Как по формуле найти оптическую плотность

Поглощающие
свойства среды описываются такими
характеристиками, как:

  • интенсивность
    прошедшего светового потока I,

  • относительная
    интенсивность или пропускание Т
    =


    ,
    где

    – интенсивность исходного светового
    потока;

  • мольный коэффициент
    светопоглощения (
    )

  • оптическая
    плотность или абсорбционность (D
    или А).

Под оптической
плотностью (абсорбционностью) понимают
показатель относительной интенсивности
света
,
который рассчитывается по формуле (8.8)

А = – log
T
или А
= –
log

(8.8)

Экспериментальное
изучение поглощающих свойств среды
показало, что он напрямую зависит от
толщины
поглощающего слоя

l,
молярной
концентрации

центров
поглощения
(центров окраски)
С
и индивидуальных
свойств самого вещества
,
которые характеризует мольный коэффициент
светопоглощения

.
Мольным
коэффициентом светопоглощения

называют
оптическую плотность вещества с
концентрацией 1моль/л при толщине
поглощающего слоя

l
= 1см.

Опытным путем было
установлено, что поглощающие
свойства среды для данной длины волны

прямо пропорциональны толщине слоя и
концентрации вещества
.
Эти закономерности в классической
оптике известны как законы светопоглощения
(1-й и 2-й законы фотометрии).

1-й закон
фотометрии.
Каждый
тонкий слой постоянной толщины внутри
однородной среды поглощает одинаковую
долю падающего на него светового потока.

2-й закон
фотометрии.
Доля
светового потока, поглощенная данным
тонким слоем внутри однородной среды,
пропорциональна числу светопоглощающих
частиц в единице объема, т.е. концентрации
центров поглощения.

Эти законы впервые
сформулированы в 1729 г. физиком П. Бугером
применительно к поглощению света
атмосферой и цветными стеклами. Позднее,
в 1760 г., И. Ламберт дал математическую
интерпретацию, а в 1852 г. А. Бер и Ф. Бернард
независимо друг от друга подтвердили
их справедливость для окрашенных
растворов, выведя объединенный закон,
который получил название «Основного
закона
светопоглощения

Бугера –
Ламберта – Бера – Бернарда
»
или закона
Бугера – Ламберта – Бера
:

(8.9)

где I
– интенсивность монохроматического
излучения, прошедшего сквозь слой
вещества толщиной l
(см) и

– интенсивность исходного излучения, С
– молярная концентрация центров поглощения
(моль/л) и

(
)
– мольный коэффициент светопоглощения
при данной длине волны.

Согласно основному
закону светопоглощения, интенсивность
монохроматического излучения, прошедшего
через однородный поглощающий слой
уменьшается по экспоненциальному
закону.

Существует несколько вариантов его
формулировок. Так, с учетом определения
оптической плотности, получаем:

А = – log

=

(8.10)

Исходя из закона
Бугера – Ламберта– Бера, можно
сформулировать следствия, характеризующие
основные свойства оптической плотности.

Следствие 1.
Оптическая
плотность среды при постоянной толщине
слоя для монохроматического излучения
прямо пропорциональна концентрации
вещества

Следствие 2.
Оптическая
плотность среды при постоянной
концентрации веществ для монохроматического
излучения прямо пропорциональна толщине
поглощающего слоя
.

Следствие 3
или закон
аддитивности
(основное
свойство оптической плотности).

Оптическая
плотность среды равна сумме оптических
плотностей всех ее компонентов
.

А
=

=

(8.11)

где А
– оптическая плотность среды при данной
длине волны;

– оптическая плотность отдельного
компонента, например, растворителя.

Следствие 4.
Различие оптических плотностей веществ,
при равных значениях толщины слоя и
концентрации, определяется поглощающими
свойствами самих веществ
(их
мольными коэффициентами светопоглощения).

8.4.2 Измерение
поглощения света
.

При прохождении
белого света через окрашенные среды
(растворы, полимерные материалы, пленки
или стекла) меняются его свойства. Если
концентрация вещества мала, то наблюдается
только изменение цветности луча и
интенсивности излучения (поглощение
света)
. Чтобы
оценить влияние свойств поглощающей
среды на характер излучения необходимо:

во-первых
определить, как взаимосвязаны между
собой концентрация поглощающих центров
и изменение интенсивности светового
потока;

во-вторых
– какова зависимость изменения
интенсивности света при постоянных
свойствах среды от длины волны излучения;

в-третьих
– с помощью каких оптических параметров
и как можно охарактеризовать поглощающие
свойства среды.

Для решения этих
задач применяются различные модели
устройств, позволяющих измерять
оптическую плотность среды в
монохроматическом свете – фотоколориметры
и спектрофотометры. По конструкции они
бывают однолучевыми (например,
электроколориметр КФК; спектрофотометр
СФ-46) и двухлучевыми с автокомпенсацией
поглощения растворителя (ФЭК –
фотоэлектроколориметр). Внешний вид
этих приборов представлен на рисунках
8.32 – 8.34. Для получения монохроматического
излучения в ФЭКах применяют специальные
устройства, называемые светофильтрами.
Под светофильтром
понимают стеклянное или пластиковое
приспособление с высоким избирательным
пропусканием, которое позволяет выделять
узкую область видимого

спектра.
В спектрофотометрах для этой цели
применяют более точные устройства,
называемые монохроматорами.
В монохроматорах с помощью призм или
дифракционных решеток белое излучение
разлагается в непрерывный спектр, из
которого щелью вырезается узкий
монохроматический участок спектра.

Рисунок 8.32.
Внешний вид двухлучевого фотоколориметра
типа ФЭК-56М.

