashenok and A. S. Tepliakov. Some models of holographic dark energy on the Randall–Sundrum brane and observational data (англ.) // International Journal of Modern Physics D : журнал. — 2019. — ISSN 1793-6594. — doi:10.1142/S0218271819501761. Архивировано 1 октября 2021 года.
- ↑ Accelerating universe? Not so fast (англ.). Phys.org. University of Arizona (10 апреля 2015). Дата обращения: 16 января 2020. Архивировано 19 апреля 2019 года.
- ↑
Nielsen, J. T.; Guffanti, A.; Sarkar, S. Marginal evidence for cosmic acceleration from Type Ia supernovae (англ.) // Scientific Reports (англ.) (рус. : journal. — 2015. — Vol. 6. — P. 35596. — doi:10.1038/srep35596. — Bibcode: 2016NatSR…635596N. — arXiv:1506.01354. — PMID 27767125. — PMC 5073293. - ↑ New evidence shows that the key assumption made in the discovery of dark energy is in error (англ.). Phys.org. Yonsei University (6 января 2020). Дата обращения: 16 января 2020. Архивировано 13 января 2020 года.
- ↑ Yijung Kang, Young-Wook Lee, Young-Lo Kim, Chul Chung, Chang Hee Ree Early-type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology arXiv:1912.04903 Архивная копия от 11 января 2020 на Wayback Machine
- ↑ KATIA MOSKVITCH. What if everything we know about dark matter is totally wrong? (англ.). wired.co.uk. Wired (28 сентября 2018). Дата обращения: 27 января 2020. Архивировано 12 января 2020 года.
- ↑ Надежда на BEST. В подземной обсерватории на Кавказе открыта охота на стерильное нейтрино. ТАСС (2 августа 2019). Дата обращения: 27 января 2020. Архивировано 5 февраля 2020 года.
Литература[править | править код]
- Игнатьев Ю.Г. Классическая космология и тёмная энергия. — Казань: Изд-во Казанского ун-та, 2016. — 248 с. — ISBN 978-5-00019-692-2.
- Amendola L., Tsujikawa S. Dark Energy: Theory and Observations. — Cambridge University Press, 2010. — 491 p.
- Dark Energy: Observational and Theoretical Approaches / ed. P. Ruiz-Lapuente. — Cambridge University Press, 2010. — 339 p.
- Kragh H. S., Overduin J. M. The Weight of the Vacuum: A Scientific History of Dark Energy. — Springer, 2014. — 113 p.
- Li M., Li X., Wang S., Wang Y. Dark Energy. — Singapore: World Scientific, 2015. — 254 p.
- Эйнасто Я., Чернин А. Д. Тёмная материя и тёмная энергия. — М.: Век-2, 2018. — 176 с. — ISBN 978-5-85099-197-5.
- Чернин A. Д. Тёмная энергия и всемирное антитяготение // Успехи физических наук. — Российская академия наук, 2008. — Т. 178. — С. 267—300. — doi:10.3367/UFNr.0178.200803c.0267.
- Лукаш В. Н., Рубаков В. А. Тёмная энергия: мифы и реальность // Успехи физических наук. — Российская академия наук, 2008. — Т. 178. — С. 301—308. — doi:10.3367/UFNr.0178.200803d.0301.
- Carroll S. M. The Cosmological Constant // Living Reviews in Relativity. — 2001. — Vol. 4. — P. 1—56. — doi:10.12942/lrr-2001-1.
- Calder L., Lahav O. Dark Energy: back to Newton? // Astronomy & Geophysics. — 2008. — Vol. 49. — P. 1.13—1.18. — doi:10.1111/j.1468-4004.2008.49113.x. — arXiv:0712.2196.
- Huterer D., Shafer D. L. Dark energy two decades after: observables, probes, consistency tests // Reports on Progress in Physics. — 2018. — Vol. 81. — P. 016901. — doi:10.1088/1361-6633/aa997e. — arXiv:1709.01091.
- Brax P. What makes the Universe accelerate? A review on what dark energy could be and how to test it // Reports on Progress in Physics. — 2018. — Vol. 81. — P. 016902. — doi:10.1088/1361-6633/aa8e64.
Ссылки[править | править код]
- Статьи и обзоры о тёмной энергии на Modern Cosmology (англ.)
- Чернин A. Д. Тёмная энергия вблизи нас
- Чернин A. Д. Физический вакуум и космическая анти-гравитация
- Rincon P. New method ‘confirms dark energy’ // BBC News. — 19 May 2011 (англ.)
Содержание
- Введение
- Что такое темная энергия?
- Как была открыта темная энергия?
- Как работает тёмная энергия?
- Как тёмная энергия влияет на расширение Вселенной?
- Как тёмная энергия связана с тёмной материей?
- Заключение
- Темная энергия кратко астрономия
- Что такое темная энергия
- Какую роль темная энергия играет в общей картине Вселенной
- Что можно узнать об эффектах темной энергии на Вселенную
- Теории объясняющие происхождение темной энергии
- Заключение
- Темная энергия кратко астрономия: что это такое?
- Что такое темная энергия?
- Как была обнаружена темная энергия?
- Как влияет темная энергия на будущее Вселенной?
- Выводы
Введение
Темная энергия — одна из самых загадочных и неизвестных составляющих вселенной. Её существование было предположено в 1990-х годах на основании наблюдений за скоростью расширения Вселенной, но до сих пор учёные не могут точно определить, что это за энергия и как она влияет на нашу Вселенную. В этой статье мы рассмотрим основные факты о темной энергии и попытаемся понять, как она может влиять на будущее нашей Вселенной.
Что такое темная энергия?
Темная энергия – это гипотетическая форма энергии, которая заполняет всю Вселенную и вызывает ускорение расширения Вселенной. Она получила своё название потому, что учёные не знают, что это за энергия и как она взаимодействует с обычной материей. В настоящее время учёные считают, что около 68% Вселенной составляет тёмная энергия.
Как была открыта темная энергия?
Тёмная энергия была обнаружена в 1998 году астрономами, ведущими исследования удалённых сверхновых — ярких взрывов звёзд. Сверхновые служат индикаторами расширения Вселенной, так как они являются стандартными свечами, то есть их яркость остаётся постоянной. Учёные обнаружили, что расстояния до сверхновых увеличиваются быстрее, чем они должны были бы увеличиваться, если бы Вселенная расширялась с постоянной скоростью. Это привело к предположению, что существует некий ускоряющий фактор, который неизвестен учёным.
Как работает тёмная энергия?
Учёные до сих пор не могут точно определить, как работает тёмная энергия, но существуют две главные гипотезы. Первая гипотеза предполагает, что тёмная энергия – это космическая постоянная, то есть форма энергии, которая остаётся неизменной в любой точке пространства и времени. Вторая гипотеза предполагает, что тёмная энергия – это своеобразный излучательный эффект, вызванный квантовой энергией пустого пространства, где электромагнитное поле оказывается ненулевым.
Как тёмная энергия влияет на расширение Вселенной?
Тёмная энергия вызывает ускорение расширения Вселенной. Многие учёные считают, что без тёмной энергии Вселенная бы уже перестала расширяться и начала бы сжиматься, что привело бы к её гибели. Тёмная энергия является важной составляющей нашей Вселенной, но её природа до сих пор остаётся загадкой.
Как тёмная энергия связана с тёмной материей?
Тёмная материя – это тоже одна из загадочных составляющих Вселенной. Она составляет около 27% всей Вселенной и не взаимодействует с обычной материей. Учёные думают, что тёмная материя является “склеивающим” фактором для галактик в нашей Вселенной, то есть она действует как гравитационный клей. Тёмная энергия же является силой, которая толкает Вселенную в расширение. Хотя она не взаимодействует с обычной материей, тёмная энергия является доминирующей силой во всей Вселенной.
Заключение
Тёмная энергия – это одна из самых загадочных и непонятных составляющих нашей Вселенной. Её существование до сих пор остаётся лишь гипотезой, но она играет важную роль в расширении Вселенной. Несмотря на то, что учёные ещё много не знают о тёмной энергии, она является ключевой составляющей нашей Вселенной и помогает нам лучше понимать её устройство.
Темная энергия кратко астрономия
В нашей Вселенной существует загадочное явление, которое до сих пор остаётся неизвестным науке. Речь идёт о темной энергии, становление которой произошло всего лишь 5 миллиардов лет назад. Её присутствие может объяснить наблюдаемое ускорение расширения Вселенной, но пока что этот феномен остаётся тайной для астрономов.
Что такое темная энергия
Несмотря на то, что темной энергии не видно и не чувствуется, учёные уверены в её существовании. Причина этому заключается в измерениях яркости светила и его скорости удаления от Земли. Если бы расширение Вселенной замедлялось, светила были бы менее яркими, а их удаление происходило бы медленнее. Однако измерения показывают, что скорость удаления светил увеличивается, что говорит о том, что появилось нечто, что ускоряет расширение Вселенной. Это нечто и является темной энергией.
Какую роль темная энергия играет в общей картине Вселенной
Темная энергия составляет около 70 процентов массы-энергии Вселенной. Оставшиеся 30 процентов делят между собой видимая материя и тёмная материя. Таким образом, темная энергия доминирует во всей Вселенной и является ключевым игроком в формировании её структуры.
Что можно узнать об эффектах темной энергии на Вселенную
Изучение темной энергии даёт астрономам несколько гипотез о том, какова будущая судьба Вселенной. Одна из этих гипотез — «Big Chill» — предполагает, что расширение Вселенной ускорится, пока звёзды не станут недоступными для наблюдения, и жизнь, как мы её знаем, станет невозможной. Другая гипотеза — «Big Rip» — говорит о том, что темная энергия возрастает, пока не разорвет всю материю на отдельные энергетические куски.
Теории объясняющие происхождение темной энергии
Существует несколько гипотез о том, что является источником темной энергии. Одна из них предполагает, что она является особой формой энергии, которая встроена в пространство-время. Другая гипотеза говорит об эффекте квинтэссенции, который изменяет значение вакуумной энергии во времени и пространстве. Ещё одна теория предполагает, что темная энергия происходит из коллапса белых дыр.
Заключение
Темная энергия остаётся загадкой для науки, но её присутствие является неотъемлемой частью общей картины Вселенной. Её изучение позволяет астрономам составлять гипотезы о далёком будущем Вселенной и пытаться понять её гигантские масштабы. Темная энергия — это не только загадка, но и источник вдохновения для многих исследователей, живущих в поисках новых знаний о нашей Вселенной.
Темная энергия кратко астрономия: что это такое?
Сегодня астрономы говорят о существовании трех типов энергии во Вселенной:
- Тепловое излучение;
- Темная материя;
- Темная энергия.
Несмотря на то, что темная энергия составляет до 68% всего вещества во Вселенной, мы знаем о ней крайне мало.
Что такое темная энергия?
Темная энергия – это энергия, заполняющая все пространство Вселенной и отрицательно влияющая на ее расширение. Чем больше расстояние между галактиками, тем сильнее их отталкивание. Именно наличие темной энергии объясняет наблюдаемое разгоняющееся расширение Вселенной.
Суть заключается в том, что энергия просто присутствует в пространстве, не связана с какой-либо материей и никаким образом не взаимодействует с ее составляющими частями.
Наиболее простое объяснение темной энергии – это представить себе кванты энергии, рассредоточенные по всему пространству. Когда находятся вблизи друг друга, они отталкиваются, создавая эффект темной энергии.
Как была обнаружена темная энергия?
Об обнаружении темной энергии стало известно в 1998 году. Наблюдения показали, что удаленные галактики перемещаются со скоростью, зависящей от расстояния до них. Так обнаружилось, что расширение Вселенной ускоряется и наблюдается эффект темной энергии.
Сегодня научные эксперименты по изучению темной энергии продолжаются. Астрономы исследуют гравитационное взаимодействие между галактиками и работают над созданием новых методов исследования энергии, находящейся в пространстве.
Как влияет темная энергия на будущее Вселенной?
Существование темной энергии может привести к неожиданным последствиям и изменениям в долгосрочной перспективе. Некоторые ученые считают, что конечный результат расширения Вселенной может быть неопределенным и непредсказуемым.
Также не исключен вариант, когда темная энергия будет истощаться, что приведет к обратному процессу – сокращению расширения Вселенной и ее коллапсу.
«Темная энергия – это новый по-настоящему фундаментальный элемент, который добавили в нашу картину Вселенной. Мы знаем о ней крайне мало, но зато можем наблюдать ее эффекты.» – Ричард Эллис, профессор Астрономического института Калифорнийского университета
Выводы
Темная энергия – это неизвестная и загадочная форма энергии, заполняющая всю Вселенную и имеющая чрезвычайно важное значение при изучении космоса. Мы продолжаем изучать это явление и работаем над тем, чтобы раскрыть еще больше его тайн и загадок с применением новейших технологий и оборудования в области астрономии.
Напомним, что у “темной энергии” давняя история. У ее истоков стоял великий Эйнштейн, и якобы это была самая главная ошибка его жизни.
Он пытался в 1917 году применить только что созданную им Общую теорию относительности для описания Вселенной. И неожиданно столкнулся с неразрешимой проблемой. Согласно многовековым представлениям Вселенная считалась вечной и неизменной, словом статичной. Но в формулах Эйнштейна она вдруг ожила, задвигалась. Как вернуть ей покой? Ученый ввел в свои уравнения новый элемент, так называемую космологическую константу. И все вернулось на свои места. Покой воцарился.
Однако ненадолго. В 1929 году американский астроном Хаббл открыл, что Вселенная расширяется, и в ней константа Эйнштейна просто лишняя. Она сошла со сцены. Казалось, навсегда. Прошли многие годы, и она неожиданно вернулась почти из небытия. Все изменилось после того, как, наблюдая за сверхновыми звездами, ученые сделали одно из самых сенсационных открытий XX века: Вселенная разбегается с ускорением. Этот феномен назвали всемирным антитяготением.
Он изменил картину научного мира. Еще недавно она представлялась такой стройной. Большой Взрыв породил Вселенную с множеством галактик. Получив мощный первоначальный импульс, они разбегаются, но из-за взаимного притяжения это происходит с замедлением. А теперь, оказывается, все совсем не так, а ровно наоборот.
Что же их гонит? Заставляет лететь с ускорением, преодолевать силу тяготения? Сегодня физики считают, что это феномен, который назвали “темная энергия”, связанная с той самой константой Эйнштейна. Самое удивительное, что в первые 7-8 миллиардов лет своего существования Вселенная действительно расширялась с замедлением, а потом, вот уже более 7 миллиардов лет, происходит ускорение. И дальше оно будет только усиливаться, причем неограниченно долго.
По оценкам ученых, на долю “темной энергии” приходится около 67 процентов всей энергии мира, в то время как на так называемое темное или невидимое вещество – 30 процентов и на обычное видимое – все звезды и планеты – всего 3 процента. И вот на сложившую картину мира замахнулась команда астрономов из Университета Ёнсе совместно с коллегами из Лионского университета и KASI. Проанализировав большие базы данных, ученые заявили, что вывод о расширении Вселенной сделан астрофизиками на основе серьезной ошибки измерений. А, значит, не требуется вводить понятие “темная энергия”. Получается, что наука более 20 лет искала феномен, которого на самом деле вообще нет. Кстати, в таком случае константа Эйнштейна все же оказывается лишней.
Отметим, что это не первая атака на “темную энергию”. И ранее появлялись работы, где ее существование ставилось под сомнение. Но последнее исследование, по мнению многих специалистов, пожалуй, выглядит наиболее аргументированно. “Наши результаты показывают, что гипотеза “темной энергии” на основе космологии сверхновых, удостоенная Нобелевской премии, может базироваться на ненадежном и попросту ошибочном предположении”, – заявил руководитель исследования Ён Вук Ли. Впрочем, критики этой работы указывают на ее слабое место: небольшая база данных, на основании которых делаются революционные выводы.
Сегодня в мире работает несколько экспериментальных установок, которые пытаются поймать “темную энергию”, но она ни разу не попалась в расставленные сети. Впрочем, сами ученые признают, что ищут почти вслепую, ведь они до сих пор точно не знают, что же ловить. Что является материальным носителем этого феномена. Кандидатами считаются WIMP-частицы, которые появились в формулах теоретиков. Но пока теория не подтверждается экспериментом.
Почему Вселенная ускоряется?
Термин “темная энергия” возник в конце XX века. Он связан с наблюдениями за сверхновыми звездами, которые время от времени ярко вспыхивают на небосклоне. Эти звезды используются для определения космологических расстояний. В 1998 году ученые в США и Австралии почти одновременно обнаружили одну странность: самые далекие сверхновые светят не так ярко, как предписывали формулы. А значит, они расположены от нас дальше, чем должны находиться, если бы Вселенная расширялась в поле обычных гравитационных сил. Отсюда сенсационный вывод: с достоверностью 99 процентов можно утверждать, что во Вселенной должна быть какая-то дополнительная энергия, противостоящая гравитации. Так и появилась “темная энергия”.
Комментарий
Анатолий Черепащук, академик РАН
Нобеля просто так не дают, даже если каким-то ученым удалось получить прорывной результат. Нужны дополнительные доказательства, сделанные другими независимыми группами. Например, когда в 2016 году были открыты гравитационные волны при слиянии черных дыр и ученых выдвинули на Нобеля, они премию не получили. Только на следующий год, когда эксперименты в Италии дали аналогичные результаты, премия нашла своих героев.
Что касается “темной энергии”, то это трудная для исследований область. Там игра идет на очень малых величинах. Скажем, сигналы от сверхновых звезд, на изучении которых и строятся все эти теории, предположения и сенсации, очень слабые, их сложно измерять. Все на пределе. В таких условиях можно “натянуть” любой результат. Поэтому одного результата всегда мало, нужна сумма убедительных независимых доказательств. А с этим у противников “темной энергии” пока проблемы. Зато у сторонников позиция куда прочней. За 20 лет получено множество новых свидетельств как при надежных наблюдениях за сверхновыми, так и в результате ряда других исследований, в частности, измерения реликтового излучения и наблюдения за скоплениями галактик.
Большие надежды ученых сейчас связаны с проектом “Спектр-Рентген-Гамма”, который должен изучить 100 тысяч скоплений галактик. В итоге будет получена огромная информация, которая, думаю, наконец, позволит прояснить ситуацию с “темной энергией”.
In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the universe does not expand at a constant rate; rather, the universe’s expansion is accelerating.[1][2] Understanding the universe’s evolution requires knowledge of its starting conditions and composition. Before these observations, scientists thought that all forms of matter and energy in the universe would only cause the expansion to slow down over time. Measurements of the cosmic microwave background (CMB) suggest the universe began in a hot Big Bang, from which general relativity explains its evolution and the subsequent large-scale motion. Without introducing a new form of energy, there was no way to explain an accelerating expansion of the universe. Since the 1990s, dark energy has been the most accepted premise to account for the accelerated expansion. As of 2021, there are active areas of cosmology research to understand the fundamental nature of dark energy.[3] Assuming that the lambda-CDM model of cosmology is correct,[4] as of 2013, the best current measurements indicate that dark energy contributes 68% of the total energy in the present-day observable universe. The mass–energy of dark matter and ordinary (baryonic) matter contributes 26% and 5%, respectively, and other components such as neutrinos and photons contribute a very small amount.[5][6][7][8] Dark energy’s density is very low: 6×10−10 J/m3 (~7×10−30 g/cm3), much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe’s mass–energy content because it is uniform across space.[9][10][11]
Two proposed forms of dark energy are the cosmological constant[12][13] (representing a constant energy density filling space homogeneously) and scalar fields (dynamic quantities having energy densities that vary in time and space) such as quintessence or moduli. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant. The cosmological constant can be formulated to be equivalent to the zero-point radiation of space, i.e., the vacuum energy.[14] However, scalar fields that change in space can be difficult to distinguish from a cosmological constant because the change may be prolonged.