1 и 2 – кюветы с
раствором сравнения (холостая проба);

3 – кювета с
анализируемым раствором; 4 и 5 – левый
и правый

компенсационные
барабаны со шкалами пропускания и
оптической

плотности; 6 –
шторка для защиты фотоэлемента от
попадания света;

7 – миллиамперметр
с центральным нулем для контроля
компенсации

фототоков; 8 –
рукоятка перемещения кювет 2
и 3.

(слева расположены
также рукоятки для смены светофильтров;
настройки

чувствительности
и положения нуля)

Рисунок 8.33 Внешний
вид однолучевого фотоколориметра типа
КФК-2.

1 – микроамперметр;
2 – кюветный отсек; 3 – тумблер включения
питания;

4 – рукоятка
настройки чувствительности «грубо» и
«точно»;

5 – переключатель
фотоприемников; 6 – ручка смены кювет;

7 – переключатель
светофильтров для выбора рабочего
диапазона;

8 – источник
освещения (лампы).

Рисунок 8.34.
Внешний вид однолучевого спектрофотометра
СФ-46

1 – блок монохроматора;
2 – микропроцессорная система (МПС); 3 –
кюветное

отделение; 4 –
рычаг для смены источника излучения; 5
– блок осветителей;

6 – рукоятка смены
фотоэлементов; 7 – камера с фотоприемниками;

8 – рукоятка
компенсации темнового тока; 9 –
переключатель шторок;

10 – рукоятка
перемещения каретки с кюветами; 11 –
переключатель щели;

12 – индикаторная
лампа; 13 – рукоятка установки длин волн;

14 – шкала для
отсчета длин волн.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание

  1. Теоретические основы определения оптической плотности раствора
  2. Основной закон светопоглощения
  3. Закон Бугера-Ламберта-Бера
  4. Ограничения применения закона
  5. Методы определения концентрации
  6. Условия проведения исследования
  7. ОПРЕДЕЛЕНИЕ ОПТИЧЕСКОЙ ПЛОТНОСТИ И КОНЦЕНТРАЦИИ

Теоретические основы определения оптической плотности раствора

Любая частица, будь то молекула, атом или ион, в результате поглощения кванта света переходит на более высокий уровень энергетического состояния. Чаще всего осуществляется переход из основного в возбужденное состояние. Это вызывает появление в спектрах определенных полос поглощения.

Поглощение излучения приводит к тому, что при пропускании его через вещество интенсивность этого излучения снижается при увеличении количества частиц вещества, обладающего некоторой оптической плотностью. Этот метод исследования предложил В. М. Севергин еще в 1795 году.

Наилучшим образом этот метод годится для реакций, где определяемое вещество способно переходить в окрашенное соединение, что вызывает изменение окраски исследуемого раствора. Измерив его светопоглощение или сравнив окраску с раствором известной концентрации, несложно найти процент содержания вещества в растворе.

Основной закон светопоглощения

Суть фотометрического определения заключается в двух процессах:

  • перевод определяемого вещества в поглощающее электромагнитные колебания соединение;
  • замер интенсивности поглощения этих самых колебаний раствором исследуемого вещества.

Изменения в интенсивности потока света, проходящего через светопоглощающее вещество, будут вызываться также потерями света из-за отражения и рассеяния. Чтобы результат был достоверным, проводят параллельные исследования по замеру параметров при той же толщине слоя, в идентичных кюветах, с тем же растворителем. Так снижение интенсивности света зависит главным образом от концентрации раствора.

Уменьшение интенсивности света, пропущенного через раствор, характеризуют коэффициентом светопропускания (также принято называть его пропусканием) Т:

  • I — интенсивность света, пропущенного через вещество;
  • I0 — интенсивность падающего пучка света.

Таким образом, пропускание показывает долю непоглощенного светового потока, проходящего через изучаемый раствор. Обратный алгоритм значения пропускания называют оптической плотностью раствора (D): D = (-lgT) = (-lg) * (I / I0) = lg * (I0 / I).

Это уравнение показывает, какие параметры являются главными для исследования. К ним относится длина волны света, толщина кюветы, концентрация раствора и оптическая плотность.

Закон Бугера-Ламберта-Бера

Он является математическим выражением, отображающим зависимость уменьшения интенсивности монохроматического потока света от концентрации светопоглощающего вещества и толщины жидкостного слоя, через который он пропущен:

  • ε — коэффициент поглощения света;
  • С — концентрация вещества, моль/л;
  • ι —толщина слоя анализируемого раствора, см.

Преобразовав, эту формулу можно записать: I / I0 = 10 -ε·С·ι .

Суть закона сводится к следующему: различные растворы одного и того же соединения при равной концентрации и толщине слоя в кювете поглощают одинаковую часть падающего на них света.

Прологарифмировав последнее уравнение, можно получить формулу: D = ε * С * ι.

Очевидно, что оптическая плотность напрямую зависит от концентрированности раствора и толщины его слоя. Становится ясен физический смысл молярного коэффициента поглощения. Он равен D для одномолярного раствора и при толщине слоя в 1 см.

Ограничения применения закона

Этот раздел включает следующие пункты:

  1. Он справедлив исключительно для монохроматического света.
  2. Коэффициент ε связан с показателем преломления среды, особенно сильные отклонения от закона могут наблюдаться при анализе высококонцентрированных растворов.
  3. Температура при измерении оптической плотности должна быть постоянной (в рамках нескольких градусов).
  4. Световой пучок должен быть параллельным.
  5. рН среды должен быть постоянным.
  6. Закон применим для веществ, светопоглощающими центрами которых являются частицы одного вида.