Due to the toy model nature of concordance cosmology, some experts believe[15] that a more accurate general relativistic treatment of the structures on all scales[16] in the real universe may do away with the need to invoke dark energy. Inhomogeneous cosmologies, which attempt to account for the back-reaction of structure formation on the metric, generally do not acknowledge any dark energy contribution to the universe’s energy density.
History of discovery and previous speculation[edit]
Einstein’s cosmological constant[edit]
The “cosmological constant” is a constant term that can be added to Einstein field equations of general relativity. If considered as a “source term” in the field equation, it can be viewed as equivalent to the mass of empty space (which conceptually could be either positive or negative), or “vacuum energy”.
The cosmological constant was first proposed by Einstein as a mechanism to obtain a solution to the gravitational field equation that would lead to a static universe, effectively using dark energy to balance gravity.[17] Einstein gave the cosmological constant the symbol Λ (capital lambda). Einstein stated that the cosmological constant required that ’empty space takes the role of gravitating negative masses which are distributed all over the interstellar space’.[18][19]
The mechanism was an example of fine-tuning, and it was later realized that Einstein’s static universe would not be stable: local inhomogeneities would ultimately lead to either the runaway expansion or contraction of the universe. The equilibrium is unstable: if the universe expands slightly, then the expansion releases vacuum energy, which causes yet more expansion. Likewise, a universe which contracts slightly will continue contracting. According to Einstein, “empty space” can possess its own energy. Because this energy is a property of space itself, it would not be diluted as space expands. As more space comes into existence, more of this energy-of-space would appear, thereby causing accelerated expansion.[20] These sorts of disturbances are inevitable, due to the uneven distribution of matter throughout the universe. Further, observations made by Edwin Hubble in 1929 showed that the universe appears to be expanding and not static at all. Einstein reportedly referred to his failure to predict the idea of a dynamic universe, in contrast to a static universe, as his greatest blunder.[21]
Inflationary dark energy[edit]
Alan Guth and Alexei Starobinsky proposed in 1980 that a negative pressure field, similar in concept to dark energy, could drive cosmic inflation in the very early universe. Inflation postulates that some repulsive force, qualitatively similar to dark energy, resulted in an enormous and exponential expansion of the universe slightly after the Big Bang. Such expansion is an essential feature of most current models of the Big Bang. However, inflation must have occurred at a much higher (negative) energy density than the dark energy we observe today, and inflation is thought to have completely ended when the universe was just a fraction of a second old. It is unclear what relation, if any, exists between dark energy and inflation. Even after inflationary models became accepted, the cosmological constant was thought to be irrelevant to the current universe.
Nearly all inflation models predict that the total (matter+energy) density of the universe should be very close to the critical density. During the 1980s, most cosmological research focused on models with critical density in matter only, usually 95% cold dark matter (CDM) and 5% ordinary matter (baryons). These models were found to be successful at forming realistic galaxies and clusters, but some problems appeared in the late 1980s: in particular, the model required a value for the Hubble constant lower than preferred by observations, and the model under-predicted observations of large-scale galaxy clustering. These difficulties became stronger after the discovery of anisotropy in the cosmic microwave background by the COBE spacecraft in 1992, and several modified CDM models came under active study through the mid-1990s: these included the Lambda-CDM model and a mixed cold/hot dark matter model. The first direct evidence for dark energy came from supernova observations in 1998 of accelerated expansion in Riess et al.[22] and in Perlmutter et al.,[23] and the Lambda-CDM model then became the leading model. Soon after, dark energy was supported by independent observations: in 2000, the BOOMERanG and Maxima cosmic microwave background experiments observed the first acoustic peak in the cosmic microwave background, showing that the total (matter+energy) density is close to 100% of critical density. Then in 2001, the 2dF Galaxy Redshift Survey gave strong evidence that the matter density is around 30% of critical. The large difference between these two supports a smooth component of dark energy making up the difference. Much more precise measurements from WMAP in 2003–2010 have continued to support the standard model and give more accurate measurements of the key parameters.
The term “dark energy”, echoing Fritz Zwicky’s “dark matter” from the 1930s, was coined by Michael Turner in 1998.[24]
Change in expansion over time[edit]
Diagram representing the accelerated expansion of the universe due to dark energy.
High-precision measurements of the expansion of the universe are required to understand how the expansion rate changes over time and space. In general relativity, the evolution of the expansion rate is estimated from the curvature of the universe and the cosmological equation of state (the relationship between temperature, pressure, and combined matter, energy, and vacuum energy density for any region of space). Measuring the equation of state for dark energy is one of the biggest efforts in observational cosmology today. Adding the cosmological constant to cosmology’s standard FLRW metric leads to the Lambda-CDM model, which has been referred to as the “standard model of cosmology” because of its precise agreement with observations.
As of 2013, the Lambda-CDM model is consistent with a series of increasingly rigorous cosmological observations, including the Planck spacecraft and the Supernova Legacy Survey. First results from the SNLS reveal that the average behavior (i.e., equation of state) of dark energy behaves like Einstein’s cosmological constant to a precision of 10%.[25] Recent results from the Hubble Space Telescope Higher-Z Team indicate that dark energy has been present for at least 9 billion years and during the period preceding cosmic acceleration.
Nature[edit]
The nature of dark energy is more hypothetical than that of dark matter, and many things about it remain in the realm of speculation.[26] Dark energy is thought to be very homogeneous and not very dense, and is not known to interact through any of the fundamental forces other than gravity. Since it is quite rarefied and un-massive—roughly 10−27 kg/m3—it is unlikely to be detectable in laboratory experiments. The reason dark energy can have such a profound effect on the universe, making up 68% of universal density in spite of being so dilute, is that it uniformly fills otherwise empty space.
The vacuum energy, that is, the particle-antiparticle pairs generated and mutually annihilated within a time frame in accord with Heisenberg’s uncertainty principle in the energy-time formulation, has been often invoked as the main contribution to dark energy.[27] The mass–energy equivalence postulated by general relativity implies that the vacuum energy should exert a gravitational force. Hence, the vacuum energy is expected to contribute to the cosmological constant, which in turn impinges on the accelerated expansion of the universe. However, the cosmological constant problem asserts that there is a huge disagreement between the observed values of vacuum energy density and the theoretical large value of zero-point energy obtained by quantum field theory. The cosmological constant problem remains unresolved.
Independently of its actual nature, dark energy would need to have a strong negative pressure to explain the observed acceleration of the expansion of the universe. According to general relativity, the pressure within a substance contributes to its gravitational attraction for other objects just as its mass density does. This happens because the physical quantity that causes matter to generate gravitational effects is the stress–energy tensor, which contains both the energy (or matter) density of a substance and its pressure. In the Friedmann–Lemaître–Robertson–Walker metric, it can be shown that a strong constant negative pressure (i.e., tension) in all the universe causes an acceleration in the expansion if the universe is already expanding, or a deceleration in contraction if the universe is already contracting. This accelerating expansion effect is sometimes labeled “gravitational repulsion”.
Technical definition[edit]
In standard cosmology, there are three components of the universe: matter, radiation, and dark energy. Matter is anything whose energy density scales with the inverse cube of the scale factor, i.e., ρ ∝ a−3, while radiation is anything which scales to the inverse fourth power of the scale factor (ρ ∝ a−4). This can be understood intuitively: for an ordinary particle in a cube-shaped box, doubling the length of an edge of the box decreases the density (and hence energy density) by a factor of eight (23). For radiation, the decrease in energy density is greater, because an increase in spatial distance also causes a redshift.[28]
The final component is dark energy: it is an intrinsic property of space and has a constant energy density, regardless of the dimensions of the volume under consideration (ρ ∝ a0). Thus, unlike ordinary matter, it is not diluted by the expansion of space.
Evidence of existence[edit]
The evidence for dark energy is indirect but comes from three independent sources:
- Distance measurements and their relation to redshift, which suggest the universe has expanded more in the latter half of its life.[29]
- The theoretical need for a type of additional energy that is not matter or dark matter to form the observationally flat universe (absence of any detectable global curvature).
- Measures of large-scale wave patterns of mass density in the universe.
Supernovae[edit]
A Type Ia supernova (bright spot on the bottom-left) near a galaxy
In 1998, the High-Z Supernova Search Team[22] published observations of Type Ia (“one-A”) supernovae. In 1999, the Supernova Cosmology Project[23] followed by suggesting that the expansion of the universe is accelerating.[30] The 2011 Nobel Prize in Physics was awarded to Saul Perlmutter, Brian P. Schmidt, and Adam G. Riess for their leadership in the discovery.[31][32]
Since then, these observations have been corroborated by several independent sources. Measurements of the cosmic microwave background, gravitational lensing, and the large-scale structure of the cosmos, as well as improved measurements of supernovae, have been consistent with the Lambda-CDM model.[33] Some people argue that the only indications for the existence of dark energy are observations of distance measurements and their associated redshifts. Cosmic microwave background anisotropies and baryon acoustic oscillations serve only to demonstrate that distances to a given redshift are larger than would be expected from a “dusty” Friedmann–Lemaître universe and the local measured Hubble constant.[34]
Supernovae are useful for cosmology because they are excellent standard candles across cosmological distances. They allow researchers to measure the expansion history of the universe by looking at the relationship between the distance to an object and its redshift, which gives how fast it is receding from us. The relationship is roughly linear, according to Hubble’s law. It is relatively easy to measure redshift, but finding the distance to an object is more difficult. Usually, astronomers use standard candles: objects for which the intrinsic brightness, or absolute magnitude, is known. This allows the object’s distance to be measured from its actual observed brightness, or apparent magnitude. Type Ia supernovae are the best-known standard candles across cosmological distances because of their extreme and consistent luminosity.
Recent observations of supernovae are consistent with a universe made up 71.3% of dark energy and 27.4% of a combination of dark matter and baryonic matter.[35]
Cosmic microwave background[edit]
Estimated division of total energy in the universe into matter, dark matter and dark energy based on five years of WMAP data.[36]
The existence of dark energy, in whatever form, is needed to reconcile the measured geometry of space with the total amount of matter in the universe. Measurements of cosmic microwave background anisotropies indicate that the universe is close to flat. For the shape of the universe to be flat, the mass–energy density of the universe must be equal to the critical density. The total amount of matter in the universe (including baryons and dark matter), as measured from the cosmic microwave background spectrum, accounts for only about 30% of the critical density. This implies the existence of an additional form of energy to account for the remaining 70%.[33] The Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft seven-year analysis estimated a universe made up of 72.8% dark energy, 22.7% dark matter, and 4.5% ordinary matter.[7]
Work done in 2013 based on the Planck spacecraft observations of the cosmic microwave background gave a more accurate estimate of 68.3% dark energy, 26.8% dark matter, and 4.9% ordinary matter.[37]
Large-scale structure[edit]
The theory of large-scale structure, which governs the formation of structures in the universe (stars, quasars, galaxies and galaxy groups and clusters), also suggests that the density of matter in the universe is only 30% of the critical density.
A 2011 survey, the WiggleZ galaxy survey of more than 200,000 galaxies, provided further evidence towards the existence of dark energy, although the exact physics behind it remains unknown.[38][39] The WiggleZ survey from the Australian Astronomical Observatory scanned the galaxies to determine their redshift. Then, by exploiting the fact that baryon acoustic oscillations have left voids regularly of ≈150 Mpc diameter, surrounded by the galaxies, the voids were used as standard rulers to estimate distances to galaxies as far as 2,000 Mpc (redshift 0.6), allowing for accurate estimate of the speeds of galaxies from their redshift and distance. The data confirmed cosmic acceleration up to half of the age of the universe (7 billion years) and constrain its inhomogeneity to 1 part in 10.[39] This provides a confirmation to cosmic acceleration independent of supernovae.
Late-time integrated Sachs–Wolfe effect[edit]
Accelerated cosmic expansion causes gravitational potential wells and hills to flatten as photons pass through them, producing cold spots and hot spots on the cosmic microwave background aligned with vast supervoids and superclusters. This so-called late-time Integrated Sachs–Wolfe effect (ISW) is a direct signal of dark energy in a flat universe.[40] It was reported at high significance in 2008 by Ho et al.[41] and Giannantonio et al.[42]
Observational Hubble constant data[edit]
A new approach to test evidence of dark energy through observational Hubble constant data (OHD), also known as cosmic chronometers, has gained significant attention in recent years.[43][44][45][46]
The Hubble constant, H(z), is measured as a function of cosmological redshift. OHD directly tracks the expansion history of the universe by taking passively evolving early-type galaxies as “cosmic chronometers”.[47] From this point, this approach provides standard clocks in the universe. The core of this idea is the measurement of the differential age evolution as a function of redshift of these cosmic chronometers. Thus, it provides a direct estimate of the Hubble parameter
The reliance on a differential quantity, Δz/Δt, brings more information and is appealing for computation: It can minimize many common issues and systematic effects. Analyses of supernovae and baryon acoustic oscillations (BAO) are based on integrals of the Hubble parameter, whereas Δz/Δt measures it directly. For these reasons, this method has been widely used to examine the accelerated cosmic expansion and study properties of dark energy.[citation needed]
Theories of dark energy[edit]
Dark energy’s status as a hypothetical force with unknown properties makes it a very active target of research. The problem is attacked from a great variety of angles, such as modifying the prevailing theory of gravity (general relativity), attempting to pin down the properties of dark energy, and finding alternative ways to explain the observational data.
The equation of state of Dark Energy for 4 common models by Redshift.[48]
A: CPL Model,
B: Jassal Model,
C: Barboza & Alcaniz Model,
D: Wetterich Model
Cosmological constant[edit]
The simplest explanation for dark energy is that it is an intrinsic, fundamental energy of space. This is the cosmological constant, usually represented by the Greek letter Λ (Lambda, hence Lambda-CDM model). Since energy and mass are related according to the equation E = mc2 , Einstein’s theory of general relativity predicts that this energy will have a gravitational effect. It is sometimes called a vacuum energy because it is the energy density of empty space – the vacuum.
A major outstanding problem is that the same quantum field theories predict a huge cosmological constant, about 120 orders of magnitude too large. This would need to be almost, but not exactly, cancelled by an equally large term of the opposite sign.[13]
Some supersymmetric theories require a cosmological constant that is exactly zero.[50] Also, it is unknown if there is a metastable vacuum state in string theory with a positive cosmological constant,[51] and it has been conjectured by Ulf Danielsson et al. that no such state exists.[52] This conjecture would not rule out other models of dark energy, such as quintessence, that could be compatible with string theory.[51]
Quintessence[edit]
In quintessence models of dark energy, the observed acceleration of the scale factor is caused by the potential energy of a dynamical field, referred to as quintessence field. Quintessence differs from the cosmological constant in that it can vary in space and time. In order for it not to clump and form structure like matter, the field must be very light so that it has a large Compton wavelength. In the simplest scenarios, the quintessence field has a canonical kinetic term, is minimally coupled to gravity, and does not feature higher order operations in its Lagrangian.
No evidence of quintessence is yet available, but it has not been ruled out either. It generally predicts a slightly slower acceleration of the expansion of the universe than the cosmological constant. Some scientists think that the best evidence for quintessence would come from violations of Einstein’s equivalence principle and variation of the fundamental constants in space or time.[53] Scalar fields are predicted by the Standard Model of particle physics and string theory, but an analogous problem to the cosmological constant problem (or the problem of constructing models of cosmological inflation) occurs: renormalization theory predicts that scalar fields should acquire large masses.
The coincidence problem asks why the acceleration of the Universe began when it did. If acceleration began earlier in the universe, structures such as galaxies would never have had time to form, and life, at least as we know it, would never have had a chance to exist. Proponents of the anthropic principle view this as support for their arguments. However, many models of quintessence have a so-called “tracker” behavior, which solves this problem. In these models, the quintessence field has a density which closely tracks (but is less than) the radiation density until matter–radiation equality, which triggers quintessence to start behaving as dark energy, eventually dominating the universe. This naturally sets the low energy scale of the dark energy.[54][55]
In 2004, when scientists fit the evolution of dark energy with the cosmological data, they found that the equation of state had possibly crossed the cosmological constant boundary (w = −1) from above to below. A no-go theorem has been proved that this scenario requires models with at least two types of quintessence. This scenario is the so-called Quintom scenario.[56]
Some special cases of quintessence are phantom energy, in which the energy density of quintessence actually increases with time, and k-essence (short for kinetic quintessence) which has a non-standard form of kinetic energy such as a negative kinetic energy.[57] They can have unusual properties: phantom energy, for example, can cause a Big Rip.
A group of researchers argued in 2021 that observations of the Hubble tension may imply that only quintessence models with a nonzero coupling constant are viable.[58]
Interacting dark energy[edit]
This class of theories attempts to come up with an all-encompassing theory of both dark matter and dark energy as a single phenomenon that modifies the laws of gravity at various scales. This could, for example, treat dark energy and dark matter as different facets of the same unknown substance,[59] or postulate that cold dark matter decays into dark energy.[60] Another class of theories that unifies dark matter and dark energy are suggested to be covariant theories of modified gravities. These theories alter the dynamics of the spacetime such that the modified dynamics stems to what have been assigned to the presence of dark energy and dark matter.[61] Dark energy could in principle interact not only with the rest of the dark sector, but also with ordinary matter. However, cosmology alone is not sufficient to effectively constrain the strength of the coupling between dark energy and baryons, so that other indirect techniques or laboratory searches have to be adopted.[62] A recent proposal speculates that the currently unexplained excess observed in the XENON1T detector in Italy may have been caused by a chameleon model of dark energy.[63][64] In July 2022 a new analysis by XENONnT discarded the excess.[65][66]
Variable dark energy models[edit]
The density of dark energy might have varied in time during the history of the universe. Modern observational data allows us to estimate the present density of dark energy. Using baryon acoustic oscillations, it is possible to investigate the effect of dark energy in the history of the Universe, and constrain parameters of the equation of state of dark energy. To that end, several models have been proposed. One of the most popular models is the Chevallier–Polarski–Linder model (CPL).[67][68] Some other common models are, (Barboza & Alcaniz. 2008),[69] (Jassal et al. 2005),[70] (Wetterich. 2004),[71] (Oztas et al. 2018).[72][73]
Observational skepticism[edit]
Some alternatives to dark energy, such as inhomogeneous cosmology, aim to explain the observational data by a more refined use of established theories. In this scenario, dark energy doesn’t actually exist, and is merely a measurement artifact. For example, if we are located in an emptier-than-average region of space, the observed cosmic expansion rate could be mistaken for a variation in time, or acceleration.[74][75][76][77] A different approach uses a cosmological extension of the equivalence principle to show how space might appear to be expanding more rapidly in the voids surrounding our local cluster. While weak, such effects considered cumulatively over billions of years could become significant, creating the illusion of cosmic acceleration, and making it appear as if we live in a Hubble bubble.[78][79][80] Yet other possibilities are that the accelerated expansion of the universe is an illusion caused by the relative motion of us to the rest of the universe,[81][82] or that the statistical methods employed were flawed.[83][84] A laboratory direct detection attempt failed to detect any force associated with dark energy.[85]
Observational skepticism explanations of dark energy have generally not gained much traction among cosmologists. For example, a paper that suggested the anisotropy of the local Universe has been misrepresented as dark energy[86] was quickly countered by another paper claiming errors in the original paper.[87] Another study questioning the essential assumption that the luminosity of Type Ia supernovae does not vary with stellar population age[88][89] was also swiftly rebutted by other cosmologists.[90]
As a general relativistic effect due to black holes[edit]
This theory was formulated by University of Hawaiʻi at Mānoa researchers in February 2023. The idea is that if one requires the Kerr metric (which describes rotating black holes) to asymptote to the Friedmann-Robertson-Walker metric (which describes the isotropic and homogeneous universe that is the basic assumption of modern cosmology), then one finds that black holes gain mass as the universe expands. The rate is measured to be ∝a3, where a is the scale factor. This particular rate means that the energy density of black holes remain constant over time, mimicking dark energy (see Dark_energy#Technical_definition). The theory is called “cosmological coupling” because the black holes couple to a cosmological requirement.[91] Other astrophysicists are skeptical, but agree the concept deserves to be further explored.[92]
Other mechanism driving acceleration[edit]
Modified gravity[edit]
The evidence for dark energy is heavily dependent on the theory of general relativity. Therefore, it is conceivable that a modification to general relativity also eliminates the need for dark energy. There are very many such theories, and research is ongoing.[93][94] The measurement of the speed of gravity in the first gravitational wave measured by non-gravitational means (GW170817) ruled out many modified gravity theories as explanations to dark energy.[95][96][97]
Astrophysicist Ethan Siegel states that, while such alternatives gain a lot of mainstream press coverage, almost all professional astrophysicists are confident that dark energy exists, and that none of the competing theories successfully explain observations to the same level of precision as standard dark energy.[98]
Implications for the fate of the universe[edit]
Cosmologists estimate that the acceleration began roughly 5 billion years ago.[99][a]
Before that, it is thought that the expansion was decelerating, due to the attractive influence of matter. The density of dark matter in an expanding universe decreases more quickly than dark energy, and eventually the dark energy dominates. Specifically, when the volume of the universe doubles, the density of dark matter is halved, but the density of dark energy is nearly unchanged (it is exactly constant in the case of a cosmological constant).