Методы определения концентрации

Стоит рассмотреть метод градуировочного графика. Для его построения готовят ряд растворов (5-10) с различной концентрацией исследуемого вещества и замеряют их оптическую плотность. По полученным значениям выстраивают график зависимости D от концентрации. График является прямой линией, идущей от начала координат. Он позволяет легко определить концентрацию вещества по результатам проведенных измерений.

Также существует метод добавок. Применяется реже, чем предыдущий, но позволяет проанализировать растворы сложного состава, поскольку учитывает влияние дополнительных компонентов. Суть его состоит в определении оптической плотности среды Dx, содержащей определяемое вещество неизвестной концентрации Сх, с повторным анализом того же раствора, но с добавлением определенного количества исследуемого компонента (Сст). Величину Сх находят, используя расчеты или графики.

Условия проведения исследования

Чтобы фотометрические исследования давали достоверный результат, необходимо соблюдать несколько условий:

  • реакция должна заканчиваться быстро и полностью, избирательно и воспроизводимо;
  • окраска образующегося вещества должна быть устойчива во времени и не изменяться под действием света;
  • исследуемое вещество берут в количестве, которого достаточно для перевода его в аналитическую форму;
  • замеры оптической плотности проводят в том интервале длин волн, при котором различие в поглощении исходных реагентов и анализируемого раствора наибольшее;
  • светопоглощение раствора сравнения принято считать оптическим нулем.

Источник

ОПРЕДЕЛЕНИЕ ОПТИЧЕСКОЙ ПЛОТНОСТИ И КОНЦЕНТРАЦИИ

ОКРАШЕННЫХ РАСТВОРОВ ПРИ ПОМОЩИ КОНЦЕНТРАЦИОНОГО

ФОТОЭЛЕКТРИЧЕСКОГО КАЛОРИМЕТРА КФК– 2

Цель работы: изучить явление ослабления света при прохождении через вещество и фотометрические характеристики вещества, изучить устройство концентрационного фотоэлектрического калориметра КФК-2 и методику работы с ним, определить оптическую плотность и концентрацию окрашенного раствора с помощью КФК-2.

Приборы и принадлежности: калориметр фотоэлектрический концентрационный КФК – 2, исследуемый раствор, набор растворов стандартной концентрации.

Теория работы

При падении света на границу раздела двух сред свет частично отражается и частично проникает из первого вещества во второе. Световые электромагнитные волны приводят в колебательное движение как свободные электроны вещества, так и связанные электроны, находящиеся на внешних оболочках атомов (оптические электроны), которые излучают вторичные волны с частотой падающей электромагнитной волны. Вторичные волны образуют отраженную волну и волну, проникающую внутрь вещества.

В веществах с высокой плотностью свободных электронов (металлах) вторичные волны порождают сильную отраженную волну, интенсивность которой может достигать 95 % интенсивности падающей волны. Та же часть световой энергии, которая проникает внутрь металла, испытывает в нем сильное поглощение, и энергия световой волны превращается в тепловую. Поэтому металлы сильно отражают падающий на них свет и практически непрозрачны.

В полупроводниках плотность свободных электронов меньше, чем в металлах, и они слабее поглощают видимый свет, а в инфракрасной области вообще прозрачны. Диэлектрики поглощают свет избирательно и прозрачны только для определенных участков спектра.

В общем случае при падении света на вещество падающий световой поток Ф0 можно представить в виде суммы световых потоков:

, (1)

где Фr– отраженный, Фa– поглощенный, Фt– прошедший через вещество световой поток.

Явление взаимодействия света с веществом описывается безразмерными величинами, которые называются коэффициентами отражения , поглощения и пропускания . Для одного и того же вещества

Для непрозрачных тел t = 0; для идеально белых тел r = 1; для абсолютно черных тел a = 1.

Величина называется оптической плотностью вещества.

Коэффициенты r, a, t характеризуют фотометрические свойства вещества и определяются фотометрическими методами.

Фотометрические методы анализа широко применяются в ветеринарии, зоотехнии, почвоведении, технологии материалов. При исследовании веществ, растворенных в практически непоглощающем растворителе, фотометрические методы основаны на измерении поглощения света и на зависимости между поглощением и концентрацией растворов. Приборы, предназначенные для абсорбционного (абсорбция – поглощение) анализа прозрачных сред, называются спектрофотометрами и фотокалориметрами. В них при помощи фотоэлементов сравниваютcя окраски исследуемых растворов со стандартным.

Зависимость между поглощением света окрашенным раствором и концентрацией вещества подчиняется объединенному закону Бугера – Ламберта – Бера:

, (3)

где I0 – интенсивность потока света, падающего на раствор; I — интенсивность потока света, прошедшего через раствор; c — концентрация окрашенного вещества в растворе; l — толщина поглощающего слоя в растворе; k — коэффициент поглощения, который зависит от природы растворенного вещества, растворителя, температуры и длины световой волны.

Если с выражено в моль/л, а l — в сантиметрах, то k становится молярным коэффициентом поглощения и обозначается el, следовательно:

. (4)

Прологарифмировав (4), получим:

. (5)

Левая часть выражения (5) является оптической плотностью раствора. С учетом понятия оптической плотности закон Бугера – Ламберта – Бера примет вид:

т. е. оптическая плотность раствора при определенных условиях прямо пропорциональна концентрации окрашенного вещества в растворе и толщине поглощающего слоя.

На практике наблюдаются случаи отклонения от объединенного закона поглощения. Это происходит потому, что некоторые окрашенные соединения в растворе претерпевают изменения за счет процессов диссоциации, сольватации, гидролиза, полимеризации, взаимодействия с другими компонентами раствора.

Вид графика зависимости D = f(c) представлен на рис. 1.

Окрашенные соединения обладают избирательным поглощением света, т.е. оптическая плотность окрашенного раствора различна для различных длин волн па- дающего света. Измерение оптической плотности с целью определения концентрации раствора проводят в области максимального поглощения, т. е. при длине волны

падающего света близкой к lmax.

Для фотометрического определения концентрации раствора сначала строят калибровочный график D = f(c). Для этого готовят серию стандартных растворов. Затем измеряют величины их оптической плотности и строят график зависимости

D = f(c). Для его построения необходимо иметь 5 – 8 точек.

Экспериментально определив оптическую плотность исследуемого раствора, находят ее значение на оси ординат калибровочного графика D = f(c), а затем на оси абсцисс отсчитывают соответствующее значение концентрации сх.

Используемый в работе калориметр фотоэлектрический концентрационный КФК–2 предназначен для измерения отношения потоков света на отдельных участках длин волн в диапазоне 315 — 980 нм, выделяемых светофильтрами, и позволяет определять коэффициенты пропускания и оптической плотности жидких растворов и твердых тел, а также концентрации веществ в растворах методом построения градуировочных графиков D = f(c).

Принцип измерения фотокалориметром КФК–2 оптических характеристик веществ состоит в том, что на фотоприемник (фотоэлемент) направляются поочередно световые потоки — полный I0 и прошедший через исследуемую среду I и определяется отношение этих потоков.

Внешний вид фотокалориметра КФК–2 представлен на рис. 2. Он включает в

себя источник света, оптическую часть, набор светофильтров, фотоприемники и регистрирующий прибор, шкала которого откалибрована на показания светопропускания и оптической плотности. На лицевой панели фотокалориметра КФК – 2 имеются:

1 — микроамперметр со шкалой, оцифрованной в величинах коэффициента про-

пускания Т и оптической плотности D;

3 — ручка переключения светофильтров;

4 — переключатель кювет в световом пучке;

5 — переключатель фотоприемников «Чувствительность»;

6 — ручки «Установка 100»: «Грубо» и «Точно»;

Порядок выполнения работы

1. Включить прибор в сеть. Прогреть в течение 10 – 15 мин.

2. При открытом кюветном отделении установить стрелку микроамперметра на «0»

3. Установить минимальную чувствительность, для этого ручку «Чувствитель-

ность» переключить в положение «1», ручку «Установка 100» «Грубо» переключить в крайнее левое положение.

4. В световой пучок поместить кювету с растворителем или контрольным раство-

ром, по отношению к которому производится измерение.

5. Закрыть крышку кюветного отделения.

6. Ручками «Чувствительность» и «Установка 100» «Грубо» и «Точно» установить

отсчет 100 по шкале фотокалориметра. Ручка «Чувствительность» может находиться в одном из трех положений «1», «2», или «3».

7. Поворотом ручки «4» кювету с растворителем заменить кюветой с исследуемым

8. Снять отсчет по шкале микроамперметра, соответствующий коэффициенту про-

пускания исследуемого раствора в процентах, по шкале «Т» или по шкале «Д» — в единицах оптической плотности.

9. Измерения провести 3–5 раз и окончательное значение измеряемой величины оп-

ределить как среднее арифметическое из полученных значений.

10. Определить абсолютную погрешность измерения искомой величины.

Задание № 1. Изучение зависимости оптической плотности от длины

Волны падающего света

1.1. Для стандартного раствора определить оптическую плотность при различных частотах падающего света.

1.2. Данные занести в таблицу 1.

1.3. Построить график зависимости оптической плотности от длины волны l па-

1.4. Определить l и номерсветофильтра для Dmax .

Маркировка светофильтра на диске Длина волны l, соответствующая max пропускания, нм Оптическая плотность D

Задание № 2. Проверка зависимости оптической плотности от толщины

Поглощающего слоя

2.1. Для стандартного раствора, используя светофильтр с lmax (см. задание № 1), определить D для кювет различного размера.

2.2. Данные занести в таблицу 2.

Рабочая длина микрокюветы, мм l
Оптическая плотность D

2.3. Построить график зависимости D = f(l).

Задание № 3. Построение калибровочного графика и определение концент-

Рации неизвестного раствора

3.1 . Для серии стандартных растворов известной концентрации, используя све-

тофильтр с lmax (см. задание № 1), определить D.

3.2. Данные измерений занести в таблицу 3.

№ стандартного раствора Концентрация с, % Оптическая плотность D
Контрольный раствор

3.3. Построить калибровочный график D = f(с).

3.4. По графику D = f(с) определить концентрацию неизвестного раствора.

Контрольные вопросы

1. Явление ослабления света при прохождении через вещество, механизм поглоще-

ния для разных типов вещества.

2. Параметры, характеризующие фотометрические свойства вещества.

3. Объясните сущность фотометрических методов анализа.

4. Сформулируйте объединенный закон поглощения Бугера–Ламберта–Бера.

5. Каковы причины возможных отклонений свойств растворов от объединенного за-

6. Молярный коэффициент поглощения, его определение и факторы, от которых он

7. Как осуществляется выбор длины волны поглощаемого излучения при фотокало-

1. Как строится калибровочный график?

2. Объясните устройство и принцип работы фотокалориметра КФК–2.

3. Где и для чего применяется абсорбционный анализ?

1. Трофимова Т. И. Курс физики. М.: Высш. шк., 1994. Часть 5, гл. 24, § 187.

2. Савельев И. В. Курс общей физики. М.: Наука, 1977. Том 2, часть 3, гл. XХ,

3. Грабовский Р. И. Курс физики. С-Пб.: Лань. 2002. Часть П, гл. VI, § 50.

ЛАБОРАТОРНАЯ РАБОТА № 4–03

Источник

Enter the incident optical intensity and the transmitted optical intensity into the calculator to determine the optical density.