Projections into the future can differ radically for different models of dark energy. For a cosmological constant, or any other model that predicts that the acceleration will continue indefinitely, the ultimate result will be that galaxies outside the Local Group will have a line-of-sight velocity that continually increases with time, eventually far exceeding the speed of light.[100] This is not a violation of special relativity because the notion of “velocity” used here is different from that of velocity in a local inertial frame of reference, which is still constrained to be less than the speed of light for any massive object (see Uses of the proper distance for a discussion of the subtleties of defining any notion of relative velocity in cosmology). Because the Hubble parameter is decreasing with time, there can actually be cases where a galaxy that is receding from us faster than light does manage to emit a signal which reaches us eventually.[101][102]
However, because of the accelerating expansion, it is projected that most galaxies will eventually cross a type of cosmological event horizon where any light they emit past that point will never be able to reach us at any time in the infinite future[103] because the light never reaches a point where its “peculiar velocity” toward us exceeds the expansion velocity away from us (these two notions of velocity are also discussed in Uses of the proper distance). Assuming the dark energy is constant (a cosmological constant), the current distance to this cosmological event horizon is about 16 billion light years, meaning that a signal from an event happening at present would eventually be able to reach us in the future if the event were less than 16 billion light years away, but the signal would never reach us if the event were more than 16 billion light years away.[102]
As galaxies approach the point of crossing this cosmological event horizon, the light from them will become more and more redshifted, to the point where the wavelength becomes too large to detect in practice and the galaxies appear to vanish completely[104][105] (see Future of an expanding universe). Planet Earth, the Milky Way, and the Local Group of which the Milky Way is a part, would all remain virtually undisturbed as the rest of the universe recedes and disappears from view. In this scenario, the Local Group would ultimately suffer heat death, just as was hypothesized for the flat, matter-dominated universe before measurements of cosmic acceleration.[citation needed]
There are other, more speculative ideas about the future of the universe. The phantom energy model of dark energy results in divergent expansion, which would imply that the effective force of dark energy continues growing until it dominates all other forces in the universe. Under this scenario, dark energy would ultimately tear apart all gravitationally bound structures, including galaxies and solar systems, and eventually overcome the electrical and nuclear forces to tear apart atoms themselves, ending the universe in a “Big Rip”. On the other hand, dark energy might dissipate with time or even become attractive. Such uncertainties leave open the possibility of gravity eventually prevailing and lead to a universe that contracts in on itself in a “Big Crunch”,[106] or that there may even be a dark energy cycle, which implies a cyclic model of the universe in which every iteration (Big Bang then eventually a Big Crunch) takes about a trillion (1012) years.[107][108] While none of these are supported by observations, they are not ruled out.[citation needed]
In philosophy of science[edit]
The astrophysicist David Merritt identifies dark energy as an example of an “auxiliary hypothesis”, an ad hoc postulate that is added to a theory in response to observations that falsify it. He argues that the dark energy hypothesis is a conventionalist hypothesis, that is, a hypothesis that adds no empirical content and hence is unfalsifiable in the sense defined by Karl Popper.[109] However, his opinion doesn’t seem to be consensus[by whom?] and is at odds with the history of cosmology.[why?][110]
See also[edit]
- Conformal gravity
- Dark Energy Spectroscopic Instrument
- De Sitter invariant special relativity
- Illustris project
- Inhomogeneous cosmology
- Joint Dark Energy Mission
- Negative mass
- Quintessence: The Search for Missing Mass in the Universe
- Dark Energy Survey
- Quantum vacuum state
Notes[edit]
- ^ Taken from Frieman, Turner, & Huterer (2008):[99]: 6, 44
“The Universe has gone through three distinct eras:- Radiation-dominated, z ≳ 3000 ;
- Matter-dominated, 3000 ≳ z ≳ 0.5 ; and
- Dark-energy-dominated, 0.5 ≳ z .
The evolution of the scale factor is controlled by the dominant energy form:
(for constant w ).
During the radiation-dominated era,during the matter-dominated era,
and for the dark energy-dominated era, assuming w ≃ −1 asymptotically
-
- [99]: 6
“Taken together, all the current data provide strong evidence for the existence of dark energy; they constrain the fraction of critical density contributed by dark energy, 0.76 ± 0.02 , and the equation-of-state parameter:
-
- w ≈ −1 ± 0.1 [stat.] ± 0.1 [sys.] ,
assuming that w is constant. This implies that the Universe began accelerating at redshift z ~ 0.4 and age t ~ 10 Ga . These results are robust – data from any one method can be removed without compromising the constraints – and they are not substantially weakened by dropping the assumption of spatial flatness.”[99]: 44
References[edit]
- ^ Overbye, Dennis (20 February 2017). “Cosmos Controversy: The Universe Is Expanding, but How Fast?”. The New York Times. Archived from the original on 4 April 2019. Retrieved 21 February 2017.
- ^ Peebles, P. J. E.; Ratra, Bharat (2003). “The cosmological constant and dark energy”. Reviews of Modern Physics. 75 (2): 559–606. arXiv:astro-ph/0207347. Bibcode:2003RvMP…75..559P. doi:10.1103/RevModPhys.75.559. S2CID 118961123.
- ^ Overbye, Dennis (25 February 2019). “Have Dark Forces Been Messing With the Cosmos? – Axions? Phantom energy? Astrophysicists scramble to patch a hole in the universe, rewriting cosmic history in the process”. The New York Times. Archived from the original on 30 April 2020. Retrieved 26 February 2019.
- ^ Idicherian Lonappan, Anto; Kumar, Sumit; R, Ruchika; Ananda Sen, Anjan (21 February 2018). “Bayesian evidences for dark energy models in light of current observational data”. Physical Review D. 97 (4): 043524. arXiv:1707.00603. Bibcode:2018PhRvD..97d3524L. doi:10.1103/PhysRevD.97.043524. S2CID 119249858.
- ^ Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; et al. (Planck Collaboration) (22 March 2013). “Planck 2013 results. I. Overview of products and scientific results – Table 9”. Astronomy and Astrophysics. 571: A1. arXiv:1303.5062. Bibcode:2014A&A…571A…1P. doi:10.1051/0004-6361/201321529. S2CID 218716838.
- ^ Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; et al. (Planck Collaboration) (31 March 2013). “Planck 2013 Results Papers”. Astronomy and Astrophysics. 571: A1. arXiv:1303.5062. Bibcode:2014A&A…571A…1P. doi:10.1051/0004-6361/201321529. S2CID 218716838. Archived from the original on 23 March 2013.
- ^ a b “First Planck results: the Universe is still weird and interesting”. 21 March 2013. Archived from the original on 2 May 2019. Retrieved 14 June 2017.
- ^ Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 46. Retrieved 7 October 2013, “…dark energy: A smooth, persistent component of invisible energy, thought to make up about 70 percent of the current energy density of the universe. Dark energy is known to be smooth because it doesn’t accumulate preferentially in galaxies and clusters…”
- ^ Paul J. Steinhardt; Neil Turok (2006). “Why the cosmological constant is small and positive”. Science. 312 (5777): 1180–1183. arXiv:astro-ph/0605173. Bibcode:2006Sci…312.1180S. doi:10.1126/science.1126231. PMID 16675662. S2CID 14178620.
- ^ “Dark Energy”. Hyperphysics. Archived from the original on 27 May 2013. Retrieved 4 January 2014.
- ^ Ferris, Timothy (January 2015). “Dark Matter(Dark Energy)”. Archived from the original on 10 June 2015. Retrieved 10 June 2015.
- ^ “Moon findings muddy the water”. Archived from the original on 22 November 2016. Retrieved 21 November 2016.
- ^ a b Carroll, Sean (2001). “The cosmological constant”. Living Reviews in Relativity. 4 (1): 1. arXiv:astro-ph/0004075. Bibcode:2001LRR…..4….1C. doi:10.12942/lrr-2001-1. PMC 5256042. PMID 28179856. Archived from the original on 13 October 2006. Retrieved 28 September 2006.
- ^ Kragh, H (2012). “Preludes to dark energy: zero-point energy and vacuum speculations”. Archive for History of Exact Sciences. 66 (3): 199–240. arXiv:1111.4623. doi:10.1007/s00407-011-0092-3. S2CID 118593162.