  • All Density Calculators
  • Absorbance to Transmittance Calculator
  • Light Intensity Calculator
  • Thin Lens Calculator
  • Flux Density Calculator
  • Optical Purity Calculator

Optical Density Formula

The following formula is used to calculate the optical density.

  • Where OD is the optical density
  • I0 is the incident optical intensity (optical intensity hitting the material)
  • I is the transmitted optical intensity (optical intensity transmitted by the material/film.

To calculate optical density, take the log of the incident optical intensity divide by the transmitted optical intensity.

Optical Density Definition

An optical density is defined as the total optical attenuation per centimeter of material. Optical attenuation is the loss or amount of optical light that material retains as it travels over or through a medium.

How to calculate Optical Density?

Example Problem #1:

First, determine the incident optical intensity. For this problem, the incident optical intensity is measured as 1500 units.

Next, determine the transmitted optical intensity. This is measured to be 150 units.

Finally, calculate the optical density using the formula:

OD = log10 (I0 / I )

= log10 (1500/ 150 )

= 1.

Example Problem #2:

In this next problem, the incident optical intensity is now 3000 units and the transmitted intensity is now 500 units.

Using the same formula as above:

OD = log10 (3000/500)

= .7781

optical density calculator

Оптическая плотность раствора

Колориметрия

Из оптических методов анализа в практике аналитических лабораторий наиболее широко применяются колориметрические методы (от лат. color — цвет и греч. μετρεω — измеряю). Колориметрические методы основаны на измерении интенсивности светового потока, прошедшего через окрашенный раствор.

В колориметрическом методе используются химические реакции, сопровождающиеся изменением цвета анализируемого раствора. Измеряя светопоглощение такого окрашенного раствора или сравнивая полученную окраску с окраской раствора известной концентрации, определяют содержание окрашенного вещества в испытуемом растворе.

Существует зависимость между интенсивностью окраски раствора и содержанием в этом растворе окрашенного вещества. Эта зависимость, называемая основным законом светопоглощения (или законом Бугера—Ламберта—Бера), выражается уравнением:

I = I0 10 – ε c l

где I – интенсивность света, прошедшего через раствор; I0 – интенсивность падающего на раствор света; ε- коэффициент светопоглощения, постоянная величина для каждого окрашенного вещества, зависящая от его природы; С – молярная концентрация окрашенного вещества в растворе; l – толщина слоя светопоглощающего раствора, см.

Физический смысл этого закона можно выразить следующим образом. Растворы одного и того же окрашенного вещества при одинаковой концентрации этого вещества и толщине слоя раствора поглощают равное количество световой энергии, т. е. светопоглощение таких растворов одинаковое.

Для окрашенного раствора, заключенного в стеклянную кювету с параллельными стенками, можно сказать, что по мере увеличения концентрации и толщины слоя раствора его окраска увеличивается, а интенсивность света I, прошедшего через поглощающий раствор, уменьшается по сравнению с интенсивностью падающего света I0.

Рис.1 Прохождение света через кювету с исследуемым раствором.

Оптическая плотность раствора.

Если прологарифмировать уравнение основного закона светопоглощения и изменить знаки на обратные, то уравнение принимает вид:

Величина является очень важной характеристикой окрашенного раствора; ее называют оптической плотностью раствора и обозначают буквой A:

A = ε C l

Из этого уравнения вытекает, что оптическая плотность раствора прямо пропорциональна концентрации окрашенного вещества и толщине слоя раствора.

Другими словами, при одинаковой толщине слоя раствора данного вещества оптическая плотность этого раствора будет тем больше, чем больше в нем содержится окрашенного вещества. Или, наоборот, при одной и той же концентрации данного окрашенного вещества оптическая плотность раствора зависит только от толщины его слоя. Отсюда может быть сделан следующий вывод: если два раствора одного и того же окрашенного вещества имеют различную концентрацию, одинаковая интенсивность окраски этих растворов будет достигнута при толщинах их слоев, обратно пропорциональных концентрациям растворов. Этот вывод очень важен, так как на нем основаны некоторые методы колориметрического анализа.

Таким образом, чтобы определить концентрацию (С) окрашенного раствора, необходимо измерить его оптическую плотность (A). Чтобы измерить оптическую плотность, следует измерить интенсивность светового потока.

Интенсивность окраски растворов можно измерять различными методами. Различают субъективные (или визуальные) методы колориметрии и объективные (или фотоколориметрические).

Визуальными называются такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом.

При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах – фотоколориметрах, откуда и метод получил название фотоколориметрического.

Визуальные методы

К визуальным методам относятся:

1) метод стандартных серий;

2) метод дублирования (колориметрическое титрование);

3) метод уравнивания.

Метод стандартных серий. При выполнении анализа методом стандартных серий интенсивность окраски анализируемого окрашенного раствора сравнивают с окрасками серии специально приготовленных стандартных растворов (при одинаковой толщине поглощающего слоя).

Растворы в колориметрии обычно имеют интенсивную окраску, поэтому имеется возможность определять весьма небольшие концентрации или количества веществ. Однако это может сопровождаться определенными трудностями: так навески для приготовления серии стандартных растворов могут быть очень малы. Для преодоления этих трудностей готовят стандартный раствор А достаточно высокой концентрации, например 1 мг/мл. После этого путем разбавления из раствора А готовят стандартный раствор В значительно меньшей концентрации, а из него в свою очередь готовят серию стандартных растворов.