- ^ Buchert, T; Carfora, M; Ellis, G F R; Kolb, E W; MacCallum, M A H; Ostrowski, J J; Räsänen, S; Roukema, B F; Andersson, L; Coley, A A; Wiltshire, D L (5 November 2015). “Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?”. Classical and Quantum Gravity. 32 (21): 215021. arXiv:1505.07800. Bibcode:2015CQGra..32u5021B. doi:10.1088/0264-9381/32/21/215021. ISSN 0264-9381. S2CID 51693570.
- ^ Clarkson, Chris; Ellis, George; Larena, Julien; Umeh, Obinna (1 November 2011). “Does the growth of structure affect our dynamical models of the Universe? The averaging, backreaction, and fitting problems in cosmology”. Reports on Progress in Physics. 74 (11): 112901. arXiv:1109.2314. doi:10.1088/0034-4885/74/11/112901. ISSN 0034-4885. S2CID 55761442.
- ^ Harvey, Alex (2012). “How Einstein Discovered Dark Energy”. arXiv:1211.6338 [physics.hist-ph].
- ^ Albert Einstein, “Comment on Schrödinger’s Note ‘On a System of Solutions for the Generally Covariant Gravitational Field Equations'” https://einsteinpapers.press.princeton.edu/vol7-trans/47 Archived 1 June 2019 at the Wayback Machine
- ^ O’Raifeartaigh C., O’Keeffe M., Nahm W. and S. Mitton. (2017). ‘Einstein’s 1917 Static Model of the Universe: A Centennial Review’. Eur. Phys. J. (H) 42: 431–474.
- ^ “Dark Energy, Dark Matter”. Science Mission Directorate. 6 March 2012. Archived from the original on 5 November 2020. Retrieved 17 September 2022.
- ^ Gamow, George (1970) My World Line: An Informal Autobiography. p. 44: “Much later, when I was discussing cosmological problems with Einstein, he remarked that the introduction of the cosmological term was the biggest blunder he ever made in his life.” – Here the “cosmological term” refers to the cosmological constant in the equations of general relativity, whose value Einstein initially picked to ensure that his model of the universe would neither expand nor contract; if he hadn’t done this he might have theoretically predicted the universal expansion that was first observed by Edwin Hubble.
- ^ a b Riess, Adam G.; Filippenko; Challis; Clocchiatti; Diercks; Garnavich; Gilliland; Hogan; Jha; Kirshner; Leibundgut; Phillips; Reiss; Schmidt; Schommer; Smith; Spyromilio; Stubbs; Suntzeff; Tonry (1998). “Observational evidence from supernovae for an accelerating universe and a cosmological constant”. Astronomical Journal. 116 (3): 1009–1038. arXiv:astro-ph/9805201. Bibcode:1998AJ….116.1009R. doi:10.1086/300499. S2CID 15640044.
- ^ a b Perlmutter, S.; Aldering; Goldhaber; Knop; Nugent; Castro; Deustua; Fabbro; Goobar; Groom; Hook; Kim; Kim; Lee; Nunes; Pain; Pennypacker; Quimby; Lidman; Ellis; Irwin; McMahon; Ruiz-Lapuente; Walton; Schaefer; Boyle; Filippenko; Matheson; Fruchter; et al. (1999). “Measurements of Omega and Lambda from 42 high redshift supernovae”. Astrophysical Journal. 517 (2): 565–586. arXiv:astro-ph/9812133. Bibcode:1999ApJ…517..565P. doi:10.1086/307221. S2CID 118910636.
- ^ The first appearance of the term “dark energy” is in the article with another cosmologist and Turner’s student at the time, Dragan Huterer, “Prospects for Probing the Dark Energy via Supernova Distance Measurements”, which was posted to the ArXiv.org e-print archive in August 1998 Archived 22 June 2017 at the Wayback Machine and published in Huterer, D.; Turner, M. (1999). “Prospects for probing the dark energy via supernova distance measurements”. Physical Review D. 60 (8): 081301. arXiv:astro-ph/9808133. Bibcode:1999PhRvD..60h1301H. doi:10.1103/PhysRevD.60.081301. S2CID 12777640., although the manner in which the term is treated there suggests it was already in general use. Cosmologist Saul Perlmutter has credited Turner with coining the term in an article Archived 11 August 2006 at the Wayback Machine they wrote together with Martin White, where it is introduced in quotation marks as if it were a neologism. Perlmutter, S.; Turner, M.; White, M. (1999). “Constraining Dark Energy with Type Ia Supernovae and Large-Scale Structure”. Physical Review Letters. 83 (4): 670–673. arXiv:astro-ph/9901052. Bibcode:1999PhRvL..83..670P. doi:10.1103/PhysRevLett.83.670. S2CID 119427069.
- ^ Astier, Pierre (Supernova Legacy Survey); Guy; Regnault; Pain; Aubourg; Balam; Basa; Carlberg; Fabbro; Fouchez; Hook; Howell; Lafoux; Neill; Palanque-Delabrouille; Perrett; Pritchet; Rich; Sullivan; Taillet; Aldering; Antilogus; Arsenijevic; Balland; Baumont; Bronder; Courtois; Ellis; Filiol; et al. (2006). “The Supernova legacy survey: Measurement of ΩM, ΩΛ and W from the first year data set”. Astronomy and Astrophysics. 447 (1): 31–48. arXiv:astro-ph/0510447. Bibcode:2006A&A…447…31A. doi:10.1051/0004-6361:20054185. S2CID 119344498.
- ^ Overbye, Dennis (22 July 2003). “Astronomers Report Evidence of ‘Dark Energy’ Splitting the Universe”. The New York Times. Archived from the original on 26 June 2015. Retrieved 5 August 2015.
- ^ Rugh, S.E.; Zinkernagel, H. (2002). “The quantum vacuum and the cosmological constant problem”. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 33 (4): 663–705. arXiv:hep-th/0012253. Bibcode:2002SHPMP..33..663R. doi:10.1016/S1355-2198(02)00033-3. S2CID 9007190. Archived from the original on 30 November 2010. Retrieved 29 October 2022.
- ^ Daniel Baumann. “Cosmology: Part III Mathematical Tripos, Cambridge University” (PDF). p. 21−22. Archived from the original (PDF) on 2 February 2017. Retrieved 31 January 2017.
- ^ Durrer, R. (2011). “What do we really know about Dark Energy?”. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 369 (1957): 5102–5114. arXiv:1103.5331. Bibcode:2011RSPTA.369.5102D. doi:10.1098/rsta.2011.0285. PMID 22084297. S2CID 17562830.
- ^ The first paper, using observed data, which claimed a positive Lambda term was Paál, G.; et al. (1992). “Inflation and compactification from galaxy redshifts?”. Astrophysics and Space Science. 191 (1): 107–124. Bibcode:1992Ap&SS.191..107P. doi:10.1007/BF00644200. S2CID 116951785.
- ^ “The Nobel Prize in Physics 2011”. Nobel Foundation. Archived from the original on 1 August 2012. Retrieved 4 October 2011.
- ^ The Nobel Prize in Physics 2011 Archived 4 October 2011 at the Wayback Machine. Perlmutter got half the prize, and the other half was shared between Schmidt and Riess.
- ^ a b Spergel, D. N.; et al. (WMAP collaboration) (June 2007). “Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology” (PDF). The Astrophysical Journal Supplement Series. 170 (2): 377–408. arXiv:astro-ph/0603449. Bibcode:2007ApJS..170..377S. CiteSeerX 10.1.1.472.2550. doi:10.1086/513700. S2CID 1386346. Archived (PDF) from the original on 6 April 2020. Retrieved 26 December 2019.
- ^ Durrer, R. (2011). “What do we really know about dark energy?”. Philosophical Transactions of the Royal Society A. 369 (1957): 5102–5114. arXiv:1103.5331. Bibcode:2011RSPTA.369.5102D. doi:10.1098/rsta.2011.0285. PMID 22084297. S2CID 17562830.
- ^ Kowalski, Marek; Rubin, David; Aldering, G.; Agostinho, R. J.; Amadon, A.; Amanullah, R.; Balland, C.; Barbary, K.; Blanc, G.; Challis, P. J.; Conley, A.; Connolly, N. V.; Covarrubias, R.; Dawson, K. S.; Deustua, S. E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Fan, X.; Farris, B.; Folatelli, G.; Frye, B. L.; Garavini, G.; Gates, E. L.; Germany, L.; Goldhaber, G.; Goldman, B.; Goobar, A.; Groom, D. E.; et al. (27 October 2008). “Improved Cosmological Constraints from New, Old and Combined Supernova Datasets”. The Astrophysical Journal. 686 (2): 749–778. arXiv:0804.4142. Bibcode:2008ApJ…686..749K. doi:10.1086/589937. S2CID 119197696.. They find a best-fit value of the dark energy density, ΩΛ of 0.713+0.027–0.029(stat)+0.036–0.039(sys), of the total matter density, ΩM, of 0.274+0.016–0.016(stat)+0.013–0.012(sys) with an equation of state parameter w of −0.969+0.059–0.063(stat)+0.063–0.066(sys).
- ^ “Content of the Universe – Pie Chart”. Wilkinson Microwave Anisotropy Probe. National Aeronautics and Space Administration. Archived from the original on 18 August 2018. Retrieved 9 January 2018.
- ^ “Big Bang’s afterglow shows universe is 80 million years older than scientists first thought”. The Washington Post. Archived from the original on 22 March 2013. Retrieved 22 March 2013.
- ^ “New method ‘confirms dark energy’“. BBC News. 19 May 2011. Archived from the original on 15 June 2018. Retrieved 21 July 2018.
- ^ a b Dark energy is real Archived 25 May 2011 at the Wayback Machine, Swinburne University of Technology, 19 May 2011
- ^ Crittenden; Neil Turok (1996). “Looking for $Lambda$ with the Rees-Sciama Effect”. Physical Review Letters. 76 (4): 575–578. arXiv:astro-ph/9510072. Bibcode:1996PhRvL..76..575C. doi:10.1103/PhysRevLett.76.575. PMID 10061494. S2CID 119012700.