Для этого в пробирки или кюветы одинакового размера и одинакового цвета стекла пипеткой добавляются необходимые объемы растворов реагентов в нужной последовательности. Порции растворов определяемого вещества целесообразно добавлять из бюретки, т.к. их объемы будут различны для обеспечения различных концентраций в серии стандартных растворов. При этом начальный раствор должен содержать все компоненты, кроме определяемого вещества (нулевой раствор). В исследуемый раствор добавляют растворы необходимых реагентов. Все растворы доводят до постоянного объема, а затем визуально сравнивают интенсивность окраски исследуемого раствора с растворами серии стандартных растворов. Возможно совпадение интенсивности окраски с каким-либо раствором серии. Тогда считается, сто исследуемый раствор имеет такую же концентрацию или содержит столько же определяемого вещества. Если же интенсивность окраски покажется промежуточной между соседними растворами серии, концентрация или содержание определяемого компонента считают средним арифметическим между растворами серии.

Колориметрическое титрование (метод дублирования). Этот метод основан на сравнении окраски анализируемого раствора с окраской другого раствора контрольного. Для приготовления контрольного раствора готовят раствор, содержащий все компоненты исследуемого раствора, за исключением определяемого вещества, и все употреблявшиеся при подготовке пробы реактивы, и к нему добавляют из бюретки стандартный раствор определяемого вещества. Когда этого раствора будет добавлено столько, что интенсивности окраски контрольного и анализируемого раствора уравняются, считают, что в анализируемом растворе содержится столько же определяемого вещества, сколько его было введено в контрольный раствор.

Метод уравнивания.Этот метод основан на уравнивании окрасок анализируемого раствора и раствора с известной концентрацией определяемого вещества — стандартного раствора. Существуют два варианта выполнения колориметрического определения этим методом.

По первому варианту уравнивание окрасок двух растворов с разной концентрацией окрашенного вещества проводят путем изменения толщины слоев этих растворов при одинаковой силе проходящего через растворы светового потока. При этом, несмотря на различие концентраций анализируемого и стандартного растворов, интенсивность светового потока, проходящего через оба слоя этих растворов, будет одинакова. Соотношение между толщинами слоев и концентрациями окрашенного вещества в растворах в момент уравнивания окрасок будет выражаться уравнением:

где l1 – толщина слоя раствора с концентрацией окрашенного вещества C1, а l2-толщина слоя раствора с концентрацией окрашенного вещества C2.

В момент равенства окрасок отношение толщин слоев двух сравниваемых растворов обратно пропорционально отношению их концентраций.

На основании приведенного уравнения, измерив толщину слоев двух одинаково окрашенных растворов и зная концентрацию одного из этих растворов, легко можно рассчитать неизвестную концентрацию окрашенного вещества в другом растворе.

Для измерения толщины слоя, через который проходит световой поток, можно применять стеклянные цилиндры или пробирки, а при более точных определениях специальные приборы — колориметры.

По второму варианту, для уравнивания окрасок двух растворов с различной концентрацией окрашенного вещества, через слои растворов одинаковой толщины пропускают световые потоки различной интенсивности.

В этом случае оба раствора имеют одинаковую окраску, когда отношение логарифмов интенсивностей падающих световых потоков равно отношению концентраций.

В момент достижения одинаковой окраски двух сравниваемых растворов, при равной толщине их слоев, концентрации растворов прямо пропорциональны логарифмам интенсивностей падающего на них света.

По второму варианту определение может быть выполнено только с помощью колориметра.

Теоретические основы определения оптической плотности раствора

Любая частица, будь то молекула, атом или ион, в результате поглощения кванта света переходит на более высокий уровень энергетического состояния. Чаще всего осуществляется переход из основного в возбужденное состояние. Это вызывает появление в спектрах определенных полос поглощения.

Поглощение излучения приводит к тому, что при пропускании его через вещество интенсивность этого излучения снижается при увеличении количества частиц вещества, обладающего некоторой оптической плотностью. Этот метод исследования предложил В. М. Севергин еще в 1795 году.

Наилучшим образом этот метод годится для реакций, где определяемое вещество способно переходить в окрашенное соединение, что вызывает изменение окраски исследуемого раствора. Измерив его светопоглощение или сравнив окраску с раствором известной концентрации, несложно найти процент содержания вещества в растворе.

Основной закон светопоглощения

Суть фотометрического определения заключается в двух процессах:

  • перевод определяемого вещества в поглощающее электромагнитные колебания соединение;
  • замер интенсивности поглощения этих самых колебаний раствором исследуемого вещества.

Изменения в интенсивности потока света, проходящего через светопоглощающее вещество, будут вызываться также потерями света из-за отражения и рассеяния. Чтобы результат был достоверным, проводят параллельные исследования по замеру параметров при той же толщине слоя, в идентичных кюветах, с тем же растворителем. Так снижение интенсивности света зависит главным образом от концентрации раствора.

Уменьшение интенсивности света, пропущенного через раствор, характеризуют коэффициентом светопропускания (также принято называть его пропусканием) Т:

  • I — интенсивность света, пропущенного через вещество;
  • I0 — интенсивность падающего пучка света.

Таким образом, пропускание показывает долю непоглощенного светового потока, проходящего через изучаемый раствор. Обратный алгоритм значения пропускания называют оптической плотностью раствора (D): D = (-lgT) = (-lg) * (I / I0) = lg * (I0 / I).

Это уравнение показывает, какие параметры являются главными для исследования. К ним относится длина волны света, толщина кюветы, концентрация раствора и оптическая плотность.

Закон Бугера-Ламберта-Бера

Он является математическим выражением, отображающим зависимость уменьшения интенсивности монохроматического потока света от концентрации светопоглощающего вещества и толщины жидкостного слоя, через который он пропущен:

I = I0 * 10 -ε·С·ι , где:

  • ε — коэффициент поглощения света;
  • С — концентрация вещества, моль/л;
  • ι —толщина слоя анализируемого раствора, см.