- ^ Shirley Ho; Hirata; Nikhil Padmanabhan; Uros Seljak; Neta Bahcall (2008). “Correlation of cosmic microwave background with large-scale structure: I. ISW Tomography and Cosmological Implications”. Physical Review D. 78 (4): 043519. arXiv:0801.0642. Bibcode:2008PhRvD..78d3519H. doi:10.1103/PhysRevD.78.043519. S2CID 38383124.
- ^ Tommaso Giannantonio; Ryan Scranton; Crittenden; Nichol; Boughn; Myers; Richards (2008). “Combined analysis of the integrated Sachs–Wolfe effect and cosmological implications”. Physical Review D. 77 (12): 123520. arXiv:0801.4380. Bibcode:2008PhRvD..77l3520G. doi:10.1103/PhysRevD.77.123520. S2CID 21763795.
- ^ Zelong Yi; Tongjie Zhang (2007). “Constraints on holographic dark energy models using the differential ages of passively evolving galaxies”. Modern Physics Letters A. 22 (1): 41–54. arXiv:astro-ph/0605596. Bibcode:2007MPLA…22…41Y. doi:10.1142/S0217732307020889. S2CID 8220261.
- ^ Haoyi Wan; Zelong Yi; Tongjie Zhang; Jie Zhou (2007). “Constraints on the DGP Universe Using Observational Hubble parameter”. Physics Letters B. 651 (5): 1368–1379. arXiv:0706.2723. Bibcode:2007PhLB..651..352W. doi:10.1016/j.physletb.2007.06.053. S2CID 119125999.
- ^ Cong Ma; Tongjie Zhang (2011). “Power of observational Hubble parameter data: a figure of merit exploration”. Astrophysical Journal. 730 (2): 74. arXiv:1007.3787. Bibcode:2011ApJ…730…74M. doi:10.1088/0004-637X/730/2/74. S2CID 119181595.
- ^ Tongjie Zhang; Cong Ma; Tian Lan (2010). “Constraints on the dark side of the universe and observational Hubble parameter data”. Advances in Astronomy. 2010 (1): 1. arXiv:1010.1307. Bibcode:2010AdAst2010E..81Z. doi:10.1155/2010/184284. S2CID 62885316.
- ^ Joan Simon; Licia Verde; Raul Jimenez (2005). “Constraints on the redshift dependence of the dark energy potential”. Physical Review D. 71 (12): 123001. arXiv:astro-ph/0412269. Bibcode:2005PhRvD..71l3001S. doi:10.1103/PhysRevD.71.123001. S2CID 13215290.
- ^ by Ehsan Sadri Astrophysics MSc, Azad University, Tehran
- ^ “Planck reveals an almost perfect universe”. Planck. ESA. 21 March 2013. Archived from the original on 6 December 2013. Retrieved 21 March 2013.
- ^ Wess, Julius; Bagger, Jonathan (1992). Supersymmetry and Supergravity. ISBN 978-0691025308.
- ^ a b Wolchover, Natalie (9 August 2018). “Dark energy may be incompatible with string theory”. Quanta Magazine. Simons Foundation. Archived from the original on 15 November 2020. Retrieved 2 April 2020.
- ^ Danielsson, Ulf; Van Riet, Thomas (April 2018). “What if string theory has no de Sitter vacua?”. International Journal of Modern Physics D. 27 (12): 1830007–1830298. arXiv:1804.01120. Bibcode:2018IJMPD..2730007D. doi:10.1142/S0218271818300070. S2CID 119198922.
- ^ Carroll, Sean M. (1998). “Quintessence and the Rest of the World: Suppressing Long-Range Interactions”. Physical Review Letters. 81 (15): 3067–3070. arXiv:astro-ph/9806099. Bibcode:1998PhRvL..81.3067C. doi:10.1103/PhysRevLett.81.3067. ISSN 0031-9007. S2CID 14539052.
- ^ Ratra, Bharat; Peebles, P.J.E. (1988). “Cosmological consequences of a rolling homogeneous scalar field”. Phys. Rev. D37 (12): 3406–3427. Bibcode:1988PhRvD..37.3406R. doi:10.1103/PhysRevD.37.3406. PMID 9958635.
- ^ Steinhardt, Paul J.; Wang, Li-Min; Zlatev, Ivaylo (1999). “Cosmological tracking solutions”. Phys. Rev. D59 (12): 123504. arXiv:astro-ph/9812313. Bibcode:1999PhRvD..59l3504S. doi:10.1103/PhysRevD.59.123504. S2CID 40714104.
- ^ Cai, Yi-Fu; Saridakis, Emmanuel N.; Setare, Mohammed R.; Xia, Jun-Qing (22 April 2010). “Quintom Cosmology – theoretical implications and observations”. Physics Reports. 493 (1): 1–60. arXiv:0909.2776. Bibcode:2010PhR…493….1C. doi:10.1016/j.physrep.2010.04.001. S2CID 118866606.
- ^ R.R.Caldwell (2002). “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state”. Physics Letters B. 545 (1–2): 23–29. arXiv:astro-ph/9908168. Bibcode:2002PhLB..545…23C. doi:10.1016/S0370-2693(02)02589-3. S2CID 9820570.
- ^ Krishnan, Chethan; Mohayaee, Roya; Colgáin, Eoin Ó; Sheikh-Jabbari, M. M.; Yin, Lu (16 September 2021). “Does Hubble Tension Signal a Breakdown in FLRW Cosmology?”. Classical and Quantum Gravity. 38 (18): 184001. arXiv:2105.09790. Bibcode:2021CQGra..38r4001K. doi:10.1088/1361-6382/ac1a81. ISSN 0264-9381. S2CID 234790314.
- ^ See dark fluid.
- ^ Rafael J. F. Marcondes (5 October 2016). “Interacting dark energy models in Cosmology and large-scale structure observational tests”. arXiv:1610.01272 [astro-ph.CO].
- ^ Exirifard, Q. (2011). “Phenomenological covariant approach to gravity”. General Relativity and Gravitation. 43 (1): 93–106. arXiv:0808.1962. Bibcode:2011GReGr..43…93E. doi:10.1007/s10714-010-1073-6. S2CID 119169726.
- ^ Vagnozzi, Sunny; Visinelli, Luca; Mena, Olga; Mota, David F. (2020). “Do we have any hope of detecting scattering between dark energy and baryons through cosmology?”. Monthly Notices of the Royal Astronomical Society. 493 (1): 1139–1152. arXiv:1911.12374. Bibcode:2020MNRAS.493.1139V. doi:10.1093/mnras/staa311.
- ^ Sunny Vagnozzi; Luca Visinelli; Philippe Brax; Anne-Christine Davis; Jeremy Sakstein (2021). “Direct detection of dark energy: The XENON1T excess and future prospects”. Physical Review D. 104 (6): 063023. arXiv:2103.15834. Bibcode:2021PhRvD.104f3023V. doi:10.1103/PhysRevD.104.063023. S2CID 232417159.
- ^ Have we detected dark energy? Cambridge scientists say it’s a possibility Archived 16 September 2021 at the Wayback Machine, University of Cambridge, 15 September 2021
- ^ “A new dark matter experiment quashed earlier hints of new particles”. Science News. 22 July 2022. Archived from the original on 26 August 2022. Retrieved 3 August 2022.
- ^ Aprile, E.; Abe, K.; Agostini, F.; Maouloud, S. Ahmed; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J. R.; Antochi, V. C.; Martin, D. Antón; Arneodo, F. (22 July 2022). “Search for New Physics in Electronic Recoil Data from XENONnT”. Physical Review Letters. 129 (16): 161805. arXiv:2207.11330. Bibcode:2022PhRvL.129p1805A. doi:10.1103/PhysRevLett.129.161805. PMID 36306777. S2CID 251040527.
- ^ Chevallier, M; Polarski, D (2001). “Accelerating Universes with Scaling Dark Matter”. International Journal of Modern Physics D. 10 (2): 213–224. arXiv:gr-qc/0009008. Bibcode:2001IJMPD..10..213C. doi:10.1142/S0218271801000822. S2CID 16489484.
- ^ Linder, Eric V. (3 March 2003). “Exploring the Expansion History of the Universe”. Physical Review Letters. 90 (9): 091301. arXiv:astro-ph/0208512. Bibcode:2003PhRvL..90i1301L. doi:10.1103/PhysRevLett.90.091301. PMID 12689209. S2CID 16219710.
- ^ Barboza, E.M.; Alcaniz, J.S. (2008). “A parametric model for dark energy”. Physics Letters B. 666 (5): 415–419. arXiv:0805.1713. Bibcode:2008PhLB..666..415B. doi:10.1016/j.physletb.2008.08.012. S2CID 118306372.
- ^ Jassal, H.K; Bagla, J.S (2010). “Understanding the origin of CMB constraints on Dark Energy”. Monthly Notices of the Royal Astronomical Society. 405 (4): 2639–2650. arXiv:astro-ph/0601389. Bibcode:2010MNRAS.405.2639J. doi:10.1111/j.1365-2966.2010.16647.x. S2CID 9144993.
- ^ Wetterich, C. (2004). “Phenomenological parameterization of quintessence”. Physics Letters B. 594 (1–2): 17–22. arXiv:astro-ph/0403289. Bibcode:2004PhLB..594…17W. doi:10.1016/j.physletb.2004.05.008. S2CID 119354763.
- ^ Oztas, A.; Dil, E.; Smith, M.L. (2018). “The varying cosmological constant: a new approximation to the Friedmann equations and universe model”. Mon. Not. R. Astron. Soc. 476 (1): 451–458. Bibcode:2018MNRAS.476..451O. doi:10.1093/mnras/sty221.
- ^ Oztas, A. (2018). “The effects of a varying cosmological constant on the particle horizon”. Mon. Not. R. Astron. Soc. 481 (2): 2228–2234. Bibcode:2018MNRAS.481.2228O. doi:10.1093/mnras/sty2375.