Преобразовав, эту формулу можно записать: I / I0 = 10 -ε·С·ι .

Суть закона сводится к следующему: различные растворы одного и того же соединения при равной концентрации и толщине слоя в кювете поглощают одинаковую часть падающего на них света.

Прологарифмировав последнее уравнение, можно получить формулу: D = ε * С * ι.

Очевидно, что оптическая плотность напрямую зависит от концентрированности раствора и толщины его слоя. Становится ясен физический смысл молярного коэффициента поглощения. Он равен D для одномолярного раствора и при толщине слоя в 1 см.

Ограничения применения закона

Этот раздел включает следующие пункты:

  1. Он справедлив исключительно для монохроматического света.
  2. Коэффициент ε связан с показателем преломления среды, особенно сильные отклонения от закона могут наблюдаться при анализе высококонцентрированных растворов.
  3. Температура при измерении оптической плотности должна быть постоянной (в рамках нескольких градусов).
  4. Световой пучок должен быть параллельным.
  5. рН среды должен быть постоянным.
  6. Закон применим для веществ, светопоглощающими центрами которых являются частицы одного вида.

Методы определения концентрации

Стоит рассмотреть метод градуировочного графика. Для его построения готовят ряд растворов (5-10) с различной концентрацией исследуемого вещества и замеряют их оптическую плотность. По полученным значениям выстраивают график зависимости D от концентрации. График является прямой линией, идущей от начала координат. Он позволяет легко определить концентрацию вещества по результатам проведенных измерений.

Также существует метод добавок. Применяется реже, чем предыдущий, но позволяет проанализировать растворы сложного состава, поскольку учитывает влияние дополнительных компонентов. Суть его состоит в определении оптической плотности среды Dx, содержащей определяемое вещество неизвестной концентрации Сх, с повторным анализом того же раствора, но с добавлением определенного количества исследуемого компонента (Сст). Величину Сх находят, используя расчеты или графики.

Условия проведения исследования

Чтобы фотометрические исследования давали достоверный результат, необходимо соблюдать несколько условий:

  • реакция должна заканчиваться быстро и полностью, избирательно и воспроизводимо;
  • окраска образующегося вещества должна быть устойчива во времени и не изменяться под действием света;
  • исследуемое вещество берут в количестве, которого достаточно для перевода его в аналитическую форму;
  • замеры оптической плотности проводят в том интервале длин волн, при котором различие в поглощении исходных реагентов и анализируемого раствора наибольшее;
  • светопоглощение раствора сравнения принято считать оптическим нулем.

Способы расчета концентрации по величине аналитического сигнала

СПОСОБЫ РАСЧЕТА КОНЦЕНТРАЦИИ ПО ВЕЛИЧИНЕ АНАЛИТИЧЕСКОГО СИГНАЛА

МЕТОД ГРАДУИРОВОЧНОГО ГРАФИКА

Пример 1. При измерении оптической плотности в одинаковых условиях (длина волны 340 нм, толщина поглощающего слоя – 1,00 см) растворов калия дихромата с разной концентрацией хрома (мкг/мл) получены следующие результаты:

Изобразите примерный вид градуировочного графика; методом наименьших квадратов рассчитайте обратное уравнение градуировочного графика с = bA + а; определите концентрацию хрома (мкг/мл) в растворе Х, имеющем оптическую плотность 0,480.

Рассчитайте массу хрома (мг) в анализируемой пробе, если ее растворили в присутствии концентрированной серной кислоты в воде дистиллированной в мерной колбе объёмом 50,00 мл (раствор Х).

1. Расчет методом наименьших квадратов

2. Расчет с помощью программы Excel

длина волны 340 нм

Ответ: с = 115,72А – 8,8397 (r = 0,9941); масса хрома в пробе 2,34 мг

Пример 2. При измерении оптической плотности в одинаковых условиях (длина волны 400 нм, толщина поглощающего слоя – 1,00 см) растворов никеля (II) нитрата с разной концентрацией никеля (мг/мл) получены следующие результаты:

Изобразите примерный вид градуировочного графика; методом наименьших квадратов рассчитайте обратное уравнение градуировочного графика с = bA + а; определите концентрацию никеля (мг/мл) в растворе Х, имеющем оптическую плотность 0,350.

Рассчитайте массу никеля (мг) в анализируемой пробе, если ее количественно перенесли в мерную колбу объёмом 25,00 мл и развели водой дистиллированной в присутствии азотной кислоты до метки (раствор Х).

1. Расчет методом наименьших квадратов

2. Расчет с помощью программы Excel

Ответ: с = 42,495А – 3,8535 (r = 0,9986); масса никеля 275 мг

Пример 3. При измерении оптической плотности в одинаковых условиях (длина волны 620 нм, толщина поглощающего слоя – 1,00 см) растворов меди (II) в виде аммиачного комплекса с разной концентрацией меди (мкг/мл) получены следующие результаты:

Изобразите примерный вид градуировочного графика; методом наименьших квадратов рассчитайте обратное уравнение градуировочного графика с = bA; определите концентрацию меди (мкг/мл) в растворе Х, имеющем оптическую плотность 0,150.

Рассчитайте массу меди (мкг) в анализируемой пробе, если ее количественно перенесли в мерную колбу объёмом 25,00 мл и до метки развели водой дистиллированной в присутствии избытка аммиака (раствор Х).

1. Расчет методом наименьших квадратов

2. Расчет с помощью программы Excel

2. Расчет с помощью программы Excel

Ответ: с = 34,595А (r = 0,9985); масса меди 130 мкг.