- ^ Wiltshire, David L. (2007). “Exact Solution to the Averaging Problem in Cosmology”. Physical Review Letters. 99 (25): 251101. arXiv:0709.0732. Bibcode:2007PhRvL..99y1101W. doi:10.1103/PhysRevLett.99.251101. PMID 18233512. S2CID 1152275.
- ^ Ishak, Mustapha; Richardson, James; Garred, David; Whittington, Delilah; Nwankwo, Anthony; Sussman, Roberto (2008). “Dark Energy or Apparent Acceleration Due to a Relativistic Cosmological Model More Complex than FLRW?”. Physical Review D. 78 (12): 123531. arXiv:0708.2943. Bibcode:2008PhRvD..78l3531I. doi:10.1103/PhysRevD.78.123531. S2CID 118801032.
- ^ Mattsson, Teppo (2010). “Dark energy as a mirage”. Gen. Rel. Grav. 42 (3): 567–599. arXiv:0711.4264. Bibcode:2010GReGr..42..567M. doi:10.1007/s10714-009-0873-z. S2CID 14226736.
- ^ Clifton, Timothy; Ferreira, Pedro (April 2009). “Does Dark Energy Really Exist?”. Scientific American. 300 (4): 48–55. Bibcode:2009SciAm.300d..48C. doi:10.1038/scientificamerican0409-48. PMID 19363920.
- ^ Wiltshire, D. (2008). “Cosmological equivalence principle and the weak-field limit”. Physical Review D. 78 (8): 084032. arXiv:0809.1183. Bibcode:2008PhRvD..78h4032W. doi:10.1103/PhysRevD.78.084032. S2CID 53709630.
- ^ Gray, Stuart (8 December 2009). “Dark questions remain over dark energy”. ABC Science Australia. Archived from the original on 15 January 2013. Retrieved 27 January 2013.
- ^ Merali, Zeeya (March 2012). “Is Einstein’s Greatest Work All Wrong – Because He Didn’t Go Far Enough?”. Discover magazine. Archived from the original on 28 January 2013. Retrieved 27 January 2013.
- ^ Wolchover, Natalie (27 September 2011) ‘Accelerating universe’ could be just an illusion Archived 24 September 2020 at the Wayback Machine, NBC News
- ^ Tsagas, Christos G. (2011). “Peculiar motions, accelerated expansion, and the cosmological axis”. Physical Review D. 84 (6): 063503. arXiv:1107.4045. Bibcode:2011PhRvD..84f3503T. doi:10.1103/PhysRevD.84.063503. S2CID 119179171.
- ^ J. T. Nielsen; A. Guffanti; S. Sarkar (21 October 2016). “Marginal evidence for cosmic acceleration from Type Ia supernovae”. Scientific Reports. 6: 35596. arXiv:1506.01354. Bibcode:2016NatSR…635596N. doi:10.1038/srep35596. PMC 5073293. PMID 27767125.
- ^ Stuart Gillespie (21 October 2016). “The universe is expanding at an accelerating rate – or is it?”. University of Oxford – News & Events – Science Blog (WP:NEWSBLOG). Archived from the original on 26 July 2017. Retrieved 10 August 2017.
- ^ D. O. Sabulsky; I. Dutta; E. A. Hinds; B. Elder; C. Burrage; E. J. Copeland (2019). “Experiment to Detect Dark Energy Forces Using Atom Interferometry”. Physical Review Letters. 123 (6): 061102. arXiv:1812.08244. Bibcode:2019PhRvL.123f1102S. doi:10.1103/PhysRevLett.123.061102. PMID 31491160. S2CID 118935116.
- ^ Colin, Jacques; Mohayaee, Roya; Rameez, Mohamed; Sakar, Subir (22 July 2019). “Evidence for anisotropy of cosmic acceleration”. Astronomy & Astrophysics. 631: L13. arXiv:1808.04597. Bibcode:2019A&A…631L..13C. doi:10.1051/0004-6361/201936373. S2CID 208175643.
- ^ Rubin, D.; Heitlauf, J. (6 May 2020). “Is the Expansion of the Universe Accelerating? All Signs Still Point to Yes: A Local Dipole Anisotropy Cannot Explain Dark Energy”. The Astrophysical Journal. 894 (1): 68. arXiv:1912.02191. Bibcode:2020ApJ…894…68R. doi:10.3847/1538-4357/ab7a16. ISSN 1538-4357. S2CID 208637339.
- ^ Yonsei University (6 January 2020). “New evidence shows that the key assumption made in the discovery of dark energy is in error”. Phys.org. Archived from the original on 13 January 2020. Retrieved 6 January 2020.
- ^ Kang, Yijung; et al. (2020). “Early-type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology”. The Astrophysical Journal. 889 (1): 8. arXiv:1912.04903. Bibcode:2020ApJ…889….8K. doi:10.3847/1538-4357/ab5afc. S2CID 209202868.
- ^ January 2020, Chelsea Gohd 09 (9 January 2020). “Has Dark Energy Been Debunked? Probably Not”. Space.com. Archived from the original on 2 March 2020. Retrieved 14 February 2020.
- ^ “Wait… Did We Finally Find the Source of Dark Energy?!”. MSN. Retrieved 4 April 2023.
- ^ Ethan Siegel (17 February 2023). “Ask Ethan: Can black holes really cause dark energy?”. Starts with a Bang.
- ^ See M. Sami; R. Myrzakulov (2015). “Late time cosmic acceleration: ABCD of dark energy and modified theories of gravity”. International Journal of Modern Physics D. 25 (12): 1630031. arXiv:1309.4188. Bibcode:2016IJMPD..2530031S. doi:10.1142/S0218271816300317. S2CID 119256879. for a recent review
- ^ Austin Joyce; Lucas Lombriser; Fabian Schmidt (2016). “Dark Energy vs. Modified Gravity”. Annual Review of Nuclear and Particle Science. 66 (1): 95. arXiv:1601.06133. Bibcode:2016ARNPS..66…95J. doi:10.1146/annurev-nucl-102115-044553. S2CID 118468001.
- ^ Lombriser, Lucas; Lima, Nelson (2017). “Challenges to Self-Acceleration in Modified Gravity from Gravitational Waves and Large-Scale Structure”. Physics Letters B. 765: 382–385. arXiv:1602.07670. Bibcode:2017PhLB..765..382L. doi:10.1016/j.physletb.2016.12.048. S2CID 118486016.
- ^ “Quest to settle riddle over Einstein’s theory may soon be over”. phys.org. 10 February 2017. Archived from the original on 28 October 2017. Retrieved 29 October 2017.
- ^ “Theoretical battle: Dark energy vs. modified gravity”. Ars Technica. 25 February 2017. Archived from the original on 28 October 2017. Retrieved 27 October 2017.
- ^ Siegel, Ethan (2018). “What Astronomers Wish Everyone Knew About Dark Matter And Dark Energy”. Forbes (Starts With A Bang blog). Archived from the original on 11 April 2018. Retrieved 11 April 2018.
- ^ a b c d Frieman, Joshua A.; Turner, Michael S.; Huterer, Dragan (1 January 2008). “Dark Energy and the Accelerating Universe”. Annual Review of Astronomy and Astrophysics. 46 (1): 385–432. arXiv:0803.0982. Bibcode:2008ARA&A..46..385F. doi:10.1146/annurev.astro.46.060407.145243. S2CID 15117520.
- ^ Krauss, Lawrence M.; Scherrer, Robert J. (March 2008). “The End of Cosmology?”. Scientific American. 82. Archived from the original on 19 March 2011. Retrieved 6 January 2011.
- ^ Is the universe expanding faster than the speed of light? Archived 23 November 2003 at the Wayback Machine (see the last two paragraphs)
- ^ a b Lineweaver, Charles; Tamara M. Davis (2005). “Misconceptions about the Big Bang” (PDF). Scientific American. Archived from the original (PDF) on 19 July 2011. Retrieved 6 November 2008.
- ^ Loeb, Abraham (2002). “The Long-Term Future of Extragalactic Astronomy”. Physical Review D. 65 (4): 047301. arXiv:astro-ph/0107568. Bibcode:2002PhRvD..65d7301L. doi:10.1103/PhysRevD.65.047301. S2CID 1791226.
- ^ Krauss, Lawrence M.; Robert J. Scherrer (2007). “The Return of a Static Universe and the End of Cosmology”. General Relativity and Gravitation. 39 (10): 1545–1550. arXiv:0704.0221. Bibcode:2007GReGr..39.1545K. doi:10.1007/s10714-007-0472-9. S2CID 123442313.
- ^ Using Tiny Particles To Answer Giant Questions Archived 6 May 2018 at the Wayback Machine. Science Friday, 3 April 2009. According to the transcript Archived 6 May 2018 at the Wayback Machine, Brian Greene makes the comment “And actually, in the far future, everything we now see, except for our local galaxy and a region of galaxies will have disappeared. The entire universe will disappear before our very eyes, and it’s one of my arguments for actually funding cosmology. We’ve got to do it while we have a chance.”
- ^ How the Universe Works 3. Vol. End of the Universe. Discovery Channel. 2014.
- ^ ‘Cyclic universe’ can explain cosmological constant Archived 31 May 2015 at the Wayback Machine, NewScientistSpace, 4 May 2006
- ^ Steinhardt, P. J.; Turok, N. (25 April 2002). “A Cyclic Model of the Universe”. Science. 296 (5572): 1436–1439. arXiv:hep-th/0111030. Bibcode:2002Sci…296.1436S. doi:10.1126/science.1070462. PMID 11976408. S2CID 1346107.
- ^ Merritt, David (2017). “Cosmology and convention”. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 57: 41–52. arXiv:1703.02389. Bibcode:2017SHPMP..57…41M. doi:10.1016/j.shpsb.2016.12.002. S2CID 119401938.
- ^ Helbig, Phillip (2020). “Sonne und Mond, or, the good, the bad, and the ugly: comments on the debate between MOND and LambdaCDM”. The Observatory. 140: 225–247. Bibcode:2020Obs…140..225H.
External links[edit]
- Euclid ESA Satellite, a mission to map the geometry of the dark universe
- “Surveying the dark side”