МЕТОД ОДНОГО СТАНДАРТНОГО РАСТВОРА

Измеряют величину аналитического сигнала (yст) для раствора с известной концентрацией вещества (сст). Затем измеряют величину аналитического сигнала (yx) для раствора с неизвестной концентрацией вещества (сx). Такой способ расчёта можно использовать в том случае, если зависимость аналитического сигнала от концентрации описывается линейным уравнением без свободного члена. Концентрация вещества в стандартном растворе должна быть такой, чтобы величины аналитических сигналов, полученных при использовании стандартного раствора и раствора с неизвестной концентрацией вещества, были бы как можно ближе друг к другу.

ПРИМЕР 1. При фотометрическом определении концентрации нитрит-ионов с помощью реактива Грисса (раствора сульфаниловой кислоты и α-нафтиламина в разбавленной уксусной кислоте) было установлено, что раствор с концентрацией нитрит-ионов 2,00 мкг/мл имеет в соответствующих условиях оптическую плотность 0,300. Рассчитайте концентрацию нитрит-ионов в растворе (мкг/мл), оптическая плотность которого в таких же условиях равна 0,250. Зависимость оптической плотности от содержания аналита линейна и проходит через начало координат.

Ответ: 1,67 мкг/мл

МЕТОД ДВУХ СТАНДАРТНЫХ РАСТВОРОВ

(метод ограничивающих растворов)

Измеряют величины аналитических сигналов для стандартных растворов с двумя разными концентрациями вещества, одна из которых (с1) меньше предполагаемой неизвестной концентрации (сx), а вторая (с2) – больше. Его используют, если зависимость аналитического сигнала от концентрации описывается линейным уравнением, не проходящим через начало координат.

Пример 1. Раствор с концентрацией никеля (II) 12,00 мг/мл имеет оптическую плотность 0,350 нм, а с концентрацией 16,00 мг/мл – 0,440. Определите концентрацию никеля (мг/мл) в растворе с оптической плотностью 0,380 (все измерения проводились в одинаковых условиях: длина волны 400 нм, толщина поглощающего слоя – 1,00 см, раствор в азотной кислоте).

Ответ: 13,33 мг/мл

Используют при анализе сложных матриц, когда матричные компоненты оказывают влияний на величину аналитического сигнала и невозможно точно скопировать матричный состав образца, в случае линейной зависимости, проходящей через начало координат.

Вначале измеряют величину аналитического сигнала (yx) для пробы с неизвестной концентрацией вещества. Затем к данной пробе прибавляют некоторое точное количество определяемого вещества (стандарта) и снова измеряют величину аналитического сигнала (yдоб). Концентрацию определяемого компонента в анализируемой пробе (без учета разбавления) рассчитывают по формуле:

Для учета разбавления раствора используем формулу:

ПРИМЕР 1. Раствор с неизвестной концентрацией вещества имел оптическую плотность 0,300. К 5,00 мл такого раствора прибавили 2,00 мл раствора с концентрацией этого же вещества 40,0 мг/л. Оптическая плотность полученного раствора при измерении её в таких же условиях оказалась равна 0,500. Рассчитайте концентрацию вещества (мг/л) в исходном растворе.

1 способ: пропорционально

2 способ: преобразуем составленную пропорцию в приведенную ранее формулу

ПРИМЕР 2. Оптическая плотность раствора с неизвестным содержанием вещества равна 0,400. При добавлении к анализируемому раствору 10,0 мкг этого же вещества оптическая плотность увеличилась до 0,500. Рассчитайте массу определяемого вещества (мкг) в исходном растворе.

1 способ: пропорционально

2 способ: преобразуем составленную пропорцию в приведенную ранее формулу

[spoiler title=”источники:”]

http://fb.ru/article/378024/teoreticheskie-osnovyi-opredeleniya-opticheskoy-plotnosti-rastvora

http://pandia.ru/text/80/260/2737.php

[/spoiler]

Эта статья о мере ослабления или отражения света; Оптически более плотной средой называют среду с бо́льшим показателем преломления.

Опти́ческая пло́тность (эксти́нкция[1]) — мера ослабления света прозрачными объектами (такими, как кристаллы, стекла, фотоплёнка) или отражения света непрозрачными объектами (такими, как фотография, металлы и т. д.).

Вычисляется как десятичный логарифм отношения потока излучения падающего на объект — Phi _{{in}}, к потоку излучения прошедшего через него (отразившегося от него) — Phi _{{out}} , то есть это есть логарифм от величины, обратной к коэффициенту пропускания (отражения)[2]:

{displaystyle D=lg {frac {Phi _{in}}{Phi _{out}}}.}

К примеру, D=4 означает, что свет был ослаблен в 104=10 000 раз, то есть для человека это полностью чёрный объект, а D=0 означает, что свет прошёл (отразился) полностью.

В терминах оптической плотности задаются требования к выдержке негативов.

Прибор для измерения оптической плотности называется денситометром. В рентгеновских методах неразрушающего контроля оптическая плотность рентгеновского снимка является параметром оценки пригодности снимка к дальнейшей расшифровке. Допустимые значения оптической плотности в рентгеновских методах неразрушающего контроля регламентируются в соответствии с требованиями ГОСТа.

Примечания[править | править код]

  1. Зимон А. Д., Коллоидная химия, 2003, с. 128.
  2. Капорский Л. Н. Оптическая плотность // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. Магнитоплазменный компрессор — Пойнтинга теорема. — С. 441. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.

Литература[править | править код]

  • Зимон А. Д. Коллоидная химия. — 3-е изд., доп. и испр. — М.: Агар, 2003. — 320 с. — ISBN 5-89218-151-0.

Добавить комментарий